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Abstract

Objectives

To adapt and refine a previously-developed youth-specific algorithm to identify bedrest for

use in adults. The algorithm is based on using an automated decision tree (DT) analysis of

accelerometry data.

Design

Healthy adults (n = 141, 85 females, 19–69 years-old) wore accelerometers on the waist,

with a subset also wearing accelerometers on the dominant wrist (n = 45). Participants

spent�24-h in a whole-room indirect calorimeter equipped with a force-platform floor to

detect movement.

Methods

Minute-by-minute data from recordings of waist-worn or wrist-worn accelerometers were

used to identify bedrest and wake periods. Participants were randomly allocated to develop-

ment (n = 69 and 23) and validation (n = 72 and 22) groups for waist-worn and wrist-worn

accelerometers, respectively. The optimized DT algorithm parameters were block length,

threshold, bedrest-start trigger, and bedrest-end trigger. Differences between DT classifica-

tion and synchronized objective classification by the room calorimeter to bedrest or wake

were assessed for sensitivity, specificity, and accuracy using a Receiver Operating Charac-

teristic (ROC) procedure applied to 1-min epochs (n = 92,543 waist; n = 30,653 wrist).

Results

The optimal algorithm parameter values for block length were 60 and 45 min, thresholds

12.5 and 400 counts/min, bedrest-start trigger 120 and 400 counts/min, and bedrest-end

trigger 1,200 and 1,500 counts/min, for the waist and wrist-worn accelerometers, respec-

tively. Bedrest was identified correctly in the validation group with sensitivities of 0.819 and

PLOS ONE | https://doi.org/10.1371/journal.pone.0194461 March 23, 2018 1 / 16

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Tracy JD, Acra S, Chen KY, Buchowski

MS (2018) Identifying bedrest using 24-h waist or

wrist accelerometry in adults. PLoS ONE 13(3):

e0194461. https://doi.org/10.1371/journal.

pone.0194461

Editor: Rod K Dishman, University of Georgia,

UNITED STATES

Received: October 19, 2017

Accepted: March 2, 2018

Published: March 23, 2018

Copyright: This is an open access article, free of all

copyright, and may be freely reproduced,

distributed, transmitted, modified, built upon, or

otherwise used by anyone for any lawful purpose.

The work is made available under the Creative

Commons CC0 public domain dedication.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files. Raw data set from accelerometry recordings

is available at https://doi.org/10.6084/m9.figshare.

c.3952507.v1.

Funding: This work was supported by: DK69465,

National Institutes of Health, https://www.nih.gov/

(MSB); RR024975, National Institutes of Health,

https://www.nih.gov/; DK20593, National Institutes

of Health, https://www.nih.gov/; and DK058404,

National Institutes of Health, https://www.nih.gov/.

https://doi.org/10.1371/journal.pone.0194461
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194461&domain=pdf&date_stamp=2018-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194461&domain=pdf&date_stamp=2018-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194461&domain=pdf&date_stamp=2018-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194461&domain=pdf&date_stamp=2018-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194461&domain=pdf&date_stamp=2018-03-23
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0194461&domain=pdf&date_stamp=2018-03-23
https://doi.org/10.1371/journal.pone.0194461
https://doi.org/10.1371/journal.pone.0194461
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://doi.org/10.6084/m9.figshare.c.3952507.v1
https://doi.org/10.6084/m9.figshare.c.3952507.v1
https://www.nih.gov/
https://www.nih.gov/
https://www.nih.gov/
https://www.nih.gov/


0.912, specificities of 0.966 and 0.923, and accuracies of 0.755 and 0.859 by the waist and

wrist-worn accelerometer, respectively. The DT algorithm identified bedrest/sleep with

greater accuracy than a commonly used automated algorithm (Cole-Kripke) for wrist-worn

accelerometers (p<0.001).

Conclusions

The adapted DT accurately identifies bedrest in data from accelerometers worn by adults on

either the wrist or waist. The automated bedrest/sleep detection DT algorithm for both youth

and adults is openly accessible as a package “PhysActBedRest” for the R-computer

language.

Introduction

Accelerometry-based technology for health and wellness tracking is expanding rapidly, out-

pacing the ability to validate the data generated and creating a barrier to employing these

devices in clinical and research settings, which might otherwise benefit from the rich data pro-

vided[1,2]. Wearable accelerometers have become a major tool for the measurement of physi-

cal activity (PA), the prediction of PA-induced energy expenditure, and sleep assessment[3,4].

Although the detailed analysis of human sleep requires polysomnography (PSG) measures,

accelerometry is considered a reasonably reliable and valid alternative method to estimate

sleep-wake patterns[3,5]

Technological advances such as watch-like waterproof devices with large data storage

capacity allow assessing PA for extended monitoring periods (e.g., 24 hours/day for seven

days)[6]. This “24/7” approach has gained gradual acceptance in research because it improves

the ability to examine associations between physical activity, sedentary behaviors, sleep, and

health in the natural or free-living environment[6]. Accelerometers for PA assessment have

been commonly worn on the waist or hip, but a moderate compliance rate in participants for

wearing these devices demonstrated by free-living studies has led to the use of wrist-worn

accelerometers, especially for assessing sleep patterns in cross-sectional and epidemiological

studies[6,7].

Analysis of the 24-h per day and multiple-day accelerometer recordings from free-living

requires a comprehensive approach. This includes assessing adherence to the monitor-wearing

protocol using a wearing/nonwearing algorithm or other methodologies[8,9]. The next step is

to discriminate periods of sleep or bedtime rest periods from wake periods encompassing sed-

entary behaviors as well as more active periods commonly categorized as light, moderate, and

vigorous intensity PA. Especially challenging is distinguishing nighttime sleep and daytime

naps from sedentary behaviors[10].

Traditionally, sleep periods under free-living conditions have been assessed using self-

reports, or more objectively, recordings from accelerometers equipped with a light sensor,

an inclinometer, or an event button[11]. An alternative approach is to use automated algo-

rithms that classify accelerometer wear-time into the bedrest/sleep and wake periods using

empirically determined cut points from the accelerometer output (i.e., counts) such as those

developed for wrist-worn accelerometers in children and adults by Sadeh or Cole-Kripke,

respectively[12,13]. Although these algorithms were specifically developed to identify wake

periods during a time in bed or sleep, they are commonly used as automated algorithms to

detect sleep in 24-h accelerometer data[14]. Similar algorithms based on accelerometry
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recordings or body posture classification to identify sleep in young adults and children have

been developed[4,15–18]. The major concern about the validity of sleep-wake scoring algo-

rithms is their relatively low specificity defined as an ability to identify wake intervals correctly

during sleep period [19].

We previously developed a decision tree (DT) to identify the time in bedrest within 24-h

data collected using Actigraph accelerometers worn by healthy youth ages 10–18 years on

either their waist or wrist[20]. Although the algorithm showed good accuracy to separate bedr-

est from wake in the youth population, its validity cannot be assumed for adults with different

personal characteristics and irregular bedtime habits. Thus, the primary goal of this study was

to adapt this DT to identify bedrest periods in adults and compare the results with objective

classification by a whole-room indirect calorimeter. The performance of the DT for a wrist-

worn accelerometer was compared to the Cole-Kripke automated algorithm[13] labeling of

Sleep and Awake obtained using a proprietary program (ActiLife v. 6.13.3, Actigraph, Pensa-

cola, FL, USA) to analyze Actigraph data[21]. Our secondary goal was to integrate algorithm

parameters into a DT capable of identifying bedrest in both youth and adult data and making

this algorithm openly accessible.

Methods

Study participants

Healthy adult volunteers (n = 141, 19 to 69 years old) were recruited from Nashville, Tennessee

in the USA using flyers, emails, and word-of-mouth for a prospective study focused on PA

assessment methodology in adults[22]. All applicable institutional and governmental regula-

tions concerning the ethical use of human volunteers were followed in accordance with the

ethical principles of the Helsinki-II Declaration. The study protocol and consent form were

approved by the Institutional Review Board of the Vanderbilt University (Approval Number:

040293). All participants signed an informed consent before the study. Study data were col-

lected from 2006 to 2009, and current analyses were performed in 2017.

Study design and protocol

Study participants spent�24-h in a whole-room indirect calorimeter where they followed a

protocol designed to simultaneously measure PA and energy expenditure with high precision

in near-naturalistic conditions, as described previously[23]. The force-platform covering the

floor inside the calorimeter allowed measurement (60 times/second) of overall body position,

displacement, and mechanical forces with 97% or higher accuracy[23]. All (n = 141) partici-

pants wore Actigraph accelerometer on their dominant side waist, and some participants

(n = 45) wore an Actigraph on their dominant wrist.

The daytime PA protocol was designed to simulate free-living PA patterns found in popula-

tion studies. The protocol included: a) sedentary behaviors (�40%) such as sitting and viewing

TV/media, b) light intensity PA (�50%) such as eating meals, gaming, performing personal

care, and unscripted normal daily routines, c) moderate PA (�8%) such as walking and jog-

ging on a treadmill, and d) vigorous PA (�2%) such as running on a treadmill and biking. Par-

ticipants were instructed to start bedrest around 10:00 pm and they were prompted to wake up

at 6:00 am. Anticipating participants might depart from protocol, bedrest was defined as the

time spent on a mattress bed when the force platform detected no significant movement and

energy expenditure was at or below resting energy expenditure[20]. Wake was defined as time

spent off the mattress when the force platform detected movement and energy expenditure

was higher than resting energy expenditure. An interruption in bedrest was defined as a period
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equal or longer than 5 minutes (5 consecutive 1-min epochs) classified by the room calorime-

ter as wake.

PA was measured using Actigraph GT1M uniaxial accelerometer (ActiGraph, Pensacola,

FL) that generates data in counts per user-defined time sampling intervals (i.e., epochs) manu-

facturer-provided firmware (v. 6.2.0) and software (ActiLife v. 6.13.3. In this study, accelero-

metry recordings were collected at 1-sec epoch and reintegrated as counts per minute to

synchronize with data from the room calorimeter (energy expenditure) and force platform

(mechanical work). The lag time between Actigraph recordings and the room calorimeter data

(90 seconds) was accounted for in the analyses.

Measures

Movement-induced mechanical work (Watt/min). Movement-induced horizontal and

vertical mechanical work (Watt/min) was measured using the force platform sensitive to small

pressure changes caused by a participant’s movement[24].

Energy expenditure (kcal/min). Minute-by-minute energy expenditure (kcal/min) was

calculated from measured rates of O2 consumption and CO2 production using Weir’s equa-

tion[23]. The accuracy of our room calorimeter for measuring energy expenditure has been

previously documented[23].

Room calorimeter classified sleep/rest and wake. Room calorimeter-measured energy

expenditure and the force platform-measured mechanical work threshold values and plots

were used to classify 1-min epochs as a sleep/rest or a wake binary indicator variable and were

synchronized minute-by-minute with the accelerometer recordings data, as described previ-

ously[20].

Development of a decision tree for bedrest and wake classification

To identify bedrest and wake epochs from accelerometer recordings, we adapted an automated

DT we had previously developed for youth[20] by testing various combinations of the selected

algorithm parameters values. The parameters were block length, threshold, bedrest-end trigger,

and bedrest-start trigger. The block length was defined as the number of epochs over which an

average number of counts per epoch was calculated; this effectively generates a set period (e.g.,

if a block had 60 epochs and epoch was 1-min, then block length was 60-min). The threshold
was the value (counts/min) for which block averages falling below or rising above were

assumed to represent a transition from wake to bedrest or from bedrest to wake. The bedrest-
end trigger was a minimum number of counts/min allowed in any two consecutive 1-min

epochs to be marked as bedrest end. The next epoch was the start of wake. The bedrest-start
trigger was the minimum number of counts/min required in any two consecutive 1-min

epochs to be marked as wake end. The next epoch was the start of bedrest.

The DT has four steps presented in Fig 1. In Step 1, DT divides the entire accelerometer

recording dataset (e.g., 24-h) into time blocks, (e.g., 60-min), calculates the average counts per

epoch for each block (e.g., counts/minute), and compares it to the threshold. If the 1st block

average is equal to or higher than the threshold, the 1st epoch is marked as wake and DT pro-

ceeds to Step 2. If the 1st block average is less than the threshold, the 1st epoch of this block is

marked as a temporary bedrest-start and DT proceeds to Step 3.

In Step 2, DT identifies bedrest-start. It searches for a 2-block window in which the 1st

block’s average is equal or higher and the 2nd block’s average lower than the threshold. After

finding such window, DT searches upstream data in the window or a 2-epoch interval with the

number of counts/min higher than bedrest-start trigger.- If such interval is found, the 1st epoch

that follows the interval is marked as a temporary bedrest-start. Otherwise, the 1st epoch of the
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Fig 1. Simplified decision tree (DT) for the classification of accelerometer recordings (counts/epoch) as bedrest or wake. The DT uses different algorithm

parameters values (block length, threshold, bedrest-end trigger, and bedrest-start trigger) for waist-worn and wrist-worn accelerometers and has a four-step process to cycle

through the data.

https://doi.org/10.1371/journal.pone.0194461.g001
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2-block window is marked as temporary bedrest-start. Epochs preceding the temporary bedr-

est start are marked as wake.

In Step 3, DT identifies bedrest-end. It searches for a 2-block window in which the 1st block

average is lower, and the 2nd block average is equal to or higher than the threshold. After find-

ing such window, DT searches downstream in data in the window for a 2-epoch interval with

the number of counts/min higher than bedrest-end trigger. If such interval is found, the epoch

before the interval is marked as a temporary bedrest end and following epochs are classified as

wake.

In Step 4, DT classifies each temporary bedrest period as bedrest or wake. If the temporary

bedrest period is shorter than a specified minimum bedrest period (30 min for waist and 60

min for wrist), the temporary bedrest-start and bedrest-end are discarded and the period is

marked as wake. If the temporary bedrest period is equal or longer than a minimum bedrest

period, it is marked as bedrest. The next epoch is marked as wake, and DT repeats Step 2 with

the remainder of the dataset. If in either Step 2 or Step 3, DT reaches the last epoch in the data-

set; all epochs from the last identified change from bedrest to wake or wake to bedrest until the

dataset end are marked accordingly as wake or bedrest. The detailed DT description is in S1

Appendix and S1 Fig.

The DT’s assumption that bedrest periods have a minimum length potentially results in

some short naps being falsely labeled as wake. However, it does guard against waking periods

of low activity (e.g., sedentary behavior) being falsely labeled as bedrest. For both waist and

wrist, we set the minimum bedrest length to 0, 30, and 60 minutes, and report parameters that

maximized the accuracy score. The R function allows the user to set the minimum bedrest

period to balance these concerns.

Data analysis

The participants were assigned to development and validation groups separately for the wrist-

and wrist-worn accelerometers using a list-randomizer available at random.org. The develop-

ment group was used to identify the optimal combination of algorithm parameters values

(block length, threshold, start and end triggers). An automated program constructed and tested

trial combinations. For each combination and each participant, every epoch (1-min) in the

monitoring period (�24-h) was classified by DT as bedrest or wake and compared to time-syn-

chronized sleep/rest or wake classification from the room calorimeter. Each epoch (n = 92,543

waist; n = 30,653 wrist) was then compared to the corresponding room calorimeter classifica-

tion and categorized as true positive, true negative, false positive or false negative[25].

The ROC-curves were plotted with each point representing the sensitivity and specificity in

identifying epochs as bedrest or wake of a trial combination[26]. Sensitivity was defined as the

probability of correctly identifying bedrest (accelerometry = bedrest when room-calorimetry =

sleep/rest), and specificity was defined as the probability of correctly classifying wake (accelero-

metry = wake when room-calorimetry = wake). Specificity and sensitivity were considered

equally important. For each combination of block lengths (0, 30, and 60 min), threshold (from

7.5 to 500 counts/min), bedrest-start trigger (from 100 to 2,000 counts/min), and bedrest-end
trigger (from 100 to 400 counts/min), medians of sensitivity, specificity, and accuracy (sensiti-

vity�specificity) were calculated for the development group. The optimal algorithm parameters

values obtained from the development group were tested using the validation group. The

2-fold validation method was chosen based on a sufficient sample size in the development

(n = 69 and 23) and validation sets (n = 72 and 22) for waist-worn and wrist-worn accelerome-

ters, respectively. The differences in accuracy of selected algorithm parameters values were

tested using the Wilcoxon signed-rank test.

Bedrest assessment using accelerometry
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To assess performance of DT, we compared its accuracy for the validation group to the

results obtained from a wrist-worn Actigraph using automated Cole-Kripke sleep detection

algorithm[13] in ActiLife software[21]. As we had done with DT, the Cole-Kripke results

(Sleep or Awake) were synchronized minute-by-minute and compared with the room calorim-

eter’s classifications (sleep/rest or awake).

Statistical analysis

Data from waist- and wrist-worn accelerometer recordings (counts/min) were analyzed sepa-

rately. Results are presented as means or medians, standard deviations (SD), and ranges. For

the optimal algorithm parameters values, the differences in accuracy between the development

and validation groups were tested using the Wilcoxon signed rank test. The DT bedrest and

Cole-Kripke algorithm Sleep classifications for wrist-worn accelerometer were compared using

the Wilcoxon signed rank test since the outcome distributions were skewed. Linear regression

was used to test if differences in accuracy between development and validation sets were corre-

lated with race, age, sex, or BMI separately for waist- and wrist-worn accelerometer groups.

The programming language R version 2.15.2[27] was used to develop DT. Statistical signifi-

cance was set at p < 0.05 and Stata software (Release 13, Stata Corp. 2013, College Station, TX,

USA) was used to perform statistical analyses.

Results

Participants’ characteristics

There were no significant differences (all p> 0.05) in personal characteristics between partici-

pants in the development and validation groups for both waist-worn and wrist-worn monitors

(Table 1). Although the protocol suggested the bedtime be from 10 pm to 6 am, the actual

bedrest/sleep patterns varied substantially which presented classification challenges similar

to those expected in free living. Characteristics of bedrest in both groups are presented in

Table 2. Room calorimeter classified sleep/bedrest length among study participants varied

from less than 3 hours to more than 11 hours of the�24-h room calorimeter stay. A number

of interruptions in bedrest defined as a period longer than equal or longer than 5 min varied

from 0 to 6. On average, participants had interruptions that totaled 18.8 min and 18.1 min in

the waist- and wrist-worn accelerometer groups, respectively. A number of sleep episodes

starting and ending before 10 pm ranged from 0 to 5 and totaled on average 53.1 min and 33.2

min in the waist- and wrist-worn accelerometer groups, respectively.

Decision tree algorithm parameters

The most accurate combinations of algorithm parameters values tested are in Table 3. A larger

dataset is in S1 Table.

Optimal time block and threshold. The optimal block length for the threshold average

searching was 60-min for waist-worn and 45-min for wrist-worn accelerometer. The selected

threshold was 12.5 counts/min for the waist and 400 counts/min for the wrist accelerometer.

Bedrest end triggers and start triggers. The selected values for bedrest-end trigger were

1,200 and 1,500 counts/min and for bedrest-start trigger were 120 and 400 counts/min for the

waist- and wrist-worn accelerometer, respectively.

Comparison between development and validation sets. For the waist accelerometer,

accuracy (0.774 and 0.755) did not differ between the development and validation datasets

(p = 0.606). For the wrist accelerometer, accuracy (0.896 and 0.859) differed between the devel-

opment and validation datasets (p = 0.019) (Table 4).
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The accuracy in classification to bedrest or wake between the development and validation

datasets was not associated with race, gender, age, and BMI in wrist-worn group and race, gen-

der, and BMI in waist-worn accelerometer group (all p>0.05) (S2 Table). The accuracy of clas-

sification to bedrest or wake was higher for the wrist than waist accelerometer (p<0.001). The

ROC curves plotted using the medians of sensitivity and 1-specificity are in Fig 2, for waist (A)

and wrist (B) accelerometers respectively.

Comparison of DT and automated Cole-Kripke algorithm bedrest classification. Our

DT with optimized algorithms parameters identified bedrest improved over the automated

Cole-Kripke algorithm adopted for wrist-worn Actigraph data [21] in the validation group

regarding sensitivity (0.912 and 0.891), specificity (0.923 and 0.828), and accuracy (0.859 and

0.763) (all p<0.001; Table 5).

Discussion

In this study, DT that we previously developed to identify bedrest periods using waist- or

wrist-worn accelerometers recordings for youth[20] was adapted for use in adults. The adapted

DT provides good (>0.75) sensitivity and specificity to identify bedrest and wake.

Table 1. Characteristics of study participants.

Waist-worn accelerometera Wrist-worn accelerometera

All participants

(n = 141)

Development Group

(n = 69)

Validation Group

(n = 72)

pb All participants

(n = 45)

Development Group

(n = 23)

Validation Group

(n = 22)

pb

Age (years) 39.7± 13.6 (19–69) 38.9±13.9(20–69) 40.5 ± 13.3(19–67) 0.49 40.3 ±13.9(20–67) 42.1±16.1(20–67) 38.8 ± 11.3 (20–59) 0.44

Height (m) 1.69 ± 0.10(1.52–

1.91)

1.70± 0.10 (1.52–1.89) 1.69 ± 0.09 (1.54–

1.91)

0.43 1.67 ± 0.09 (1.16–

1.84)

1.67 ± 0.09 (1.54–1.83) 1.67 ± 0.09(1.55–

1.84)

0.84

Weight

(kg)

77.8 ± 19.1 (47.8–

134.5)

77.4 ± 17.8(47.8–123.5) 78.3± 20.3 (48.7–

134.5)

0.79 84.1 ± 21.2(47.8–

130.2)

79.3 ± 19.4 (47.8–

123.5)

89.2 ± 21.8(58.5–

130.2)

0.25

BMIc (kg/

m2)

27.2 ± 6.6 (16.9–

52.0)

26.8 ± 5.9 (16.9–52.1) 27.6 ± 7.1(17.9–51.3) 0.49 29.9 ± 7.9(19.3–

52.1)

28.5 ± 7.3(19.3–52.1) 31.5 ± 8.2(22.3–51.3) 0.33

Sex
Female 85 39 46 29 13 16

Male 56 30 26 16 10 6

Ethnicity
Black 43 19 24 31 13 18

White 95 48 47 13 9 4

Other 3 2 1 1 1 0

a—values are presented as mean ± standard deviation and (range)
b- two-sample t-test
c- BMI—body mass index (body weight [kg]/ height [m2].

https://doi.org/10.1371/journal.pone.0194461.t001

Table 2. Characteristics of bedrest and wake periods.

Waist-worn accelerometera(n = 141) Wrist-worn accelerometera(n = 45)

Bedrest (min) 480.8 ± 78.6(178–700) 469.1 ± 90.1(178–646)

Wake (min) 864 ± 81.4(638–1164) 867.7 ± 92.6(700–1164)

Interruptions in bedrest after 10 pm 0.81 ± 0.89(0–6) 0.56 ± 0.61(0–2)

Time of interruptions (min) 18.63 ± 27.95(10–174) 17.93 ± 26.90(10–118)

Number of bedrest incidents ending before 10 pm or after 6 am (min) 1.26 ± 1.25(0–5) 0.75 ± 0.68(0–3)

Total time of bedrest incidents ending before 10 pm or after 6 am (min) 51.03 ± 58.71(10–299) 33.16 ± 36.44(10–125)

a—values are presented as mean ± standard deviation and (range).

https://doi.org/10.1371/journal.pone.0194461.t002
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The need for an accurate methodology to differentiate bedrest (sleep) from wake periods is

growing because of recent advances that have allowed wearing relatively nonintrusive move-

ment monitors for several days. For example, the National Health and Nutrition Survey

(NHANES) study is currently assessing PA using a wrist-worn accelerometer worn 24-h per

day for seven days[28]. Separating bedrest that includes sleep from sedentary behaviors and

Table 3. Medians for accuracy, sensitivity, and specificity for selected combinations of algorithm parameters. The development group medians are reported for

Receiver Operating Characteristic (ROC) procedures for waist-worn and wrist-worn accelerometry data. Optimal combinations are shown in bold.

Threshold

(counts/min)

Bedrest end

Trigger

(counts/min)

Bedrest start trigger

(counts/min)

Block length

(min)

Accuracy SDa Sensitivityb Specificityc

Waist

10 1200 120 60 0.761 0.150 0.821 0.968

10 1200 130 60 0.761 0.146 0.831 0.965

12.5 1100 120 60 0.767 0.146 0.851 0.954

12.5 1100 130 60 0.767 0.144 0.852 0.952

12.5 1200 110 60 0.767 0.148 0.842 0.954

12.5 1200 120 30 0.688 0.129 0.916 0.800

12.5 1200 120 45 0.731 0.138 0.880 0.868

12.5 1200 120 60 0.774 0.147 0.851 0.954

12.5 1200 130 30 0.686 0.129 0.916 0.800

12.5 1200 130 45 0.731 0.141 0.880 0.868

12.5 1200 130 60 0.774 0.145 0.852 0.952

12.5 1200 140 60 0.767 0.143 0.852 0.952

12.5 1300 120 60 0.774 0.147 0.851 0.954

12.5 1300 130 60 0.774 0.145 0.852 0.952

12.5 1400 120 60 0.774 0.148 0.851 0.954

12.5 1400 130 60 0.774 0.146 0.852 0.952

12.5 1500 120 60 0.774 0.148 0.851 0.954

12.5 1500 130 60 0.774 0.146 0.852 0.952

15 1200 120 60 0.763 0.158 0.857 0.948

15 1200 130 60 0.763 0.155 0.862 0.941

Wrist

200 500 300 45 0.899 ± 0.091 0.910 0.993

250 1000 300 30 0.896 ± 0.065 0.961 0.978

250 1500 400 45 0.896 ± 0.065 0.927 0.990

350 1250 350 45 0.893 ± 0.057 0.953 0.974

400 1000 250 45 0.896 ± 0.054 0.963 0.968

400 1000 400 45 0.896 ± 0.061 0.969 0.968

400d 1500 400 45 0.892 ± 0.063 0.969 0.961

400 1750 300 45 0.890 ± 0.056 0.966 0.931

400 2000 250 60 0.894 ± 0.080 0.922 0.979

450 1000 350 30 0.893 ± 0.060 0.966 0.918

450 1250 350 45 0.879 ± 0.063 0.966 0.931

450 1500 350 60 0.884 ± 0.072 0.934 0.988

a—calculated as sensitivity multiplied by specificity before results were rounded
b—the probability of correctly classifying bedrest;
c—the probability of correctly classifying wake
d—optimal combination (bolded).

https://doi.org/10.1371/journal.pone.0194461.t003
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PA intensity categories in�24-h per day accelerometer recordings is necessary for continuous

monitoring, unlike in “wake hours” protocols in which participants are asked to wear a moni-

tor only from “waking up until going to bed, except during water-related activities”[6].

In this study, we did not attempt to assess physiological sleep but rather to identify periods

of inactivity as bedrest, which most likely included sleep and longer daytime naps exceeding 60

minutes. We used the terms bedrest and wake to define periods below or above the optimal

threshold at which bedrest was identified. In the current accelerometry literature, terms used

for similarly defined “inactivity” range from “sleep” and “sleep-period time” to “nocturnal

Table 4. Comparison of medians of bedrest classification from waist- or wrist-worn accelerometer in the development and validation groups with classification

obtained using room calorimeter.

Monitor placement Group Sensitivityb Specificityc Accuracya pd

Waist Development (n = 69)e, 0.852 0.952 0.774 0. 606

Validation (n = 72)e 0.819 0.966 0.755

Wrist Development (n = 23)e, f 0.969 0.968 0.896 0.019

Validation (n = 22)f 0.912 0.923 0.859

a—calculated as sensitivity multiplied by specificity before results were rounded
b—the probability of correctly classifying bedrest
c—the probability of correctly classifying wake
d—Wilcoxon signed rank test

e—optimal block length was 60 min, threshold 12.5 counts/min, bedrest-start trigger 120 counts/min, and bedrest-end trigger 1,200 counts/min

f—optimal block length was 45 min, threshold 400 counts/min, bedrest-start trigger 400 counts/min, and bedrest-end trigger 1,500 counts/min.

https://doi.org/10.1371/journal.pone.0194461.t004

Fig 2. Plots of showing the tradeoff between sensitivity (y-axis) and 1-specificity (x-axis). (A) Data from waist-worn accelerometers (B) Data from wrist-worn

accelerometers. Each open circle [�] represents a respective combination of threshold (counts/min) for bedrest end (counts/min), bedrest start (counts/min), and block
length (min). The solid circle [●] represents the selected optimal combination. The corresponding values are in Table 2 (bolded). The solid triangle [▲] represents the

validation set. The solid square [■] in B represents Cole-Kripke algorithm.

https://doi.org/10.1371/journal.pone.0194461.g002
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sleep” and “in-bed time”[17,29,30]. The measurement of physiological sleep requires polysom-

nography which is considered as a gold standard when investigating sleep patterns [31]. How-

ever, the method is expensive, time-consuming, and difficult to carry out in free-living

individuals. In recent years, several studies have shown that accelerometry is�80 to 90% con-

cordant with polysomnography during night rest in adults and children[16,32,33]. Although

accelerometry does not provide the detailed information on sleep that polysomnography does,

it has the advantages of portability, tolerability, and the possibility to identify sleep patterns

and quantify between-day sleep variability in free-living[3]. According to the Society of Behav-

ioral Sleep Medicine (SBSM), actigraphy can provide useful information for sleep clinicians

about the patient’s sleep at home over several nights as well as change in sleep over time and

thus, inform clinical decision making[34].

The optimal algorithm parameters for adults differed from values we have established for

youth[20], underscoring a need for population-specific values for accurate identification of

bedrest and wake. The variation was caused, at least in part, by differences in movement pat-

terns of adults (18 to 65 years old) compared to those of youth (10 to 18 years old). Although

the study protocols in the room calorimeter were very similar in both studies, the process by

which we searched for optimal values had slight differences. When establishing optimal criteria

for youth, we set block length at 60 min and bedrest start trigger at 50 counts/min. In the current

modification of DT, these values are allowed to vary affecting bedrest end trigger and threshold.

In addition, we tested a broader range of values for adults than for youth, so the recommended

values for youth might represent a local rather than global maximum. Future research will

revisit calibration for youth with this improved methodology. Finally, there was greater hetero-

geneity of movement (counts/min) during bedrest in adults compared to youth. For example,

intra-individual differences expressed as a mean standard deviation of movement between

10:00 pm and 6:00 am was 273 and 124 counts/min for waist-worn and 1035 and 488 counts/

min for wrist-worn accelerometers for adults and youth, respectively (S3 Table).

The sensitivity and especially specificity of waist and wrist classification were lower than in

our previous study in youth[20]. Similarly, in past studies, specificity defined as ability to cor-

rectly identify wake was also higher in children and adolescents than in adults [32,35]. It is

very likely that the intra-individual differences in total amount and variability of movement

during bedrest and wake among the participants decreased both specificity and sensitivity as

did extra-individual differences between the groups. For example, standard deviation of

means (counts/min) during the�24-h stay was higher in adults than in youth (167 and 227

counts/min and 53 and 178 counts/min) for waist-worn and wrist-worn accelerometers,

respectively (S3 Table).

Table 5. Comparison of medians of bedrest classification from accelerometer placed on wrist calculated using Cole-Kripke automated algorithm and the decision

tree (DT) with classification obtained using room calorimeter.

Bedrest assessment method Sensitivitya Specificityb Accuracyc pd

Algorithm (Cole-Kripke)e 0. 907 0. 806 0.711 <0.019

Decision tree (DT)f 0.912 0.923 0.859

a—the probability of correctly classifying bedrest
b—the probability of correctly classifying wake
c—calculated as sensitivity multiplied by specificity before results were rounded

d—Wilcoxon signed rank test

e—available in the proprietary software (ActiLife v. 6.13.3, Actigraph, Pensacola, FL, USA) to analyze Actigraph data

f—optimal block length was 45 min, threshold was 400 counts/min, bedrest-start trigger was 400 counts/min, and bedrest-end trigger was 1,500 counts/min.

https://doi.org/10.1371/journal.pone.0194461.t005
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We assessed DT efficiency compared to an automated Cole-Kripke sleep scoring algorithm

for adults[13] developed for wrist-worn accelerometers and specifically; for assessing sleep

during bedtime but commonly used for comparison with other automatic algorithms[36]. Rel-

ative to the room calorimeter classification, the Cole-Kripke algorithm had lower sensitivity

and specificity resulting in lower accuracy than our DT. A plausible explanation could be that

the Cole-Kripke algorithm classified short (e.g., 1-min) inactivity episodes during wake (day-

time) as “Sleep.” In contrast, in DT bedrest periods were limited to inactivity lasting at least 30

min for waist and 60-min for wrist-worn accelerometer. It is possible that imposing this limita-

tion could have caused misclassification of some short periods with very low intensity (e.g.,

daytime naps) as wake.

We did not directly compare our DT to other available automatic algorithms, since they

were developed and validated in different populations[17,30], used different methodology[7],

or different accelerometers[11]. Among algorithms validated for waist-worn Actigraph accel-

erometers, one of the first was an algorithm developed by Tudor-Locke et al.[29] for children

combining visual inspection used to mark onset and offset of sleep from Actigraph data with

sleep diary. The newer version of this algorithm showed a moderately high correlation of noc-

turnal sleep (r = 0.61 to 0.74) with sleep diaries and visual assessment of accelerometry data

[30].

Recently, McVeigh and colleagues[17] validated an automated algorithm to separate “in-

bed time” from “waking” data in young adults using visual inspection of accelerometry data

collected from waist-worn Actigraph as a reference method. The median sensitivity of their

algorithm was higher (0.95 and 0.82) and median specificity comparable (0.95 and 0.97) to our

waist-worn accelerometer data. The differences between the studies might be caused, at least

in part, by differences in participants’ characteristics (e.g., age, BMI) and study environment.

In this study, we found the accuracy of bedrest and wake classification was higher for wrist

than waist-worn accelerometer. Similarly, Slater et al.[37] and Zikham at al.[16] showed that

relative to the waist, a wrist-worn Actigraph GTX3+ provided a more valid assessment of poly-

somnography-measured sleep. In addition to the documented higher adherence to wearing

wrist versus waist monitor [38], this finding might support the use of wrist accelerometers for

24-h monitoring of bedrest in free-living studies.

Our study had several strengths. The room-calorimeter allowed us to classify sleep/rest and

wake using objective minute-by-minute measurements of energy expenditure and mechanical

work for�24-h. Utilizing recordings from accelerometers placed on waist and wrist allowed

us to compare sensitivity, specificity, and accuracy between these common monitor place-

ments[39]. Random selection of the development and validation sets allowed a robust perfor-

mance of the algorithm. We used a relatively large (n = 141) and diverse group regarding of

sex, race, age, and body mass indices (S2 Table). Time spent in bedrest varied from 3 to 11

hours, which is similar to sleep time range in general USA adult population[40,41].

The study had some limitations. First, it was conducted under laboratory conditions that

minimized measurement error but limited the DT generalizability. Thus, one should expect

some loss of accuracy when extending out to free-living conditions with more variability in the

underlying sets of behaviors than in this study. The DT was developed in a study lasting�24-h

with bedrest following a relatively active period of wearing. However, the variability in bedrest

time among study participants very likely offset, at least in part, this limitation. Nonetheless,

longer monitoring with other scenarios regarding wake and bedrest that would normally

occur with free-living individuals was not examined. Thus, we advise users to apply the wear-

ing-nonwearing algorithm[8] before applying the current DT and interpret the results with

caution.
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Second, we used a uniaxial accelerometer, since supplanted by triaxial models. However, it

has been shown that uniaxial and triaxial accelerometers were comparable when assessing rest

and sedentary behaviors[42]. Utilizing recordings from one axis is a conventional approach to

studies assessing sleep using accelerometry[16,17] since it enables cross-study comparisons.

Besides, the Cole-Kripke automated algorithm we used to assess performance of our DT uses

recordings from the same Actigraph axis we utilized. Nevertheless, DT should be recalibrated

using different accelerometry measures (e.g., vector magnitude) and recordings from acceler-

ometers collecting raw data. Third, our study population was restricted to healthy adults aged

19 to 68 years old and not reporting sleep disorders. It is likely that sleep and activity patterns

in older populations and those with sleep disorders might require different model parameters

values[43]. Finally, although we did not test the differences in the model parameters values

selection between males and females or black and white adults, such differences may emerge

in larger studies. Future research should test our DT in diverse populations, calibrate it against

polysomnography, and compare with other automatic algorithms using recordings from accel-

erometers worn continuously for several days [6].

In summary, we adopted an automated decision tree (DT) originally developed to identify

bedrest periods in�24-h accelerometer count recordings from waist-worn or wrist-worn

accelerometer worn by youth to adults in the current study. The parameters optimized in DT

were block length, threshold, bedrest-end trigger, and bedrest-start trigger. The adapted DT pro-

vided good (>0.75) sensitivity and specificity to identify bedrest and wake and identified bedr-

est with higher accuracy from wrist-worn than waist–worn accelerometers in adults. The

optimal values for the DT parameters selected using ROC procedure were different from the

values we have established for youth underscoring a need for population-specific values for

accurate identification of bedrest and wake. The automated DT allows replacing the default

algorithm parameters values with values specified by a user.

Conclusions

Accelerometry data collected from wrist- or waist-worn monitors for 24-h can be used to accu-

rately identify bedrest apart from sedentary behaviors and activity in adults. The automated

bedrest/sleep detection DT algorithm for both youth and adults is openly accessible as a pack-

age “PhysActBedRest” for the R-computer language.
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