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Abstract: Since the advent of visual sensors, smart cities have generated massive surveillance video
data, which can be intelligently inspected to detect anomalies. Computer vision-based automated
anomaly detection techniques replace human intervention to secure video surveillance applications
in place from traditional video surveillance systems that rely on human involvement for anomaly
detection, which is tedious and inaccurate. Due to the diverse nature of anomalous events and their
complexity, it is however, very challenging to detect them automatically in a real-world scenario.
By using Artificial Intelligence of Things (AIoT), this research work presents an efficient and robust
framework for detecting anomalies in surveillance large video data. A hybrid model integrating
2D-CNN and ESN are proposed in this research study for smart surveillance, which is an important
application of AIoT. The CNN is used as feature extractor from input videos which are then inputted
to autoencoder for feature refinement followed by ESN for sequence learning and anomalous events
detection. The proposed model is lightweight and implemented over edge devices to ensure their
capability and applicability over AIoT environments in a smart city. The proposed model significantly
enhanced performance using challenging surveillance datasets compared to other methods.
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1. Introduction

There have been more human lives and property losses as a result of crimes in the 21st
century than any other human-centered issue [1]. A surveillance system that is capable to
automatically detect and report abnormal behavior is one of the most notable solutions for
early detection of unusual behaviors indoors and outdoors. Public areas, such as shopping
malls, airports, parks, and so on, are equipped with an increasing number of distributed
surveillance cameras to ensure public safety and security [2]. By using computer vision
techniques, we can detect unusual events automatically and efficiently, however, manually
analyzing huge surveillance video data are laborious, inaccurate, and time-consuming.
There are some challenges involved, such as illumination variation, people’s appearance,
and perspective distance from a camera. Consequently, intelligent surveillance techniques
which are capable of detecting unusual events at an early stage and alerting the appropriate
departments, are in a great demand in the current technological era. A general pipeline of
anomaly detection in video is given in Figure 1.

A surveillance video can detect anomalous events when targets overlap, frames are
crowded, targets are partially or completely occluded, noise is present, and things are
handled badly. From the input visual data, anomaly detection becomes more complicated
when vision sensors cover a significant number of entities, including anomalous targets
and normal people.
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Figure 1. General pipeline of anomaly detection.

Furthermore, anomalous events are unpredictable, occur infrequently, and have an
unclear definition, so collecting all unusual samples and clearly defining anomaly for
an AI model is challenging due to their unbounded nature, infrequent occurrence, and
unclear definition. For instance, a running person can be considered normal on one field
(soccer field) but ambiguous on another (shopping mall). Surveillance video data can be
compiled more easily when it contains usual events rather than anomalous ones. The act
of anomaly detection involves detecting occurrences and events, objects, and behaviors
that are very unlikely in comparison to the normal events in the world. Furthermore, there
are various types of abnormalities that can be detected in abnormality detection, which
can be categorized as universal anomalies [3,4]. There are a bunch of traditional feature-
based anomaly detection techniques [5], but they’re not effective for complex surveillance
scenes because they’re limited in capability [6]. There is no doubt that existing surveillance
abnormality classification systems are flexible, but they are highly domain-specific, which
means that they are not capable of classifying all sorts of surveillance anomalies [7].

AI models are often utilized in anomaly detection domain to identify anomalies in
videos, which has been a subject of many researchers. AI techniques are classified into
three categories based on the variables of the training sets: unsupervised-, supervised-,
and semi-supervised-systems [8]. It has been shown that frame reconstruction, future
prediction-based, and clustering, methods are effective in finding anomalies when labels
are not provided in the training datasets [9,10]. As far as dealing with surveillance video
data from the real world is concerned, these techniques reveal limited performance. In
supervised learning abnormal and normal data are included in the training set to address
these limitations. In particular, weakly supervised techniques can help solving anomaly
detection problems in a more compared manner than their strongly supervised counterparts
because they include only video-level labels as part of the training set for both normal and
anomalous events respectively [11]. The clips that make up a video in MIL are viewed as
instances, while the video itself is considered a bag where annotations at the bag level are
used to learn anomaly labels at the instance level. Anomalies are defined as occurrences
that differ from predicted normal behavior, which allows semi-supervised methods to be
advantageous [12]. The term anomaly is used to describe data which deviates from the
usual pattern or data set of results as an outcome of a particular event.
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There have been several investigations in the past that have addressed semi-supervised
anomaly detection. There are several techniques available to address this problem, but the
basic idea is to generate a model or representation that captures both visual appearance
and normal motion patterns [13]. Several researchers, such as [14,15], have employed the
motion trajectories of the objects of interest to deliver information about the normal or
expected patterns of the objects being examined [16].

Any deviations from the expected patterns are termed outliers, which refers to anoma-
lies in terms of the work method. Because trajectory-based techniques focus only on visual
patterns and ignores the importance of targets in complex situations such as crowded
scenes, they show limited performance. Furthermore, Dictionary learning or sparse coding
are also prominent video anomaly detection techniques [17,18]. This type of approach
encodes regular events into a dictionary, and input patterns that are not found in the
dictionary which are considered to be abnormal. A trained model generates normal and
anomalous events depending on the size of the reconstruction error during the testing
phase [16]. Due to the variability of normal patterns, different weather conditions, lighting
situations, etc., these approaches suffer from a high false alarm rate and an enormous
amount of time spent optimizing sparse coefficients [19].

To overcome the above-mentioned problems, this research paper is an instant artificial
intelligence-assisted anomaly detection system is introduced which can be suitable for
resource-constrained Edge devices. In order to address the computational complexity issue
of existing methods. The lightweight nature of the proposed model is applicable to perform
all processing over edge devices without considering additional servers. First frame-
level features are extracted via an EfficientNet backbone which is efficient and effective
compared to existing models. These features are then forwarded to the autoencoder for
feature refinement. The refined are then inputted into ESN architecture for anomalous
event detection. To assess the potential of our proposed network, authors perform extensive
experiments using the UCF, ShanghaiTech, and surveillance fight datasets. As compared to
existing modeling alternatives, results demonstrate competitive predictive performance
and lower computational complexity.

The rest of the paper is organized as follows: Section 2 overview recent baseline
approaches for anomaly detection, Section 3 describes the proposed methods, Section 4,
report the experimental results, and finally Section 5 conclusion.

2. Related Work

For precisely identifying abnormal events in surveillance videos, several approaches
have been proposed so far. Many techniques for detecting anomalies have been developed
in the literature [20]. The unusual nature of events is often classified as “events that are
deviating from normal patterns” in the majority of these works. Taking this description
into consideration and when providing a prior information regarding the anomalies, it is
often considered that the task of detecting abnormal events is essentially a classification
task [21,22] in which visual features are analyzed and compared to classifier models for
determining which activities are normal and which are abnormal.

2.1. Hand Crafted

There was a great deal of interest in the use of handcrafted features, including trajectory,
sparse, and dense features, in early surveillance environments for detecting anomalies and
violence, aggression, and accidents [23]. In tracking techniques, trajectory features represent
the information for the path taken by moving objects. To categorize normal and abnormal
movement trajectories, these models are trained first on normal movement trajectories.
Using trajectories to identify anomalous patterns in low- and medium-density crowd
video, in other study [24] authors present a real-time technique for detecting anomalies
in low- and medium-density crowd video. Furthermore, in [4], relationships between
Spatial-Temporal Interaction Points (STIPs) were exploited to determine what factors
cause global anomalies, such as abnormal interactions among humans. Furthermore,



Sensors 2023, 23, 2358 4 of 14

a graph-based model of STIP interaction was developed by Singh et al. [25]. By using
sparse reconstruction costs, Cheng et al. [26] utilize low-level features across STIPs to detect
local and global anomalies. In a study [27], it was suggested that swarm intelligence in
conjunction with HOG descriptors, would be used in conjunction with motion, appearance,
and STIP detection techniques to capture the motion and appearance of nearby humans
such that STIP detection could be performed. This approach has a significant limitation,
and that is when the number of identified STIPs is small or large, meaning that when the
number of movements in the video are too small or too large, the representativeness of
events is not sufficient to represent the events accurately.

Comparing sparse and trajectory predictors to dense feature descriptors, complex and
crowded scenes are often deemed more suitable for dense descriptors. Using the histogram
of optical flow and gradients features, Zhang et al. [28] proposed a hybrid feature-based
model. A follow up approach is presented in [29] where the authors developed a 3D method
for extracting the entropy, motion, and appearance information from a specific scene by
using a Histogram of Optical Flow Orientation and Magnitude and Entropy. In addition
to experiencing severe limitations, dense feature extraction methods also utilize a lot of
memory and require a lot of computation time. Furthermore, a complex and crowded scene
limits the effectiveness of these techniques. Additionally, different scenes show differing
numbers of STIPs, therefore they cannot produce accurate representations. Furthermore,
detecting anomalies using these methods requires a great deal of memory capacity and
computation time. Therefore, anomaly detection in video streams has been dominated by
Deep Learning approaches over the last few years due to these downsides.

2.2. Deep Learning

A variety of deep neural networks have been developed over the last decade by
several researchers in order to achieve impressive results [30]. The detection of anoma-
lies in surveillance environments can be achieved by using deep neural networks and
multi-instance learning [22]. A discriminative anomalous clip miner was proposed by
Sun et al. [31], which examines segments that are discernible from normal segments which
are anomalous. There is another model that combines multiple instance learning (MIL)
ranking with temporal context in order to learn motion features with the use of an attention
block to take into account the temporal context [32]. A 3D Siamese one-shot model for
anomaly detection has been introduced by the researcher [33]. For the detection of video
anomalies in a surveillance system, another study utilized CNN features combined with a
multilayer bi-LSTM model without any further classification mechanisms [4]. Furthermore,
several deep learning based methods are developed for the anomaly detection in recent
literature including memory augmented network [34], Deep CNN [35], encoder-decoder
model [36], deep temporal autoencoder [37], graph neural network [38], etc.

However, the performance of these methods are still questionable and required pow-
erful servers to run these models. Therefore, this research work we developed an efficient
and effective framework for anomaly detection.

3. The Proposed Method

Anomaly detection in surveillance refers to the process of identifying unusual or
abnormal behavior in a surveillance system, such as security cameras or sensor networks.
This can include identifying objects or individuals that are out of place, detecting unusual
patterns of movement, or identifying unusual activity in a specific area. Anomaly detection
can be used to improve security and reduce the risk of crime or other unwanted activities.
Several methods are developed for anomaly detection include machine learning algorithms,
however the performance of these methods further need to be improve for an effective
anomaly detection system. Therefore, we developed a hybrid model combining CNN,
autoencoder and ESN. The CNN was integrated to extract frame level feature which are then
passed to autoencoder for feature refinement and finally fed to ESN for anomaly detection.
A high-level diagram of the proposed model is given in Figure 2, where the proposed
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framework is also developed to generate alarm if any anomalous event detected and will
ultimately notify the corresponding department for rescue and prevention according to the
type of anomaly. The proposed model is lightweight and implemented over edge devices to
provide a safety and secure smart surveillance to the users. The following section discusses
each step of the proposed framework in detail.
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Figure 2. The proposed framework for anomaly detection.

3.1. Feature Extraction

The literature describes a variety of CNN-based models for fire detection [39,40],
medical images [41], classifying videos [8,42], predicting time series data [43–45], forecast-
ing [46], etc. Several CNN architectures have been used for feature extraction in recent
literature, including EfficientNet [47], Squeeze Net, Google Net, and MobileNet, among
others. This aims to boost their accuracy by modifying width, depth, or resolution of
CNN-based architectures using different scaling strategies. In this regard, we investigated
the EfficientNet [39] feature extraction, which utilizes compound scaling to scale all di-
mensions of the network. In order to optimize FLOPs and accuracy, EfficientNet uses
multi-objective architecture search [48]. A search space of Tan et al. [49] has been utilized
in this architecture. The hyperparameters such as network width and target FLOPs control
the trade-off between accuracy and FLOPs in model, whereas this research work represents
the FLOPs target, and T represents the accuracy target. In the EfficientNet architecture,
there are several convolutional layers, each with a different number of kernels [50]. There
are three inputs in this architecture, R, G, and B, and the size of the inputs is 150 × 150. In
order to reduce feature map size, the hidden layers are scaled down to reduce the map size,
but the network width is scaled up to improve accuracy, ensuring that the most important
features are extracted from the input data. Upon receiving these features, they are then sent
to autoencoders, which encode them in order to select the best optimal features.

3.2. Autoencoder

Unsupervised input in a feature map is typically understood using autoencoder-based
architectures. There are three main layers in an autoencoder, namely encoder, hidden state,
and decoder layers, which are shown in Figure 3. The main components of autoencoders
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are encoder and the decoder, where the encoder is used to reduce the input dimension
while the decoder is used to renovate it. In the encoder, the input dimension is reduced,
and, in the decoder, it is renovated. However, a mathematical equation is proposed in two
parts, one which is the input data as far as authors interest is concerned, the other which is
the output data decoder. As a matter of fact, the mathematical formulation for the output
decoder can be found in the following Equations (1) and (2) [39].

hn = f (w1xn + b1) (1)

on = G(w2xn + b2) (2)
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A network analysis can be performed when f represents an encoder function, G repre-
sents a decoder function, w1 and w2 represents a weight metric, and b1 and b2 are the bias
term in case of a multi-encoding function. A compressed feature representation of the input
data is created in the encoder part of the autoencoder by encoding the input data into the
compressed format. As a result, the compressed features of an autoencoder are decoded
and reconstructed with the aid of a decoding component. Encoding involves transforming
the high-dimensional input features into a lower-dimensional representation that contains
all of the input features in a different order.

3.3. Echo State Network

Deep neural networks with multiple layers architectures have received considerable
attention by researchers in the field of neural networks in the last few years, as they contain
more than one layer of data Goodfellow et al. [51]. Besides the hierarchical standardized
RNN, the hierarchical RNN has also played an essential role in a number of complex
problems, such as supervised learning and deep learning. Accordingly, in [52] the ESN
was first combined with deep learning frameworks, which is computationally intelligent
compared to other RNN variants since the ESN is a new and special type of RNN. According
to Jaeger et al. [53], RNN is modeled by a reservoir that provides an essential architecture
as well as supervised learning capabilities [54]. This ESN architecture consists primarily of
three components: a reservoir, an input and an output [54,55]. The input unit is referred to
as I, indicating the input layer, the reservoir is referred to R and the output unit is referred
to O notations. The mathematical formulation if an ESN is given in Equations (3) to (8) [55].

u(i) = [u1(i), u2(i) . . . .uI(i)]
t (3)

x(i) = [x1(i), x2(i) . . . .xR(i)]
t (4)

y(i) = [y1(i), y2(i) . . . .yO(i)]
t (5)

y (i + 1) = f (Win × u(i + 1) + W × x(i) + Wback × y(i)) (6)

y (i + 1) = g(Wout × u(i + 1)) (7)
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Wout=
(

M−1 × T
)t

(8)

For both output and reservoir units in Equations (6) and (7), ‘f’ and ‘g’ indicate
activation functions. During the learning process, the weight matrix remains unchanged
while the reservoir matrix updates [54,55]. The readout weights for each target output are
calculated based on the reservoir state vectors and target outputs. A time step equal to or
greater than the output is used by Equation (8) in order to calculate the readout. These
reservoirs are mainly responsible for the overall performance of the ESN, and they have
the potential to influence the overall performance of this network through their influence
on its three main parameters [55]. Moreover, a second investigation has found that the
number of reservoir neurons plays an important role in the performance of ESN. To explain
this, it is important to keep in mind that the internal structure of ESN is closely linked
to the information regarding its hidden state. Also, other factors have to be taken into
account, such as the quantity of training data that must be collected and the complexity of
the targeted tasks. In contrast, the performance of the ESN is also influenced by the rate of
connectivity, by the absolute eigenvalue of the weight matrix, and by the special radius,
which is indicated at intervals between zero and one. Concluding that ESNs matter more
than RNNs when it comes to the learning and approximation functions.

3.4. Architecture

In order to obtain frame-level information from input dataset, EfficientNet is used
followed by an autoencoder for optimal feature selection where a resize of 150 × 150 × 3 is
applied to each frame of the video. The extracted features are then reshaped with 30 frames
to form a single second sequences. These sequences are then passed to ESN for feature
learning and anomaly detection. The EfficientNet is also used to extract spatial features
from each frame in the video. However, there is a very small change in each consecutive
frames making the these features redundant. Therefore, autoencoder is used for optimal
feature selection. The ESN is then employed to learn temporal dependencies in the data.
Once the model is trained, it is then tested over test data. The proposed model is lightweight
and applicable over edge devices as given in the result section. The lightweight nature
of the proposed model making it able to be implemented over AIoT assisted surveillance
system for smart cities. A common wireless sensor network is used to link vision sensors
and IoT devices to broadcast alerts to other devices in the IoT network and generate alarm
as soon as an event occurs.

4. Results

Using real-world surveillance datasets, we compared the proposed framework’s
performance with the current state-of-the-art. AUC (Area Under Curve) and accuracy are
used as evaluation criteria for the system. By utilizing surveillance datasets including
UCF-Crime, ShanghaiTech, surveillance fight and non-surveillance datasets including
Violent flow and hockey fight the proposed framework, outperform the existing anomaly
detection techniques. The implementation is performed in Keras with backend TensorFlow
using RTC 3070 GPU. The purpose of testing the proposed anomaly detection framework,
we used two metrics, which are typically used for fair comparison by the state-of-the-art
(SOTA) [22,32,56]. AUC is one type of statistical evaluation protocol that is used. The other
type of statistical evaluation protocol is accuracy.

4.1. Datasets

We evaluated the proposed framework using UCF [22], ShanghaiTech [39], and Surveil-
lance fight [57] datasets. It is important to note that these datasets are large-scale and chal-
lenging in terms of detecting anomalies and violence. The UCF-Crime database contains
14 different anomalies classes and 1900 videos of real-world situations that were all taken
in UCF to evaluate the crimes committed [22]. Based on the baseline research, there are
810 normal videos and 800 anomalous videos in the training set, while 150, 140 normal
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and anomalous videos are in the training and testing set, respectively. The framework
in this study was also evaluated on the ShanghaiTech [39] dataset, which has 437 videos
with 130 anomalous events across 13 scenes. An indication of anomalous occurrences was
provided at the frame level, along with ground truth at the pixel level. According to the
procedure [56], the training set consists of 175 normal films and 63 anomalous films; the
testing set consists of 155 normal films and 44 anomalous videos. From 15 to nearly one
minute long, the video clips range in length. Akti et al. [57] have introduced a surveillance
fight dataset that includes all types of fight videos, including both violent and non-violent
ones. As a part of this dataset, we have comprised equal numbers of videos in each study
group and in total there are 300 videos with a variety of resolutions.

As part of the evaluation, the proposed framework is compared with non-surveillance
benchmark data for violence detection, such as the Hockey Fight dataset [58] and the Violent
Flow dataset [59]. Hockey Fights is a dataset that covers violence events occurring during
hockey matches within the National Hockey League. This dataset contains 1000 supervised
video clips, 500 clips in each category, and it is labeled as fight or no fight, with a well-
balanced number of clips in each segment. The violence dataset comprises five different
sets of videos, which cover a wide range of violence and non-violence which include a
total of 246 clips where each class include 246 videos. The video clips range from 25 to
200 frames in length, with a 320 × 240 resolution. Mobile phones or static cameras are used
to capture video clips in these non-surveillance datasets.

For training and testing purposes the datasets are split into the following training,
validation, and testing sets, however, the UCF and ShanghaiTech have training and testing
set, therefore we selected 20% of data from training set for model validation. Furthermore,
the Akti, Hockey fight, and violent flow datasets are split into 50% training, 20% validation,
30% testing for fair evaluation of the model with state-of-art models [14]. Furthermore,
the proposed model and other ablation study models are trained on the training data and
evaluated on testing data individually.

4.2. Comparative Analysis with Baselines

We compared the performance of the proposed framework with that of various SOTA
approaches as given in Tables 1–3. The proposed architecture outperformed the recently
spotted techniques by applying challenging anomaly datasets. We have used ShanghaiTech
dataset and compared the propsoed model performance with various methods such as
predictions of normal frames based on anomaly detection techniques with unsupervised
learning [9,17], feature patterns based on unsupervised learning [60,61], and skeleton
patterns based on unsupervised learning [62,63]. As a result, unsupervised techniques
achieved lower siperfromance which was compared with supervised ones, since abnormal
videos aren’t given in the training data, thus, the performance of these methods are lower
than supervised techniques. In comparison, we have achieved the best results with the
propspoed framework proposed compared to [56,62,64]. In addition, the UCF-Crime
dataset was used to compare five state-of-the-art methods. AUC of 87.55% is achieved by
the proposed framework, which was significantly higher than the AUCs of [21,22,56,65,66]
indicating an increase of 1.73% over the previous research studies. A comparison of the
experimental results with existing approaches showed an outstanding performance. In
addition to this surveillance dataset, a more recent SOTA benchmark Surveillance Fight
was also used to test the proposed model, and the experimental results were compared
with recent approaches like SOTA [57,67,68]. With 95.8% accuracy, the proposed framework
achieved best results when compared with the existing frameworks [57,67,68], which were
improved by 2.7%, when compared with the recent studies [8].
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Table 1. Performance comparison of the proposed model with other SOTA over UCF dataset.

Method False Alarm AUC

AED-SC [69] 27.20 50.60
Autoencoder [21] 3.10 65.51

C3D [22] 1.90 75.41
GCN [56] 0.10 82.12

CLAWS [66] - 83.03
DSN [8] 0.021 85.82

Proposed 0.0017 87.55

Table 2. Performance comparison of the proposed model with other SOTA over ShanghaiTech dataset.

Method False Alarm AUC

RNN [61] - 68.0
FFP [9] - 72.8

VAD-DPCN [70] - 73.6
IPC-AD [71] - 73.0

CAE-VAD [72] - 73.3
VAD-SCI [60] - 69.63
AD-MGN [17] - 70.50

ST-AD [63] - 73.40
GEPC-AD [62] - 76.10

GCN [56] - 76.44
DSFN [64] 0.74 82.14

DSN [8] 0.054 84.90
Proposed 0.023 86.74

Table 3. Performance comparison of the proposed model with other SOTA over surveillance
fight dataset.

Method False Alarm AUC

CNN-BiLSTM [57] - 72.0
CNN-LSTM [67] - 74.0

CNN-ConvLSTM [68] - 75.9
DSN [8] 0.035 93.1

Proposed 0.018 95.8

As shown in Tables 4 and 5, the proposed model offers significantly better performance
than SOTA, even using non-surveillance datasets. Both indoor and outdoor surveillance
results confirmed the effectiveness of the proposed framework. In comparison to recent
techniques, this reserch work has achieved an increase of 0.8% accuracy with the proposed
framework against [30,40,48,51–57]. Compared to the existing frameworks on violent
flow, the proposed framework shows a 0.8% increase in accuracy compared to [8,57,67,68].
Experiments on large scale anomaly detection datasets with the proposed models revealed
an outperformed existing techniques by a wide margin.

To Conclude the above results, The proposed network shows an improvement over
existing state-of-the-art models for anomaly detection in video data due to several factors.
Initially, the use of EfficientNet as a feature extractor ensures that the spatial information
from each frame is effectively captured, while the use of an autoencoder further refines
the extracted features by reducing the redundancy and retaining only the most important
information. Additionally, the use of an Echo State Network (ESN) allows the model to learn
the temporal dependencies in the data, providing a more comprehensive understanding of
the input video sequence. The lightweight nature of the proposed model, which allows
for its implementation over edge devices, is also an important factor contributing to its
improved performance. By performing all processing over edge devices, the network avoids
the computational overhead and latency associated with sending data to a central server
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for processing. In summary, the combination of efficient feature extraction, optimal feature
selection, and temporal learning makes the proposed network an effective and efficient
solution for anomaly detection in video data, with improved performance compared to
existing state-of-the-art models.

Table 4. Performance comparison of the proposed model with other SOTA over Hockey Fight dataset.

Method False Alarm ACC

Motion-IWLD [73] - 96.8
HOMO-SVM [74] - 89.3

SIFT [75] - 96.5
3dCNN [76] - 96.0

BOW [77] - 95.5
CNN [78] - 93.3
CNN [79] - 96.4

CNN-BiLSTM [57] - 96.0
CNN-MLSTM [67] - 98.0

CNN-ConvLSTM [68] - 98.5
DSN [8] 0.019 99

Proposed 0.0047 99.8

Table 5. Performance comparison of the proposed model with other SOTA over Violent Flow dataset.

Method False Alarm ACC

IWLD [73] - 93.19
HOT [80] - 82.2

HOMO-SVM [74] - 76.8
2dCNN [76] - 98.0

CNN-MLSTM [67] - 98.5
DSN [8] 0.016 99.01

Proposed 0.0034 99.81

4.3. Ablation Study

The proposed model achieved considerable performance compared to state-of-the-art
as given in Tables 1–5. However, prior finalizing the proposed architecture a supportive
ablation study is performed. The ablation study is based on evaluating the performance of
GRU, LSTM and the proposed ESN. The detailed results of these methods with backbone
feature extraction and autoencoder are given in Figure 4. The Table concluded that GRU
achieved lower performance compared to LSTM and ESN while LSTM achieved the second
performance over all datasets.

4.4. Time Complexity

It is difficult to run computationally expensive models on the current surveillance
systems due to their limited computational capabilities. To extract meaningful patterns from
these videos, the domain experts and researchers transmit them to local or cloud servers.
This often results in a slower response time and countermeasures because visual data is
transmitted over a large bandwidth. This research work aims to develop a lightweight
model for efficient anomaly detection to utilise the limited processor capabilities and
memory of current surveillance sensors. We evaluate and compare the performance of
the proposed model in two different settings such as GPU and Edge device (NanoJetson).
According to the proposed model, 3.5 and 1 sequence are processed, respectively, over
these settings. As a result, the proposed model process one sequence which has 30 frames
over edge devices. Processing of 30 frames sequence in one second could be enough for
real-time implementation over an edge device.
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5. Conclusions

This research work, we developed an efficient and effective framework for anomalous
event detection, which can be used both in non-surveillance and surveillance environments.
The proposed framework includes feature extraction, feature refinement, and feature
learning modules. For feature extraction we used the EfficientNet model can extract more
robust information compared to other CNN variants. The extracted features are then
forwarded to the autoencoder to select the best optimal features. These features are then
forwarded to ESN for sequence learning and anomaly detection. Ultimatly, the proposed
model an ablation study was also conducted. The results indicate that the proposed
model achieved higher performance compared to state-of-the-art methods. The proposed
model improve 1.73%, 1.84%, and 2.1% AUC over UCF, ShanghaiTech, and surveillance
fight datasets, respectively. Furthermore, the propsoed model improved 0.5% and 0.8%
accuracy over Hockey Fight and Violent Flow datasets. Alongside higher accuracy, the
proposed model is also computationally inexpensive and is implemented over edge devices
to provide a safe and secure environment to the connected consutomer in smart cities.
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