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ABSTRACT
When quasiparticles move in condensed matters, the texture of their internal quantum structure as a
function of position and momentum can give rise to Berry phases that have profound effects on the
material’s properties. Seminal examples include the anomalous Hall and spin Hall effects from the
momentum-space Berry phases in homogeneous crystals. Here, we explore a conjugate form of the electron
Berry phase arising from the moiré pattern: the texture of atomic configurations in real space. In
homobilayer transition metal dichalcogenides, we show that the real-space Berry phase frommoiré patterns
manifests as a periodic magnetic field with magnitudes of up to hundreds of Tesla.This quantity
distinguishes moiré patterns from different origins, which can have an identical potential landscape, but
opposite quantized magnetic flux per supercell. For low-energy carriers, the homobilayer moirés realize
topological flux lattices for the quantum-spin Hall effect. An interlayer bias can continuously tune the spatial
profile of the moiré magnetic field, whereas the flux per supercell is a topological quantity that can only have
a quantized jump observable at a moderate bias. We also reveal the important role of the non-Abelian Berry
phase in shaping the energy landscape in small moiré patterns. Our work points to new possibilities to
access ultra-high magnetic fields that can be tailored to the nanoscale by electrical and mechanical controls.

Keywords: two-dimensional materials, transition metal dichalcogenides, moiré pattern, Berry phase,
quantumHall effect

INTRODUCTION
In van der Waals layered structures, the creation
of long-period moiré patterns (via a small lattice
mismatch between the layers) has become a power-
ful method for engineering superlattice electronic,
optical and topological properties. Experiments
have discovered emergent electron phenomena
from graphene moiré superlattices, including the
fractal quantumHall effect [1–3], gate-tunableMott
insulators [4,5] and superconductivity [6–11]. In
heterostructures of 2D semiconductors, the moiré
pattern leads to nanoscale patterning in the energy
and emission features of optical excitations and
thereby significantly changes the heterostructure
optical responses [12–17]. Furthermore, theories
have predicted the emergence of novel topological
insulating states in transition metal dichalcogenides
(TMD) heterobilayer moiré [18] and twisted
homobilayers [19].

The nature of the moiré pattern as a spatial
texture of atomic configurations suggests that the
Berry-phase effect can be an indispensable part of
moiré superlattice physics. In a smoothly varying
crystalline environment like a long-periodmoiré, the
Berry phase has several important manifestations
in the electron’s equations of motion [20]: Ṙ =
∂E
∂k − k̇ × �k , k̇ = − ∂E

∂R + Ṙ × �R , where E , R
and k are the energy, position and momentum
of an electron wavepacket. �k ≡ i

〈
∂u
∂k |×| ∂u

∂k

〉
and

�R ≡ i
〈
∂u
∂R |×| ∂u

∂R

〉
are Berry curvatures from the

momentum-space and real-space textures, respec-
tively, in the electron’s spin and pseudospin wave-
function u . Homogeneous crystals can only have the
momentum-space curvature �k and the resultant
anomalous velocity −k̇ × �k is responsible for the
various Hall effects [20]. Spatial inhomogeneity can
give rise to the real-space curvature �R that plays
the same role as a magnetic field. Such an emergent
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Figure 1. Moiré pattern as a real-space texture for the Berry phase. (a) Schematic of
a homobilayer moiré and periodic magnetic flux (green arrows) from the real-space
Berry phase. The dashed rhombus denotes a supercell. (b) Upper panel: atomic reg-
istries at three high-symmetry locales A, B and C. Lower panel: corresponding layer
distributions of conduction (c) and valence (v) band-edge carriers (yellow isosurfaces),
with the arrows indicating the layer-pseudospin orientations. (c) A schematic of the
coupled massive Dirac cones from the two layers. The interlayer-coupling parameters
(h , �) depend on the interlayer registry characterized by the displacement r between
a near-neighbor pair of atoms from two layers (inset); in a moiré, they are functions of
location R.

magnetic field also generates a Hall current, which
has attracted remarkable interest in explorations of
magnetization skyrmions and domains [21–23].

Here, we show that the real-space Berry phase
from moiré patterns realizes a nanoscale patterned
magnetic field for the massive Dirac fermions in
TMDhomobilayers.Thefield is normal to the plane,
with the full symmetry of the moiré pattern. The
magnetic flux per moiré supercell has a quantized
value, while its sign distinguishes moirés introduced
by a uniaxial strain from those by a twisting or biaxial
strain, although they have the same potential land-
scape. For low-energy carriers, the complex hopping
in the moiré potential as determined by the Berry
phase realizes the topological flux lattices hosting the
quantum-spinHall effect. Strain control of themoiré
period (b) can dramatically tune themoirémagnetic
field with the b−2 scaling, while preserving the flux
per supercell. The field magnitude can reach hun-
dreds of Tesla at a moiré size of b ∼ 10 nm. The
profile of the moiré magnetic field can also be elec-
trically tuned through an interlayer bias and a topo-
logical transitionoccurs at amoderate biaswhere the
magnetic fluxper supercell has a quantized jump.We
also reveal that the geometric scalar potential due to
the non-Abelian nature of the Berry phase can qual-
itatively change the potential landscape in a small
moiré.

RESULTS
TMDmonolayers have their spin-valley locked con-
duction and valence band edges at the±K corners of
the Brillouin zone, which are described by the mas-
sive Dirac model [24]. We focus here on the physics
at these band edges in a homobilayer moiré, formed
by a small twisting or strain applied to one layer
in R-stacking [25] (cf. Fig. 1 and Table 1). The in-
terlayer hopping of the valley electron is sensitive
to the atomic registry between the layers [18,26].
The smooth variation of the interlayer registry in a
long-period moiré thus leads to the dependence of
the hopping on the position R [27,28]. In the basis
of

{|t〉c , |b〉c , |t〉v, |b〉v}, denoting conduction (c)
and valence (v) band-edge states from the top (t)
andbottom(b) layers, respectively, theHamiltonian
for the two coupled massive Dirac cones reads:

(
E g /2 + Ĥc (R) i�vD∂+

i�vD∂− −E g /2 + Ĥv (R)

)
. (1)

The 2 × 2 block Ĥv (R) = δ (R) + σ̂z� (R) +
σ̂+h (R) + σ̂−h∗ (R)describes the spatially varying
interlayer-coupling effects in valence bands. σ̂ is the
layer pseudospin. h is the hopping matrix element
between the valence band edges from the two layers.
The interlayer coupling also leads to energy shifts of
the band edges accounted for by δ (R) and � (R)
[19,26]. Ĥc describes similar interlayer-coupling ef-
fects in the conduction bands.The Ĥc and Ĥv blocks
are coupled through the∂± ≡ ∂

∂X ± i ∂
∂Y termof the

monolayer Dirac Hamiltonian. Equation (1) is for
the −K valley, which has spin-up states only at the
band edge, and theK valley is its time reversal.

Non-Abelian Berry connection in
real space
We derive an effective Hamiltonian for holes in
the bilayer moiré, whereas that for the electron
is similar. It is convenient to go to the basis
spanned by the eigenstates of interlayer coupling
Ĥv (R): |+〉 = Û (R) |t〉v and |−〉 = Û (R)
|b〉v , where Ê v (R) ≡ diag (E+ (R) , E− (R)) =
Û (R) Ĥv (R) Û † (R). Through a unitary trans-
formation by Û (R), the bilayer Hamiltonian in
Equation (1) becomes:

Ĥmoiré =
(
Û (R) Ĥc (R) Û † (R) + Eg /2 �vD

(
i ∂+ + e+ · Â (R)

)
�vD

(
i ∂− + e− · Â (R)

)
Ê v (R) − Eg /2

)
.

(2)

In the off-diagonal block, the matrix Â (R) is
the non-Abelian real-space Berry connection on the
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Table 1. Comparison of flux superlattices in three types of homobilayer moiré. One monolayer has the primitive lattice vectors
a1 =

√
3a
2 ex + a

2 ey , a2 =
√
3a
2 ex − a

2 ey and the other layer is rotated by a twisting angle θ or subject to a biaxial or uniaxial
tensile strain, respectively. The uniaxial strain is applied along the armchair or zigzag direction, with the area of the strained
unit cell conserved. The magnetic flux per moiré supercell is given for the spin-up carrier (−K-valley). The local registry is
parameterized by the in-plane displacement r between a near-neighbor pair of atoms from the opposite layers (cf. Fig. 1
inset). Ed is the interlayer electric bias and its critical value 2�0/e = 0.044 V.

Twisting (θ) Biaxial strain (η) Uniaxial strain (η)

Moiré period (b) b = a/θ b = a/η b = a/η

Supercell primitive vectors b1 = − b
2 ex +

√
3b
2 ey

b2 = b
2 ex +

√
3b
2 ey

b1 =
√
3b
2 ex + b

2 ey
b2 =

√
3b
2 ex − b

2 ey

b1 =
√
3b
2 ex − b

2 ey
b2 =

√
3b
2 ex + b

2 ey
Local registry (r) as a
function of position (R)

rx = θ Ry

ry = −θ Rx

r = ηR rx = ηRx

ry = −ηRy

Magnetic flux per |Ed | < 2�0/e 2π 2π −2π
supercell |Ed | > 2�0/e 0 0 0

basis of the layer-pseudospin eigenstates:

Â (R) ≡ i Û (R)
∂Û † (R)

∂R
=

(
A++ A+−

A−+ A−−

)
,

(3)

where A±± = i
〈± ∣∣ ∂

∂R

∣∣±〉
and A±∓ =

i
〈± ∣∣ ∂

∂R

∣∣ ∓〉
. e± ≡ ex ± i ey , ex and ey are the

unit vectors along the x and y directions.
At the three high-symmetry locales in the moiré

(Fig. 1a and b), rotational symmetry dictates that
h vanishes at B and C, while � vanishes at A and
takes opposite values at B and C (Fig. 2b). These
determine a real-space texture in the two branches
of layer-pseudospin eigenstates. For example, in the
|+〉 state, 〈σ̂ 〉 is in-plane atA andpoints out-of-plane
in opposite directions at B and C, as illustrated in
Fig. 1b. Such a spatial texture of the layer pseudospin
gives rise to a non-trivial Berry connection.

With the large gap E g , the coupling to the con-
duction states can be perturbatively eliminated and
the hole Hamiltonian keeping its leading effects
becomes:

Ĥ (hole)
moiré ≈ −Ê v (R) + �

2

2m∗

(
i

∂

∂R
+ Â (R)

)2

,

(4)

where the dropped terms are O
((

�vD
E g

)3
)
. m∗ ≡

E g

2v2
D
is the Dirac mass.

Periodic magnetic fields in different
types of moiré
We focus first on the diagonal Berry connection
A±±. The main effect of off-diagonal connec-
tion A±∓ is a correction to the scalar potential

landscape that is negligible in a sufficiently large
moiré, which we will revisit later. If A±∓ is sim-
ply dropped in Equation (4), the two branches
of layer-pseudospin eigenstates are decoupled,
each described by an effective Hamiltonian:
−E± (R) + �

2

2m∗ (i∇ + A±±)2. The moiré ef-
fects manifest as the scalar superlattice potential
−E± (R) and, more intriguingly, the vector poten-
tial A±± that generates a real-space magnetic field:
B± =

(
∂A±±

y
∂X − ∂A±±

x
∂Y

)
ez .

We establish below the quantitative forms of
the superlattice potential E± (R) and the periodic
magnetic field B±. In a long-period moiré, the
interlayer-coupling parameters at location R are de-
termined by the local atomic registry, which can be
parameterized by the in-plane displacement r be-
tween a near-neighbor pair of atoms from oppo-
site layers (Fig. 1, inset). Under the two-center-
approximation and keeping only the leading Fourier
components [26], we find the dependences of
�, δ and h on the registry r:

� (r) = �0
9

∣∣∣e iK1·r + e i(K2 ·r−
2π
3 ) + e i(K3·r−

4π
3 )

∣∣∣2 − �0
9∣∣∣e iK1·r + e i(K2 ·r+

2π
3 ) + e i(K3·r+

4π
3 )

∣∣∣2,
δ (r) = − δ0

9

∣∣∣e iK1·r + e i(K2 ·r−
2π
3 ) + e i(K3·r−

4π
3 )

∣∣∣2 − δ0
9∣∣∣e iK1·r + e i(K2 ·r+

2π
3 ) + e i(K3·r+

4π
3 )

∣∣∣2,
h (r) = h0

(
e iK1·r + e iK2·r + e iK3·r)

+ h1
(
e−2iK1·r + e−2iK2·r + e−2iK3·r) ,

(5)

where �0, δ0, h0 and h1 are real constants.
K1 ≡ K = (0, K ), K2 ≡ Ĉ3K, K3 ≡ Ĉ 2

3K are,
respectively, the three corners of the monolayer
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Figure 2. Layer-pseudospin texture and moiré magnetic field. (a) The symbols are from the ab initio calculations of the split
valence band edges E + and E − in MoSe2 homobilayers of various interlayer registries. The curves are fitted using Equation
(5) with the parameters δ0 = 1 meV,�0 = 22.3 meV, h 0 = 7.1 meV and h 1 = −1.2 meV. (b) The corresponding interlayer-
coupling parameters as functions of position R in the moiré. �E ≡ � − 1

2 eEd at the critical bias value Ed = 2�0/e is
shown as the dotted curve. (c) Color map showing the scalar potential landscape−E + in a moiré supercell, where the high-
symmetry locales A, B and C are energy minima. (d, e) Upper panel: layer-pseudospin texture in the lower-energy pseudospin
branch |+〉. The arrows show 〈σ〉+ at different positions and the color codes its z-component. Lower panel: magnetic field
B+ in a moiré of period b = 10 nm. The peak value reaches 200 T. (d) is for a moiré induced by a twisting or biaxial strain
and (e) is for a moiré induced by a uniaxial strain (cf. Table 1).

Brillouin zone related by 2π/3-rotations. On
the other hand, the split valence band edges
E± = δ ±

√
|h|2 + �2 can be obtained from ab

initio band structures of lattice-matched bilayers of
various registry r. In Fig. 2a, the ab initio calculated
E± as functions of r are shown as the symbols, which
are remarkably well fitted by the solid curves from
Equation (5), with δ0 = 1 meV, �0 = 22.3 meV,
h0 = 7.1 meV and h1 = −1.2 meV.

The registry r is a function of position R in
the moiré. The mapping r (R), together with
Equation (5), gives the position dependences of
the interlayer-coupling parameters in Ĥv (R),
i.e. � (R) = � (r (R)), etc. The resultant spatial
texture of layer-pseudospin eigenstates, the scalar
potential −E± (R) and the moiré magnetic field
B± can then be determined. Table 1 summarizes
the mapping function r (R) for three different types
of moiré pattern formed, respectively, by applying
a twisting, a biaxial strain and an area-conserving
uniaxial strain to one layer. All three moiré patterns
realize hexagonal superlattices, with the identical
scalar potential landscape −E± (R) (except for a

90o rotation of the superlattice in the twisting case,
cf. Table 1).

Figure 2d and e shows the spatial profile of layer-
pseudospin vector 〈σ̂ 〉+ and a moiré magnetic field
B+in a moiré supercell in the lower-energy hole
branch.Remarkably,while the twistingmoiré andbi-
axial moiré have identical pseudospin textures and
magnetic-field distribution, the uniaxial moiré is of a
distinct texture that leads to an opposite magnetic-
field distribution. The magnetic flux per supercell∫
SCez · B+dR is a quantized value: 2π for the twist-

ingmoiré and biaxialmoiré and−2π for the uniaxial
moiré, corresponding to the fact that the pseudospin
texture is of a skyrmion [19] and anti-skyrmion
configuration, respectively. Thus, the three differ-
ent origins give rise to two topologically distinct
types of moiré patterns. The moiré magnetic field
B+ is peaked between the B and C points (Fig. 2d
and e). In a moiré of period b = 10 nm, this mag-
netic field reaches a peak value of 200 Tesla, compa-
rable in size to the giant pseudo magnetic field from
an inhomogeneous strain in a graphenenano-bubble
[29–31].



16 Natl Sci Rev, 2020, Vol. 7, No. 1 RESEARCH ARTICLE

Figure 3. Flux superlattice for quantum-spin Hall effect. (a) The color map shows the
moiré magnetic field B+. The lines illustrate hopping between trapping sites A, B and
C. The phases for the hopping direction indicated by the dashed arrows are shown. (b)
The effective two-orbital model in a long-period moiré where the high-energy trapping
sitesA are perturbatively eliminated. The positive phase directions of the next-nearest-
neighbor hopping are indicated by the arrows. (c, d) Band dispersions and momentum-
space Berry curvature 	k of the mini-bands calculated using the three-orbital model
in (a). For (c), the parameters are εA = 5 meV, εB = εC = 0, t1 = t2 = 1 meV and
t3 = 0.5 meV and the three mini-bands have the Chern numbers of C = −1, +1 and
0, respectively. For (d), εA = εB = εC = 0, t1 = t2 = 5 meV and t3 = 2 meV and the
band Chern numbers become C = −1, −1 and +2, respectively.

Topological flux lattice and quantum-spin
Hall effect
Theperiodic scalar potential andmagnetic field gen-
erated by the moiré together define a flux super-
lattice. Some remarkable features include: (i) the
flux per supercell is quantized and independent of
the moiré period; (ii) the two layer-pseudospin
branches |+〉 and |−〉 have opposite magnetic fields
B+ = −B− and distinct trapping locations in their
potentials −E+ (R) and −E− (R) (Fig. 2a); (iii)
spin-up and -down carriers experience opposite
magnetic fields as required by the presence of time-
reversal symmetry.

Holes can be trapped in the low-energy
pseudospin branch |+〉 at the three high-symmetry
locales A, B and C in a moiré supercell (cf. Fig. 2c).
Low-energy holes hopping between these trapping
sites can then be described by a three-orbital

tight-binding model (Fig. 3a):

ĤT B =
∑
i

(
εA Â

†
l Âl + εB B̂

†
l B̂l + εC Ĉ

†
l Ĉ l

)

−
∑
〈l ,m〉

(
t1 exp

(
iφl ,m

1

)
Â†
l B̂m

+ t2 exp
(
iφl ,m

2

)
Â†
l Ĉm + t3Ĉ

†
l B̂m + h.c.

)
.

(6)

Here, Âl , B̂l and Ĉl are annihilationoperators for
the hole trapped at A, B and C sites in lth supercell,
and 〈. . .〉 runs over nearest-neighbor pairs of sites.
The sum of hopping phases φ1 and φ2 around any
closed loop equals the magnetic flux enclosed. The
equilateral triangle A-B-C-A loop in Fig. 3a encloses
a flux of π/3 (−π/3) for the spin-up (-down) hole,
for the example of a twistingmoiré or a biaxialmoiré.

The out-of-plane mirror symmetry dictates
that εB = εC and t1 = t2. Because of the higher
barrier between B and C, t3 < t1,2. The onsite
energy εA is larger than εB ,C in the scalar potential
shown in Fig. 2a. In a sufficiently large moiré, where
the hopping becomes exponentially small,

∣∣t1,2,3∣∣
� εA − εB ,C , we can adiabatically eliminate the A
sites. The resultant two-orbital tight-binding model
consisting of the B and C sites becomes (Fig. 3b):

ĤT B =
∑
i

(
εB B̂

†
l B̂l + εC Ĉ

†
l Ĉl

)

−
∑
〈l ,m〉

(
t3Ĉ

†
l B̂m + h.c.

)

−
∑

〈〈l ,m〉〉

(
tB exp

(
iφl ,m

B

)
B̂ †
l B̂m

+ tC exp
(
iφl ,m

C

)
Ĉ †
l Ĉm + h.c.

)
,

where tB = t21
εA−εB

, tC = t22
εA−εC

, and 〈〈. . .〉〉
runs over next-nearest-neighbor pairs. φ

l ,m
B ,

φ
l ,m
C = ± 2π

3 and the positive phase hopping direc-
tions are indicated by the arrows shown in Fig. 3b.
This realizes the Kane-Mele model [32] and the
Haldane model in each spin subspace [33], which
explains the quantized spin Hall conductance found
in mini-band calculations in the TMD homobilayer
moiré [19,25].

Figure 3c shows the dispersions and the
momentum-space Berry curvatures �k of the three
mini-bands, calculated with the parameters εA −
εB ,C = 5 meV, t1,2 = 1 meV and t3 = 0.5 meV.
The topological numbers of the three bands are
C = 1

2π ez · ∫
mBZ�

kdk = −1, +1 and 0. This
three-band tight-binding model reproduces well
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Figure 4. Geometric scalar potential from the non-Abelian Berry connection. (a) The
geometric scalar potential G for a moiré of period b = 10 nm. (b) The Zeeman energy
−B+ · M, whereM is the orbital magnetic moment of massive Dirac fermion from the
momentum-space Berry phase. (c) The overall scalar potential −E ± + G in the two
pseudospin branches at different moiré periods. (d) The schematic-level scheme for the
non-Abelian Berry-phase effect in a homobilayer moiré. |+〉 is coupled to the conduc-
tion state of the same pseudospin |c+〉 and the second-order perturbative correction
E (2)
s accounts for the moiré magnetic field B+ effects, including the Zeeman energy

shown in (b). The coupling of |+〉 to the conduction state of the opposite pseudospin
|c−〉 leads to another correction E (2)

o and its sum with the Zeeman energy term is the
overall geometric scalar potential G shown in (a).

the band dispersions, the �k distributions and
topological numbers from the direct mini-band
calculations in the twistedMoTe2 bilayer [19].

Geometric scalar potential
The off-diagonal Berry connection can become
increasingly important with the decrease in the
moiré period b . In the Hamiltonian in Equation
(4), A±∓ plays two roles. First, it contributes
G (R) ≡ �

2

2m∗ A+− · A−+ to the diagonal element of
Hamiltonian. As a result, the scalar superlattice po-
tential is corrected from −E± (R) to −E± (R) +
G (R). Second, it introduces a residue coupling
between the layer-pseudospin branches |+〉 and
|−〉, with the coupling form (

i ∂
∂R + A++) · A+− +

A+− · (
i ∂

∂R + A−−) ∝ b−2. However, in the lower
branch |+〉, low-energy states are detuned from the
branch |−〉 by a gap independently of b (cf. Fig. 2a),
which quenches the off-diagonal effect except for a
very small moiré (b ≤ 5 nm). Therefore, the low-
energy holes are well described by the effective
Hamiltonian:

Ĥ (+) ≈ �
2

2m∗

(
i

∂

∂R
+ A++

)2

− E+ (R) + G (R) .

(7)

G (r) here is an additional energy due to the
precession of the layer pseudospin in the adiabatic
transport [34], which repels electrons (holes) from
the position where the pseudospin changes quickly.
This effective potential of the geometric origin is
known as the geometric scalar potential. In a homo-
bilayer moiré,G (R) ∝ b−2, increasing rapidly with
the decrease in the moiré period b and peaking be-
tween the B and C points of the supercell (Fig. 4a).

Figure 4c plots the overall scalar potential at
different moiré periods b. The correction by the
geometric contribution becomes significant at
b ≤ 20 nm.The local out-of-planemirror symmetry
at A dictates that G (R) vanishes at this location.
The geometric scalar potential therefore pushes
εB ,C towards εA (see Fig. 4c), so theA orbital can no
longer be perturbatively eliminated in a small moiré.
From the three-orbital tight-binding calculation
using Equation (6), we find that a topological
phase transition occurs when t3 is increased to
(εA − εB ,C ) /3. In Fig. 3d, we show the results
with parameters εA = εB ,C = 0, t1 = t2 = 5 meV
and t3 = 2 meV, where the topological numbers
of the three bands become C = −1, −1 and +2,
respectively. The tight-binding calculations shown
in Fig. 3c and d reproduce the distinct moiré band
dispersions and topologies in MoTe2 bilayers at
twist angles 1.2◦ and 2◦ , respectively. The change
in the energy landscape caused by the geometric
scalar potential accounts for the topological phase
transition as a function of the twist angle.

Quantized switch of magnetic flux by
interlayer electric bias
An interlayer bias can add a tunable term 1

2 eEd σ̂z

to Ĥv (R), where d is the interlayer distance and
E is the perpendicular electric field. The effect is to
replace� (R) by�E (R) ≡ � (R) − 1

2 eEd , which
changes the profiles of both the potential landscape
E± (R) and the magnetic field B± (R). The electric
bias can thus be exploited to continuously tune the
moiré magnetic field and the flux superlattice.

The lower panel of Fig. 5a shows the magnetic-
field distribution in the pseudospin branch |+〉
under an interlayer bias Ed = 0.026 V in the
twistingmoiré.Themagnetic-fielddistribution is sig-
nificantly changed compared to the zero-bias distri-
bution shown in Fig. 5a upper panel, having been
pushed from the B–C center towards the C point,
where the difference between E+ (R) and E− (R)
is minimal. The magnetic flux per supercell remains
2π . With a further increase in bias to the criti-
cal value Ed = 2�0/e = 0.044 V, �E crosses 0 at
C point, where h (R) also vanishes (cf. Fig. 2b).
Therefore, the gap between E+ (R) and E− (R)
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Figure 5. Tuning of magnetic-field profile and quantized change of magnetic flux by
interlayer bias. (a) The magnetic-field profile and energy contour in the lower pseu-
dospin branch |+〉 under an interlayer bias Ed = 0.026 V (lower panel) compared to
the zero-bias profile (upper panel). The moiré period b = 50 nm. The flux per supercell
is 2π in both cases. (b) Scalar superlattice potentials in the two pseudospin branches at
three bias values. At the critical bias 0.044 V, −E + and −E − touch at C, whereupon
a topological transition of the layer-pseudospin texture occurs. (c) The magnetic-field
distribution has a bias of 0.06 V, where the flux per supercell is 0.

closes, whereupon a topological transition of the
layer-pseudospin texture occurs (Fig. 5b). Figure 5c
shows the magnetic-field distribution after this tran-
sition (Ed = 0.06 V), where the magnetic flux per
supercell becomes 0.

DISCUSSION
Massive Dirac fermion features an orbital magnetic
moment M = �

2

2m∗ ez arising from the momentum-
space Berry-phase effect [35], which leads to
Zeeman shifts in the band edges of the monolayer
TMDs in an external magnetic field [36–38]. It is
interesting to ask whether the emergent moiré mag-
netic field B+, as a manifestation of the real-space
Berry phase, can couple to the orbital magnetic
moment as well. In the perturbative expansion from
Equation (2) to Equation (7), we can separate
two contributions in the second-order perturbative
correction: Ĥ+ = −E+ (R) + E (2)

s + E (2)
o ,

E (2)
s = �2v2

D

E g

(
i ∂− + e− · A++) (

i ∂+ + e+ · A++)
,

E (2)
o = �2v2

D

E g

(
e− · A+−) (

e+ · A−+)
.

E (2)
s is from the coupling between |+〉 =

Û (R) |t〉v and the conduction state of the same
pseudospin orientation |c+〉 = Û (R) |t〉c (see

Fig. 4d), which can be rewritten as: E (2)
s =

�
2v2

D
E g

(
i ∂

∂R + A++)2 − B+ · M. In addition to the
kinetic-energy term, it does contain the coupling of
the orbital magnetic moment to the moiré magnetic
field B+, which contributes to the scalar potential
landscape (Fig. 4b). Because of the non-Abelian
nature of the Berry-phase effect here, there is also a
contribution E (2)

o from the coupling between |+〉
and the conduction state of opposite pseudospin
|c−〉 = Û (R) |b〉c . The Zeeman energy partially
cancels with E (2)

o , with the net effect being the
geometric scalar potential G (R).

In contrast to the twisting moiré, the moiré in-
troduced by a biaxial or uniaxial strain allows en-
gineering a moiré magnetic field and flux superlat-
tice through mechanical controls. In a rotationally
aligned homobilayer, the application of a relative
strain η between the two layers, e.g. through the
substrate, can create a moiré pattern with period
b = a/η. A modest tensile strain can thus tune
b over several orders of magnitude, where the
magnetic-field scales asb−2.Thishomobilayermoiré
points to unprecedented opportunities to explore
physics in an ultra-high magnetic field that can be
tailored on the nanoscale by both electrical and me-
chanical means.

It is also interesting to compare with twisted
bilayer graphene, where the interplay of a sublat-
tice pseudospin and a layer pseudospin leads to a
more complex gauge structure for themasslessDirac
fermion [28,39]. Only at the AA stacking locales
[39] can the gauge structure in a graphene moiré be
simplified to a form equivalent to that of a magnetic
field ∝ b−1 (in contrast to the b−2 scaling underly-
ing the b-independent flux quantization here). This
gives rise to pseudo Landau levels of the massless
Dirac fermion at the AA locales, which can be con-
nected to the flat mini-bands in the bilayer graphene
at the magic twist angle [28,39]. For massive par-
ticles here, the strongly inhomogeneous magnetic-
field profile in a moiré supercell of exactly quantized
flux points to manifestations of ultra-high magnetic
fields that are remarkably different from the well-
studied Landau-level physics.

The flux lattices and quantum-spin Hall effects
need to be explored at low doping in a relatively
small moiré, since the topological gap (determined
by hopping integrals between superlattice sites) de-
creases exponentially with b . The other limit, i.e.
relatively high doping in a large moiré, is equally
interesting to explore, where the nanoscale pat-
terned magnetic field in the associated potential
landscape (Fig. 5) points to a new realm of magneto
transport. Electrostatic doping and interlayer bias
control of the moiré magnetic flux can both be
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exploited to tune the magnetic field experienced by
an electron gas of a periodically varying density.
With the valley-spin-dependent sign, themoirémag-
netic field also leads to the valley and spin Hall ef-
fects in such ametallic regime. Remarkable gate tun-
ability of the valley-spin Hall conductance can be
expected from both the bias dependence and the
carrier-density dependence of moiré magnetic flux
experienced by the carriers. The non-local transport
measurement in Hall bar geometry can be used to
detect such effects. We also expect other important
manifestations of the moiré magnetic field when an
external magnetic field is applied. With carriers ex-
periencing the sum or difference of the moiré and
applied magnetic fields at the two valleys, their re-
sponse quantified with respect to the external mag-
netic field, e.g. magnetoresistance, can be signifi-
cantly changed by the moiré field.

Our study here focuses on ±K-valley carriers
only. In certain TMD homobilayers, the ±K-valley
is still the band edge: e.g. the valence band edge of
bilayerWSe2 [40] and conduction and valence band
edges of bilayer MoTe2 [41]. In other compounds,
� pocket of holes and/or� pockets of electrons be-
come relevant. In such cases, the quantum-spin Hall
effect may not be possible to observe, as the topo-
logical gap overlaps with the Fermi sea at � or �.
Nevertheless, other important manifestations of the
moiré magnetic field (like the valley-spin Hall ef-
fect in the metallic regime) can still be explored for
the carriers at ±K-valleys, even if they are not the
band edge.

METHODS
DFT calculations of the bilayer MoSe2 structure,
which ismodeledby a slab,wereperformedusing the
Vienna ab initio Simulation Package [42]. To avoid
artificial interactions between the polar slabs when
the bilayer deviates from the AA stacking, two such
slabs, oppositely orientedwithmirror symmetry, are
placed in each cell, which is separated from its peri-
odic images by20-Å vacuumregions [43].Thecutoff
energies for the plane-wave basis set used to expand
the Kohn-Sham orbitals are 400 eV for all calcula-
tions.The exchange correlation functional is approx-
imated by the generalized gradient approximation as
parametrized by Perdew, Burke and Ernzerhof [44].
The 2D Brillouin zone is sampled by a 30 × 30 × 1
Monkhorst-Pack mesh. Van der Waals dispersion
forces between the adsorbate and the substrate were
accounted for through the optB88-vdW functional
by using the vdW-DF method developed by Klimeš
et al. [45].
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