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The taxon Protista was originally given by Ernst Haeckel 
in 1866 and included all unicellular organisms either prokaryotic 
or eukaryotic. In the modern view, the protists are eukaryotic 
organisms of unicellular organization, and thus the term 
embraces classical protozoa, unicellular phototrophic organ-
isms such as diatoms, and lower unicellular fungi (28). Due to 
the extreme diversity, the taxonomic system of protists has 
been revised several times according to new knowledge and 
concepts (11, 14, 65). Protists are currently recognized to be 
paraphyletic or even polyphyletic and to be widely distrib-
uted in all of the five major supergroups—like kingdoms—
under the eukaryote classification proposed by the International 
Society of Protistologists (1).

Protozoa are ‘animal-like’ protists that prey on other organisms. 
However, the term protozoa is no more (or at least much less) 
used due to the fact that some protozoa such as the euglenoids 
do photosynthesis as well. Different terms like ‘phagotrophic 
protists’, ‘heterotrophic protists’, and even just ‘protists’ are 
used to refer to protozoa depending on the context: the term 
‘phagotrophic protists’ is used in this article. Among the 
members of protists in soil, phagotrophic protists are one of 
the groups that have been long and best studied. The compo-
sition and distribution of the phagotrophic protists (protozoan 
fauna) with different morphotypes—ciliates, flagellates, and 
amoeba—in soil was studied through a culture-based tech-
nique in 1920’s (55). Phagotrophic protists play a role in soil 
as bacterivores and their ecological significance had been 
demonstrated contemporaneously with the concept ‘microbial 
loop’ in the marine environments (6, 12, 13). Despite the long 
history of soil protozoology or protistology and the fact that 
the diversity of protists in soil would be as high as that in 
aquatic environments (7, 24), soil protists including phago-
trophs are much less studied than their aquatic counterparts 
and this gap is increasing (26).

Advent of molecular approaches in soil protistology

The advent of molecular approaches has been revolutionizing 
microbial ecology (33, 50). The same is true for the ecology 
of soil protists a little behind the prokaryotic ecology (51). 
The comprehensive surveys by high-throughput sequencing 
(HTS) approaches have demonstrated the great diversity of 
protists in soil and illuminated that some of the previously 
unrecognized groups represent important components of soil 
microbial communities (7). Modification of the “universal” 
PCR primers of eukaryotes disclosed the importance of hidden 
groups by the previous approaches (47). Metatranscriptomic 

exploration also demonstrated the unexpected presence of 
typically marine and freshwater protists in soils (24). The 
HTS approaches enabled the surveys of soil protistan com-
munities in remote, harsh, hitherto unsurveyed environments 
where culture-dependent approaches were not easily applica-
ble (2, 15, 58). Publicly available metagenome data are less 
used for studying the diversity of soil microeukaryotes but 
can provide valuable information as they are free from the 
PCR biases and include the sequences of genes that are not 
targeted in amplicon-based approaches (34). The rhizosphere 
of plants is known to be a hot spot of soil protists (4, 5) and 
the phyllosphere may be another important habitat for protists 
in terrestrial ecosystems (52).

It becomes also evident that the geographical diversity of 
soil protists shows considerably different patterns from those 
of soil bacterial communities (7). The large-scale molecular 
data suggest that the protistan community patterns are highly 
consistent within habitat types and geographic regions and thus 
considered to reflect to their ecology in the environments (27).

In soil, protists mostly inhabit the water film and thus the 
soil water availability controls the protistan community in a 
global scale of geography with relation to the climatic condi-
tions (7). Soil moistening can selectively enhance the growth 
of protists (20). Oxygen should be another important chemical 
factor to affect the protistan community structure in soil in 
particular with high water content such as submerged rice 
field soil (47). The soil protistan community structure also 
responds to a wide range of oxygen tension (61). Anoxia and 
hypoxia are not necessarily constraints for the growth of 
protists as demonstrated in aquatic environments (36). The 
predominance of active heterolobosean amoeba under anoxic 
conditions was demonstrated by RNA-based molecular analysis 
(47). Soil pH, an important environmental factor to shape the 
soil bacterial community, is known to affect the emerging 
abundance of putatively parasitic protists (17).

Soil management is an important anthropogenic force to 
affect the protistan community development. The soil nutrient 
status controls the community of testate amoebae which are 
among the most important and abundant protists in acidic 
forest ecosystems (38). Soil management practices in agricul-
ture like fertilization and organic loading also alter the protistan 
community (47, 48). Fertilization can shape the structure of 
soil microbial food web (41, 48). Heat stress dramatically 
disturbs the ciliate community in the greenhouse soil (49).

With accumulation of sequence information in the public 
database, the community composition of specific groups of 
soil protists has been intensively studied using the specific 
primers for the target groups: e.g., Ciliophora (53, 59), 
Cercozoa (3, 41), Acanthamoeba (18), Kinetoplastea (41), 
and Apusomonads (62).
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A three-legged race with culture-dependent approaches

Protists remain difficult to discover and identify because 
of their small body sizes and patchy distributions, the low 
abundance of many species, and the difficulty in cultivation. 
Furthermore, the limited public interest in and knowledge of 
these organisms may hinder research progress in several 
protistological disciplines (29). It may sound like a paradox 
but is true that culture-independent molecular analyses of 
protists in environments highlight the importance of culture-
dependent studies of protists. Challenge of cultivating new 
and poorly-studied organisms and integration of such cultiva-
tion techniques with molecular and high-end microscopical 
techniques will provide enormous insights into fundamental 
questions in protistology (29). Indeed, even for Acanthamoeba, 
a very common group of soil protists including relatively 
many isolates so far, the molecular approach has clarified that 
the diversity is still far from the full understanding (21). A 
recent HTS analysis of Acanthamoeba for 150 grassland soil 
samples has revealed that the 37% of 273 OTUs identified have 
similarities less than 96% with the known sequences (18).

New ecological insights of soil phagotrophic protists

Phagotrophic protists play a crucial role as microbial grazers 
in soil ecosystems. Their selective grazing leads to the selection 
of the bacterial community structures in soil (44, 45, 54). 
Protistan grazing also alters the gene expression of prey bacteria, 
which affects the viability of trophozoites form of the grazer 
amoeba (60).

Recent studies have provided further insights of the 
prey-predator interactions. The trophic interaction would be 
highly associated with the coexisting bacterial diversity and 
function (10). The effect of protistan grazing on the virulence 
of opportunistic pathogenic bacteria is related with the coex-
isting bacteriophages (19). In addition, amoeba need some 
vitamins produced by coexisting heterotrophic bacteria to 
graze on cyanobacteria (43)

Furthermore, recent findings have demonstrated that the 
ecological functions of phagotrophic protists are more diverse 
than recognized before (25, 63). A newly isolated novel species 
of soil testate amoeba does not graze on bacteria but on algae 
and fungi (16). Testate amoeba even have a strategy of pack 
hunting on bacterivorous nematodes (23). Flagellates also 
attack nematodes (9). Protists can be parasites of soil Metazoa 
(22) and also hosts of novel bacteria and archaea (30–32, 35, 
66). Stable isotope probing of microorganisms in detritusphere 
demonstrated the significant role of trophic interaction and 
succession of microorganisms where protists are involved as 
bacterivores, fungivores, and even saprotrophs. (37, 46).

These findings have renewed the conventional concept of 
the soil microbial food web and indicated that the soil microbial 
food web is much more complicate than previously recognized. 
Further investigation is needed to understand the functional 
roles of protists in soil ecosystems.

Sitting on a gold mine

Molecular approaches have opened the gate of a new era in 
soil protistology. The results should be, however, interpreted 

with cautions of the limitation and drawbacks embraced in 
the techniques. Technical issues in molecular analyses of soil 
protists remain to be solved (56, 57). There are partly incom-
patible databases present (17). The HTS does not always give 
us a true picture of protistan community (22). The interna-
tional initiative to build a universal taxonomic framework for 
eukaryotes has launched to bridge the protist-omics age to the 
fragile, centuries-old body of classical knowledge (8). The 
similar activity for ciliates has also just started (64).

New molecular techniques are gradually available in proti-
stology. Single cell-based genomics (40, 59) and transcrip-
tomics (42) were applied to different types of single cellular 
eukaryotes including protists. Genome editing by CRISR/
Cas9 should be frequently used for the study of the protistan 
physiology and biochemistry (39).

The International Society of Soil Protistologists has recently 
proposed common questions to be answered after the extensive 
survey (26), which clearly states how little we know about 
soil protists—that means how many scientific treasures are 
buried under our feet. Folks, it is time to go hunting with the 
new map, compass, and shovel!
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