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ABSTRACT: Drought is a prime stress, drastically affecting plant
growth, development, and yield. Plants have evolved various
physiological, molecular, and biochemical mechanisms to cope
with drought. Investigating specific biochemical pathways related
to drought tolerance mechanisms of plants through biotechnology
approaches is one of the quickest and most effective strategies for
enhancing crop production. Among them, microRNAs (miRNAs)
are the principal post-transcriptional regulators of gene expression
in plants during plant growth under biotic and abiotic stresses. In
this study, five different chickpea genotypes (Iṅci, Hasan bey, Arda,
Seçkin, and Diyar 95) were grown under normal and drought
stress. We recorded the expression levels of microRNAs in these
genotypes and found differential expression (miRNA396, miR408,
miRNA414, miRNA528, and miRNA1533) under contrasting conditions. Results revealed that miRNA414 and miRNA528
considerably increased in all genotypes under drought stress, and expression levels of miRNA418, miRNA1533, and miRNA396
(except for the Seçkin genotype) were found to be higher under the watered conditions. These genotypes were also investigated for
heavy metal, phenolic acid, protein, and nitrogen concentrations under normal and drought stress conditions. The Arda genotype
showed a significant increase in nitrogen (5.46%) and protein contents (28.3%), while protein contents were decreased in the Hasan
bey and Seçkin genotypes subjected to drought stress. In the case of metals, iron was the most abundant element in all genotypes
(Iṅci = 15.4 ppm, Hasan bey = 29.6 ppm, Sec ̧kin = 37.8 ppm, Arda = 26.3 ppm, and Diyar 95 = 40.8 ppm) under normal conditions.
Interestingly, these results were related to miRNA expression in the chickpea genotypes and hint at the regulation of multiple
pathways under drought conditions. Overall, the present study will help us to understand the miRNA-mediated regulation of various
pathways in chickpea genotypes.

■ INTRODUCTION
Drought, salt, and high temperatures are the main abiotic
stresses limiting crop growth and development.1−5 In the 21st
century, agricultural lands and overall productivity are
decreasing due to changes in the global ecosystem balance
and climatic conditions. Drought is one of the major abiotic
factors affecting agricultural production efficiency worldwide,
including in Turkey.8−10 Drought stress affects the physio-
logical, biochemical, and molecular systems that allow plants to
respond to micro/macroenvironmental changes at the cellular
level. The loss of turgor, restriction of leaf water potential,
stomatal closure, and reduced cell growth and development are
crucial characteristics of drought stress.6,7 Drought has harmful
impacts on plants’ physiological and biochemical processes,
such as transpiration, photosynthesis, carbohydrate production,
ion uptake, transport, and nutrient metabolism, leading to a
reduction in yield.11,12

Plants cope with drought stress through an osmotic
adjustment mechanism. In response to a decrease in the
water potential of the cellular environment, the osmotic
arrangement involves the active accumulation of organic and
inorganic compatible solutes known as osmolytes or osmotic
preservatives in the cell.13 These include producing and
accumulating several metabolites involved in primary and
secondary metabolism, such as amino acids, sugars, organic
acids, and flavonoids.14 Plant primary metabolites are
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compounds that are necessary for reproduction, growth, and
development. Secondary metabolites are organic products that
aid the plant with protection, defense, reproduction, and
adaptation to these adverse environments.15 Flavonoids and
phenolic compounds play a critical role in the defense against
drought stress.16,17 In crops, drought stress and its interaction
with growth and photosynthesis are associated with changes in
nitrogen (N) and protein status.18,19 Phenolic compounds are
known to be produced in higher amounts under stress
conditions as these play a significant role in the growth and
development of plants.20 During their growth and develop-
ment, plants absorb essential microelements such as copper
(Cu), zinc (Zn), and manganese (Mn), as well as some
nonessential metal elements like cadmium (Cd), lead (Pb),
and mercury (Hg).21,22

Plants utilize a variety of physiological and molecular
mechanisms to cope with drought stress.23 In this regard,
microRNA (miRNA) is the versatile regulator of gene
expression in plants and animals, and the genes associated
with growth and stress in plants control expression levels.24

Production of miRNAs and their growth and signaling as
standard endogenous gene regulators in plant genomes play a
crucial role in growth and stress response.25,26 Several studies
have revealed that miRNAs govern various cellular, bio-
chemical, and molecular pathways under different abiotic
stresses, including drought stress in crop plants.27−32 More-
over, 224 conserved and 60 novel miRNAs in chickpeas have
been discovered under drought and salt stress.33

The present study hypothesized that exploring and under-
standing biochemical pathways in different chickpea genotypes
under drought stress using biotechnological tools could be the
quickest and most reliable strategy to under-regulate
biochemical mechanisms and enhance crop production under
drought stress. Based on this hypothesis, the present study
compared drought stress tolerance of five chickpea genotypes
depending on the expression levels of miRNAs and their effect
on heavy metals, phenolic acid, protein, and nitrogen
concentrations under normal and drought stress conditions.

■ RESULTS
Impact of Water Stress on Nitrogen Contents. Under

water (W) conditions, the nitrogen content of the Arda
genotype was drastically reduced. Similarly, in drought (D)
conditions, the amount decreased in the Iṅci and Diyar 95
genotypes. However, the nitrogen fluctuation detected in the
genotypes exposed to drought stress was not statistically
significant (Figure 1).

Impact of Water Stress on the Total Protein Content.
The protein content in all of the genotypes exposed to drought
stress and well-watered conditions did not show any statistical
significance. The present study therefore established that there
was no effect on protein levels concerning five chickpea
genotypes subjected to a drought stress regime (Figure 2).

Impact of Water Stress on Phenolic Compounds.
When the drought was applied, gallic acid concentrations were
decreased in the Iṅci, Seçkin, and Diyar 95 genotypes; thus,
decline was severe in the Iṅci genotype. Gallic acid
concentrations increased in the Hasan bey and Arda
genotypes. Compared to nonstressed plants, this increased
dramatically in the Arda genotype. When gallic and
chlorogenic acid concentrations were compared, both
decreased in Iṅci and Sec ̧kin. However, the amount of gallic
acid increased in Hasan Bey and Arda genotypes under
drought stress. In addition, the gallic acid amount decreased
while the chlorogenic acid amount increased in the Diyar 95
genotype under drought stress (Figure 3). In Iṅci, Hasan bey,

Sec ̧kin, and Diyar 95 genotypes, the amount of 4-
hydroxybenzoic acid was increased under drought stress.
Hence, the amount of 4-hydroxybenzoic in the Arda genotype
decreased significantly under drought stress (Figure 3). On
exposure to drought stress, the caffeic acid concentration
increased in the Arda and Seçkin genotypes, whereas its
amount decreased in the Diyar 95 and Hasan bey genotypes.
As a result of the statistical analysis, it was observed that the
amount of caffeic acid in all genotypes was significant at the
0.05 level (Figure 3).
Similarly, the vanillic acid concentration increased in Iṅci

and Seçkin genotypes but decreased in Arda and Diyar 95
under drought stress. However, the amount of vanillic acid in

Figure 1. Total nitrogen concentration in the seeds of chickpea
genotypes exposed to drought stress (W: watered, D: drought).

Figure 2. Total protein concentration in chickpea genotypes exposed
to drought stress (W: watered, D: drought).

Figure 3. Effect of drought stress on phenolic compound contents in
chickpea genotypes, where W means watered and D means drought.
The columns denoted by different letters indicate significant
differences according to the Tukey test at p ≤ 0.05 (n = 3).
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all genotypes except Diyar 95 and Arda was not significantly
different (p ≤ 0.05). trans-Ferulic acid concentrations
decreased in Iṅci, Hasan bey, Arda, and Diyar 95 genotypes,
and a relative increase was noticed in the Iṅci genotype under
drought stress. However, differential behavior of all genotypes
for trans-ferulic acid was observed except in Iṅci and Seçkin,
which did not show significant differences and performed alike
(Figure 3).
Impact of Water Stress on the Heavy Metal Content.

A decrease in Cu, Fe, Zn, and Mn concentrations was noticed
in all genotypes except Arda. Likewise, no change in Ni
contents was observed in the Iṅci genotype as compared to
other tested genotypes exposed to drought stress, but their
amounts increased under watered conditions. The profiles
exhibited by Mo and Ni metals were quite similar. While the
amount of Mo increased in the Iṅci genotype under drought
stress, it decreased in the Hasan bey, Seçkin, and Diyar 95
genotypes. However, in the Arda, Hasan bey, and Diyar 95
genotypes, the amount of Mo was not statistically significant.

Except for the Iṅci genotype, the amount of T1 metal increased
in other genotypes under drought stress, while the amount of
Co metal decreased. However, no statistical significance was
found in terms of T1 metal for these genotype-specific
increases and declines. When the V and Sn amounts were
analyzed, it was found that the amount of both metals
decreased in Iṅci, Seçkin, and Diyar 95 while increased in
Hasan bey under drought stress. Under water-deficit
conditions, the amounts of Pb and Cd metals decreased in
all genotypes except Diyar 95 (Figure 4).
Impact of Water Stress on Different miRNA Ex-

pressions. Statistical analysis showed that the expression level
of miRNA396 significantly decreased in all genotypes except
for Seçkin under drought stress. The highest increase in
miRNA 396 was observed for Seçkin under drought stress,
while the lowest was detected in the Iṅci genotype under the
same condition (Figure 5).
It is observed that the expression of miRNA408 decreased in

all genotypes except for Diyar 95, which was exposed to

Figure 4. Effect of drought stress application on heavy metal contents in chickpea genotypes (W: watered, D: drought). The columns denoted by
different letters indicate significant differences according to the Tukey test at the p ≤ 0.05 level (n = 3).
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drought stress. Results showed that the increase in miRNA 408
expression was statistically significant in the Diyar 95 genotype.
Considering drought stress and irrigated conditions, except for
Diyar 95, when other genotypes were compared statistically
within and between each other, it was seen that the miRNA408
expression level obtained was significant in all cases (Figure 6).

The expression level of miRNA414 was relatively increased
in all five chickpea genotypes exposed to drought. In particular,
for Iṅci, Hasan bey, Seçkin, Arda, and Diyar 95, the expression
level of miRNA was statistically significant. At the same time,
an increase in miRNA expression was primarily seen in the
Diyar 95, while the minimum increase was witnessed in the
Sec ̧kin genotype (Figure 7). To obtain these miRNA
expression data, genotypes were compared within and between
each other.

Four genotypes (Iṅci, Seçkin, Arda, and Diyar 95) of
chickpeas exposed to drought stress were found to have higher
expression of miRNA528. In addition, the increased amount of
miRNA528 was highest in the Iṅci genotype. However, the
miRNA expression level in the Arda genotype was not
statistically significant (Figure 8).

Five chickpea genotypes were compared within and between
each other in the statistical analysis to establish the
miRNA1533 expression level. As a result, the expression data
obtained were significant at the 0.05 level in all cases. The
expression level of miRNA1533 was observed to decrease in
five chickpea genotypes exposed to drought stress at a
significance of 0.05 (Figure 9).

The miRNA396, miRNA408, and miRNA1533 expression
increased in chickpeas treated with full irrigation. At the same
time, Fe, Ni (except for the Iṅci genotype), Cu, and Mn uptake
increased in these genotypes. Changes in miRNA expression
levels are due to drought-induced miRNA−metal element
relationships and are found to be consistent at transcript levels.
The expression levels of miRNA414 and miRNA528 did not
increase in chickpea genotypes treated with drought.

■ DISCUSSION
Plants use a variety of strategies to change physiological and
molecular mechanisms in response to drought.33−35 Numerous
studies have demonstrated that regulating nitrogen (N)
metabolism is closely related to drought stress in plants.36

Therefore, optimizing the amount of nitrogen can be a crucial
determinant in screening chickpea genotypes under drought
stress. The physiological status of chickpeas is dependent on

Figure 5. Total miRNA396 expression levels in chickpea genotypes
with drought stress (W: watered, D: drought). The columns denoted
by different letters indicate significant differences according to the
Tukey test at p ≤ 0.05 (n = 3).

Figure 6. Total miRNA408 expression levels in chickpea genotypes
with drought stress (W: watered, D: drought). The columns denoted
by different letters indicate significant differences according to the
Tukey test at p ≤ 0.05 (n = 3).

Figure 7. Total miRNA414 expression levels in chickpea genotypes
with drought stress (W: watered, D: drought). The columns denoted
by different letters indicate significant differences according to the
Tukey test at p ≤ 0.05 (n = 3).

Figure 8. Total miRNA528 expression levels in chickpea genotypes
with drought stress (W: watered, D: drought). The columns denoted
by different letters indicate significant differences according to the
Tukey test at p ≤ 0.05 (n = 3).

Figure 9. Total miRNA1533 expression levels in chickpea genotypes
with drought stress (W: watered, D: drought). The columns denoted
by different letters indicate significant differences according to the
Tukey test at p ≤ 0.05 (n = 3).
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nitrogen fixation and the photosynthetic capacity. In this
situation, the whole nitrogen fixation system plays a critical
role in regulating the free oxygen concentration inside
nodules.37 The total nitrogen content of genotypes in this
study showed different but statistically insignificant responses
to drought stress. The increased N content in plants leads to
an increase in protein production, while these molecules retain
the capacity for osmosis under water stress. The uniformity of
total N and total protein contents with each other confirms
this result. Some studies show that drought reduces nitro-
genase activity; this could be owing to a reduction in the
availability of photosynthetic products to nodules for symbiotic
nitrogen fixation as well as other causes. This condition is
critical for other legumes, such as the chickpea plant, as it
results in less N for protein biosynthesis and decreased grain
output.11,38 Previous studies showed that some proteins
increased during abiotic stress conditions such as drought,
salinity, heat, and cold.39−41 This indicates that protein is
essential in the plant response to drought stress. However,
there have been different outcomes of protein accumulation in
plants under stress conditions, and the increased expression of
these proteins contributes to plant stress management.42

In this study, a decrease in the protein concentration was
recorded in plants subjected to drought stress. Increasing the
total protein content as osmotic defenders is critical for plant
osmoregulation under water stress circumstances.43 As a result,
any increase in the total protein content aids in combating the
damaging effects of drought stress. It is well-recognized that a
lack of water impacts various biochemical and physiological
processes ranging from photosynthesis to protein synthesis.44

Furthermore, the protein content may decrease as a result of
proteolysis due to the harmful effects of ROS.45

In the present study, the amounts of phenolic compounds in
each genotype varied due to drought stress, which is in
accordance with previous studies that reported that plants
under stress produce more phenolic compounds (phenolic
acids and flavonoids).43,46 The commonly held view that
phenolic compounds rise in water stress is frequently incorrect,
as there may be no drop or change in the phenolic compound
concentration when exposed to water stress.47 Plant phenolic
compounds respond to drought stress in various ways
depending on factors such as the exposure time and volume
of water given to the plant. An increased total content of
flavonoids, phenolics, and multiple polyphenolics and
increased radical scavenging activity were observed in plants
under drought stress.18,47 Caffeic acid levels, for example, do
not follow any pattern. The decrease in the protein content can
be attributed to a reduction in protein synthesis or an
increased rate of protein degradation.14,38 These findings
indicate that heavy metal levels are essential in shielding plants
from drought stress (Figure 4).
The miRNA396 is a conserved miRNA that might be found

in both monocots and dicots. It regulates genes post-
transcriptionally by inhibiting its targets, which are growth
factors (GRFs). The role of miR396 in plant growth and
development has been well-characterized in various crops.48

Under salt and drought stress, the expression of tomato
miR396a (Sp-miR396) was found to be upregulated.49,50 In
Arabidopsis, miR396 is sensitive to salinity and drought.51

These TFs also regulate other TFs or their direct targets, such
as other regulatory and functional proteins. It indicates that
miR396 serves as an essential key regulator of stress-sensitive
genes during the plant’s abiotic stress response52 and is

associated with aluminum (Al) metal.53 It was reported that
the expression level of miRNA396 decreased in rice when
exposed to water scarcity,54 which strengthens the findings of
the present study and suggests that miRNA396 plays a critical
role in inducing drought tolerance in plants.
It has been reported that environmental stresses regulate the

expression of miR408, i.e., miR408 expression is induced in
response to dehydration, mechanical stress, and ROS.55−57 It
has been reported that the miR408 expression level decreased
in Prunus persica and Oryza sativa upon drought stress.57,58 In
the present study, drought stress has played an important role
in drought resistance by reducing miRNA408 expression in
chickpea genotypes. The study by Hajyzadeh et al.59 found
that overexpression of miRNA408 was achieved in Cicer
arietinum L. under a drought resistance mechanism. The
miR414 is thought to have 145 targets, mainly in protein or
sugar transport. Drought causes an upregulation of sucrose
transporters and group 3 late-embryogenesis abundant (LEA)
proteins.60−62 Sugar transporters have been recognized as
crucial targets for their regulatory role in plant distribution and
allocation of carbon resources.61 LEA proteins are assumed to
be involved in drought resistance because they accumulate in
plants during drought stress.62

The miR528 was discovered to be differentially regulated by
various abiotic stressors among the differentially expressed
miRNAs identified.63,64 It has been reported that the
expression level of OSA-miR528 in rice is upregulated,
especially in roots, improving drought resistance.65 Bakhshi
et al.66 investigated miRNA drought response in rice roots, and
miRNA528 participated in drought stress and drought
signaling. Studies have reported that drought stress upregulates
miR528 expression in sugar cane and Brachypodium sp.66,67

and reported that the expression level of miRNA528 was
increased. Our research was corroborated by Bertolini et al.68

who found that miRNA528 targets Cu2+ binding proteins
(CBP), putative IAR1 proteins, and l-ascorbate oxidase.
Likewise, miRNA528 regulates metal ion homeostasis and
controls cellular free auxin levels and ascorbate metabolism
through these targets.69,70

The miRNA1533 was the first to be identified in cassava
with a certain number of miRNA members. The predicted
targets of miR1533 indicated that this could be associated with
the biosynthesis of plant hormones and starch metabolism in
potatoes and wheat.71,72 Much evidence has shown that
miRNAs play a crucial role in the signal transduction of plant
hormones.73 WRKY transcription factors play an essential role
in plant processes such as germination, aging, and responses to
abiotic stresses such as drought and cold.74 In Chinese
cabbage, miR1533 can target WRKY proteins.73 So, drought
tolerance can be developed in chickpea genotypes using the
target proteins determined in their studies using tomato and
Chinese cabbage as plant materials. These transcription factors
come from various families including NAC, WRKY, and
transcription factors with the homeobox domain.
When we look at the protein−metal relationship, this

situation can directly affect the activity of proteins by using
elements such as Cu and Fe as cofactors. The miRNA−metal
interactions also significantly affect the post-transcriptional
regulation of proteins requiring cofactors. Changes in miRNA
expression levels based on watered conditions and drought
may have induced drought resistance in chickpea genotypes.
Finally, the metal−gene interaction is vital in drought stress in
plants as metal ions affect the miRNA expression levels of the
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plant cell, influencing the plant’s defense against stress with the
miRNA−arget gene regulatory network.

■ CONCLUSIONS
Drought stress negatively affected chickpea plants in terms of
their growth, biomass, nutrient absorption, and photosynthetic
pigment levels, which affected their physiological, biochemical,
and molecular processes. Drought stress reduced the amounts
of Fe and Mn metals and miRNA1533 and miRNA408
expression levels as compared to those with optimal water
supply in plants; thus, the miRNA414 and miRNA528
expression levels were decreased in all genotypes exposed to
irrigation. The expression profile obtained from this study
revealed that miRNA 528−1533−414−408 can serve as a
supportive mark for drought stress studies in Cicer. Under well-
watered conditions, chlorogenic acid levels increased in all
genotypes except the Diyar 95 genotype, and a similar trend
was found for the N content in Iṅci and Diyar 95. In contrast,
the total protein amount increased under drought stress in all
genotypes except for the Hasan bey and Seçkin genotypes.
This study provides insight into molecular agricultural data for
future chickpea breeding and sustainable farming projects. In
the future, it is necessary to support the efficiency values with
several studies to authenticate the obtained results.

■ MATERIALS AND METHODS
Plant Materials, Growth, and Stress Conditions. In this

study, seeds of Turkey’s most commonly used five chickpea
genotypes (Iṅci, Hasan bey, Seçkin, Arda, and Diyar 95) were
obtained from the Eastern Mediterranean Agricultural
Research Institute, Turkey. For planting in 2016−2017, 30 ×
50 cm pots were washed and sterilized using standard
methods. The seeds of different genotypes were sterilized by
washing three times with deionized water after being treated
with sodium hypochlorite (5%) for 10 min. The genotypes’
seeds were planted in 30 × 50 cm plastic pots with 1 kg of soil
and 3 kg of peat mix under 16 h light, 8 h dark, and 26 °C
conditions. Later, until the germinated seeds developed 6−7
leaves, all genotypes were irrigated at field capacity. The field
capacity was determined using a pressure table to determine
the percentage of moisture retained in the soil at a 1/3 bar
pressure. Then, irrigation was halted for the group subjected to
drought treatment.59 The irrigated group was watered at field
capacity for 2 weeks until stress symptoms appeared in the
control group (nonirrigated). In addition, leaf samples were
collected in triplicate from control and drought-stressed plants
and stored in a deep freezer to analyze gene expression,
phenolic acid, protein, and heavy metals.
RNA Isolation, cDNA Synthesis, and RT-PCR. A

mirVana miRNA isolation kit (Ambion, CA, USA) enriched
by short RNAs was utilized to isolate RNA from leaf tissues for
miRNA study.75 The quality and amount of isolated RNA were
determined by using a NanoDrop ND-2000c spectropho-
tometer from Thermo Fisher Scientific. The expression levels
of five distinct miRNAs (miR396, miR408, miR414, miR528,
and miR1533) in leaf tissues were evaluated using the qRT-
PCR. To isolate miRNAs in 0.2 mL sterile tubes, 1 μL of 50
pmol μL−1 oligo dT (20) primer, 1−5 μg of total RNA, and a
10 mM dNTP mixture were added with sterile distilled water
until the total volume reached 12 μL. The mixture was held at
65 °C for 5 min before being placed on ice. Following light
centrifugation, the following components were collected at the

bottom of the tube: 2 μL of 0.1 M DTT and 1 μL of RNase
inhibitor tube contents were softly mixed and steeped for 2
min at 42 °C, and 1 μL (200 units) of enzyme SuperScript III
reverse transcriptase was added. The reaction took 1.5 h at 50
°C and was discontinued after 15 min at 70 °C.76 The
universal reverse primer (5′-GTGCAGGGGTCCGAGGT-3′)
was used to detect expression. Specific primers were designed
for each miRNA as forward and stem loop primers. qRT-PCR
conditions were set as follows: 95 °C for 10 min followed by
50 cycles of 95 °C for 5 s, 56 °C for 10 s, and 72 °C for 30 s.
All PCR products were denatured at 95 °C and chilled at 65
°C. Reactions were repeated at least three times for robust
statistical analysis.77

Solvents and Reagents. Gallic acid, chlorogenic acid, 4-
hydroxybenzoic acid, caffeic acid, vanillic acid, trans-ferulic
acid, methanol, cadmium (Cd), chromium (Cr), cobalt (Co),
copper (Cu), iron (Fe), manganese (Mn), lead (Pb),
molybdenum (Mo), nickel (Ni), thallium (TI), tin (Sn),
vanadium (V), zinc (Zn), nitrogen, nitric acid, dNTP, MgCl2,
PCR buffer, primers, SuperScript III reverse transcriptase,
SYBR green, Taq-polymerase, triazole, ethyl alcohol, propanol-
2, oligo dT, methanol, RNase out, and DTT were used.
Phenolic Acid Analyses. To determine the profiles of six

phenolic acids (gallic acid, chlorogenic acid, 4-hydroxybenzoic
acid, caffeic acid, anillic acid, and trans-ferulic acid) in five
chickpea genotypes, the following methods were followed:
Dried leaf tissues were first crushed into flour in a mill. Then,
2.5 g was placed in a falcon tube with 50 mL of a 25% (75:25
H2O:CH3OH) methanol solvent. The samples were centri-
fuged at 6000 rpm for 5 min after shaking at 200 rpm for 25
min at 25 °C. The supernatant part of the centrifuged sample
was taken into vials with the help of a 0.25 μm filter, and the
prepared samples were transferred to a Thermo Scientific
UltiMate 3000 HPLC (high-pressure liquid chromatography)
device for phenolic acid analysis. The components were DGU-
20A5 degassing units, an SIL-20A HT autosampler, an SPD-
M20A diode array detector, and a CTO-20A column oven.
Chromatography was accomplished using wavelengths ranging
from 280 to 320 nm and a C18 column with a separation of
250 nm, 4.65 μm. The injection volume was set to 20 μL, while
the flow rate and temperature were set at 0.75 mL min−1 and
28 °C.78
Nitrogen and Protein Determination with an

Elemental Analysis Approach. A Thermo Scientific Flash
2000 N protein analyzer evaluated the total nitrogen and
protein concentrations. Approximately 5 g of the mature seed
samples were taken and dried at 100 °C, and after reaching a
constant weight, they were turned into flour with the help of a
glass mortar, weighed between 2 and 4 mg, and packaged into
tin capsules. Following placement of the packaged samples in
the device’s automatic sampling unit, the samples were
delivered to the device’s combustion reactor. The samples
were then entirely burned in the colon furnace, and the gas
released was shipped to a second reactor packed with copper
rods filled with helium gas. The amount of nitrogen was
measured in the thermal conductivity detector with the help of
the gas generated as a result of this combustion. The
combustion temperature was adjusted to 950 °C, its detector
temperature was 65 °C, the carrier gas (He) flow rate was 100
mL min−1, and the reference flow rate was 100 mL min−1.79

Heavy Metal Analyses Using ICP-MS. To measure the
cadmium (Cd), cobalt (Co), copper (Cu), iron (Fe),
manganese (Mn), lead (Pb), molybdenum (Mo), nickel
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(Ni), thallium (TI), tin (Sn), vanadium (V), and zinc (Zn)
heavy metals, the plant leaf tissues were ground in a mortar,
and about 5 g of samples was placed on crucibles and weighed.
The crucible was caught in the back flame for 3−4 min after
four drops of 65% (m/m) nitric acid were dropped on it. The
temperature was then raised by 50 °C every half-hour, starting
from 300 °C, which initiated the burning process in the ash
oven. Whenever the temperature hit 550 °C, it was held there
for 4 h. After cooling in the oven, the sample was treated with a
10 mL of 1 M nitric acid solution before filtering it using a
black tape filter paper. After the container was washed multiple
times with a 1 M nitric acid solution, the filters were collected
in a 25 mL measuring balloon, and the total volume was
completed with a 1 M nitric acid solution. The sample
solutions were deposited in lidded polyethylene containers and
analyzed by using an ICP-MS (inductively coupled plasma-
mass spectrometry, Thermo) apparatus. In the heavy metal
determination stage, standard solutions (0−100 mg/L) were
made separately and in a known amount for each element, and
calibration graphs were drawn for these standard solutions and
desired elements. The elements’ quantities were determined
using the calibration graphs, and the results were statistically
evaluated and interpreted.80

Statistical Data Analyses. The data obtained in the study
were subjected to a two-way analysis of variance at the factorial
level (5 × 2), and the statistical significance between the means
was calculated at 0.05 using the Tukey test. All analyses were
conducted by using SAS version 9.3.81
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