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Pyruvate dehydrogenase complex in 
cerebral ischemia‑reperfusion injury
Alexa Thibodeau1, Xiaokun Geng1,2,3, Lauren E Previch1, Yuchuan Ding1,2

Abstract:
Pyruvate dehydrogenase (PDH) complex is a mitochondrial matrix enzyme that serves a critical role in the 
conversion of anaerobic to aerobic cerebral energy. The regulatory complexity of PDH, coupled with its significant 
influence in brain metabolism, underscores its susceptibility to, and significance in, ischemia‑reperfusion injury. 
Here, we evaluate proposed mechanisms of PDH‑mediated neurodysfunction in stroke, including oxidative 
stress, altered regulatory enzymatic control, and loss of PDH activity. We also describe the neuroprotective 
influence of antioxidants, dichloroacetate, acetyl‑L‑carnitine, and combined therapy with ethanol and normobaric 
oxygen, explained in relation to PDH modulation. Our review highlights the significance of PDH impairment in 
stroke injury through an understanding of the mechanisms by which it is modulated, as well as an exploration of 
neuroprotective strategies available to limit its impairment.
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Introduction

In the United States, stroke is the leading 
cause of adult disability and the fourth 

leading cause of death.[1] Ischemic stroke, 
which accounts for approximately 80% 
of all stroke cases, is caused by occlusion 
of a major blood vessel in the brain and 
results in a lack of adequate blood flow 
to meet metabolic demand.[2] Given the 
brain’s heavy dependence on oxidative 
metabolic activity and its absence of alternate 
energy stores, the insufficient delivery of 
oxygen and glucose contributes to a state of 
metabolic disorder. The resultant oxidative 
stress promotes mitochondrial dysfunction, 
calcium accumulation, and reactive oxygen 
species (ROS) generation.[3,4] Impairment of 
mitochondrial enzymes can limit aerobic 
metabolism and adenosine triphosphate (ATP) 
generation, ultimately leading to a situation 
of energy failure and neuronal cell death.[5] 
Pyruvate dehydrogenase (PDH) complex is a 
mitochondrial enzyme with a known sensitivity 
to inactivation during stroke injury.[6,7] The 
effects of PDH impairment can be particularly 
devastating due to this enzyme’s critical 
role as the sole link between anaerobic and 
aerobic cerebral energy metabolism.[8] As 

such, PDH is an important target of not 
only ischemia-reperfusion injury but also 
therapeutic interventions aimed at restoring 
oxidative energy metabolism.

Pyruvate Dehydrogenase Complex: 
Structure, Regulation, and Function

Found exclusively in the mitochondrial matrix, 
PDH catalyzes the conversion of pyruvate 
to acetyl coenzyme A and, in turn, serves as 
the metabolic gateway between glycolysis 
and the tricarboxylic acid cycle. This reaction 
is critical for generating the reduced form of 
nicotinamide adenine dinucleotide (NADH), 
the reducing power of which is utilized by the 
mitochondrial electron transport chain to drive 
oxidative phosphorylation.[8] PDH comprises 
numerous subunits of three enzymes: Pyruvate 
dehydrogenase (E1), dihydrolipoyl transacetylase 
(E2), and dihydrolipoyl dehydrogenase (E3). 
Activity of PDH is dependent on the presence of 
five associated coenzymes, namely, nicotinamide 
adenine dinucleotide (NAD+), thiamine 
pyrophosphate, lipoic acid (LA), coenzyme A, 
and flavin adenine dinucleotide.[9]

PDH’s critical role in controlling the flow of 
metabolites between two major pathways 
lends it  to t ight regulation by various 
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mechanisms. End-product inhibition by either acetyl 
coenzyme A or NADH is one of the modes of inactivating 
the complex.[10] Activity of PDH is also influenced 
by phosphorylation and dephosphorylation events 
catalyzed by pyruvate dehydrogenase kinase (PDK) and 
pyruvate dehydrogenase phosphatase (PDP), respectively. 
Site-specific phosphorylation of the E1α subunit of PDH 
results in the inhibition of the entire enzyme complex whereas 
dephosphorylation of E1α activates the complex.[11] Cellular 
levels of Ca2+, Mg2+, and ATP/adenosine diphosphate (ADP) 
act as additional modulators of PDH activity.[9]

Pyruvate Dehydrogenase Susceptibility in 
Ischemia‑reperfusion

PDH’s inherent complexity, strict cofactor requirements, 
and tight regulation make it the likely target for damage and 
subsequent downregulation during stroke injury.[9] Several 
ischemia-induced effects on cerebral energy metabolism 
implicate PDH impairment in stroke injury propagation. 
A loss of PDH activity following ischemic insult may 
explain why aerobic glucose metabolism decreases while 
oxidative metabolism of other fuels, including glutamate, 
γ-aminobutyric acid, and glutamine, increases.[12] The observed 
hyperoxidation of NAD(H) and electron transport chain 
components during reperfusion provides additional evidence 
implicating PDH impairment in ischemia-reperfusion 
injury.[9,13] The finding that impaired NADH production, 
as opposed to utilization, is responsible for compromised 
oxidative phosphorylation suggests that the complicating 
factor lies upstream of the electron transport chain as is the 
case for PDH.

Pyruvate Dehydrogenase in Oxidative Injury

The reduction in brain perfusion that occurs during 
ischemic stroke sets up an anoxic state, impairing oxidative 
phosphorylation and limiting production of essential cerebral 
metabolites. Diminished cerebral blood flow also leads to 
the overproduction of ROS due, in part, to an accumulation 
of ADP, and the disruption of ion homeostasis, namely, 
elevated levels of intracellular Ca2+ and Na+.[14] Oxidative 
stress and subsequent ROS generation are known to play 
an important role in pathogenesis of stroke by disruption of 
mitochondrial activity.[4] Furthermore, ROS have been shown 
to impair activity of PDH.[8,15,16] Studies have revealed that 
elevated ROS production with a corresponding decrease 
in levels of PDH activity and expression occurs during 
stroke.[17] Inactivation of PDH, which serves as a key 
moderator of oxidative phosphorylation, not only limits 
the normal production of ATP but also further increases 
the generation of ROS upon reperfusion. Such enhancement 
of ROS propagates oxidative damage to proteins, lipids, 
nucleic acids, and other cellular targets.[4] Thus, PDH 
downregulation potentiates metabolic stress and, in turn, 
exacerbates neuronal injury.[18] The neuroprotective influence 
of interventions that facilitate the removal of PDH from ROS 
inhibition may be understood by their ability to promote 
metabolic recovery through restoration of mitochondrial 
oxidative metabolism.

Mechanisms of Neurodysfunction in Relation to 
Pyruvate Dehydrogenase

Oxidative stress
The decrease in PDH activity observed during ischemic stroke 
may be attributable to one or several potential mechanisms of 
enzyme inactivation. Oxidative stress is widely acknowledged 
as one such mechanism responsible for the loss of PDH 
activity following reperfusion.[8,19] The mitochondrion is both 
a major source of ROS and a primary target of oxidative 
damage, with PDH being one of the principal mitochondrial 
constituents susceptible to inactivation.[8] Studies indicate that 
levels of the ROS superoxide (·O2−), hydroxyl radical (·OH), 
nitric oxide (·NO), and peroxynitrite (ONO2−) are enhanced 
during reperfusion of ischemic tissues.[20,21] The influence 
of these free radicals and oxidants on PDH activity was 
investigated by incubating PDH in the presence of a superoxide 
radical-generating system (xanthine oxidase/hypoxanthine). 
This ROS exposure resulted in a concentration-dependent 
decrease in PDH enzymatic activity. In addition, this 
inactivation was partially disrupted by the antioxidant 
superoxide dismutase and almost completely prevented 
by catalase exposure.[16] Similarly, hydroxyl radical and 
peroxynitrite were each found to induce an inhibitory effect 
on purified porcine PDH activity.[8] Peroxynitrite, a reactive 
nitrogen species (RNS) that is formed by the reaction of 
superoxide with nitric oxide, is known to oxidatively modify 
proteins by S-nitrosylation and tyrosine nitration.[22,23] Elevation 
of 3-nitrotyrosine, an established biomarker of “nitroxidative 
stress,” is associated with a reduction in PDH activity in the 
hippocampus of animals subjected to a hyperoxic resuscitation 
protocol.[8] The molecular mechanism by which peroxynitrite 
and other oxidative species inhibit PDH enzymatic activity 
has been explored by investigating the exposure of rat brain to 
1,3-dinitrobenzene (1,3-DNB), an inducer of oxidative stress. 
Evidence shows that 1,3-DNB-induced inhibition of PDH 
is linked to a reduction in LA immunoreactivity, coenzyme 
modification as a potential mechanism of redox‑based PDH 
dysfunction. Moreover, alpha-ketoglutarate dehydrogenase, 
which is structurally very similar to PDH, is not as sensitive to 
1,3-DNB, further implicating PDH as the molecular target lying 
upstream of the hyperoxidized electron transport chain during 
reperfusion.[24] An alternative mechanism of RNS-mediated 
modulation of PDH activity that has been proposed is the 
disruption of enzyme complex dephosphorylation, thereby 
maintaining PDH in an inactive state. However, in vitro 
models demonstrate that peroxynitrite targets purified, 
dephosphorylated PDH following exposure to reperfusion, 
suggesting that the enzyme in its active, rather than inactive, 
state is subjected to modification.[8]

Altered regulatory control by pyruvate dehydrogenase kinase 
and pyruvate dehydrogenase phosphatase
Altered regulatory control of PDH via the phosphorylating and 
dephosphorylating enzymes PDK and PDP, respectively, has 
also been explored as a potential source of PDH impairment 
during ischemia-reperfusion injury. So far, four isozymes 
of PDK (PDK1-4) and two isozymes of PDP (PDP1-2) have 
been identified, with PDK2 and PDP1 found to be the most 
abundantly expressed in rat brain.[10,25] A change in the relative 
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rates of these PDH‑specific kinases and phosphatases has been 
examined as a means of reducing the proportion of active 
complex during reperfusion.

Impairment of PDP is one such mechanism that has been 
proposed in the reduction of PDH activity.[8] Since PDP is 
responsible for activating PDH by removal of a phosphate 
group, it is reasonable to assume that preventing this 
dephosphorylation from occurring would have an inhibitory 
effect on enzymatic activity. Preclinical studies evaluating the 
mechanism of traumatic brain injury (TBI) identified increased 
expression of PDK2 and decreased expression of PDP1. The 
results suggest that changes in these regulatory protein 
levels may maintain PDH in a hyperphosphorylated state, 
contributing to the impaired oxidative glucose metabolism 
characteristic of both TBI and stroke.[25,26] In addition, 
speculation of PDP deficiency as the cause behind certain 
cases of chronic congenital lactic acidosis has prompted 
investigation into whether PDP loss may explain the similar 
accumulation of lactic acid that occurs during the ischemic 
cascade.[27] To experimentally examine the possibility of 
altered PDP expression as a mechanism underlying brain 
injury, samples collected from animals exposed to ischemia 
followed by hyperoxic reperfusion were prepared in the 
presence of exogenous PDP plus its required divalent metal 
ions Mg2+ and Ca2+, ensuring complete dephosphorylation and, 
thus, maximal PDH activation. The lack of significant difference 
in PDH activity when compared to samples prepared without 
supplementation suggests that PDP impairment is not a direct 
cause of the reduced PDH activity observed in reperfusion 
injury.[8]

Alternatively, upregulation of PDK, which enhances PDH 
phosphorylation and subsequent inactivation, could account 
for the reduced PDH activity observed in ischemic injury.[8] 
The ATP-dependent PDK isozymes are bound to PDH’s E2 
domain and phosphorylate any of three specific serine residues 
of the E1α subunit to inactive the enzyme complex. The kinase 
reaction rate is influenced by relative amounts of a number of 
mitochondrial metabolites.[10] Elevated ratios of ATP/ADP, 
NADH/NAD+, and acetyl CoA/CoA, as well as reduced 
pyruvate concentration, increase the rate of phosphorylation 
by PDK.[28] In vitro evidence has also identified a specific 
interaction between PDK2 and the delta isoform of the 
signal transducer protein kinase C (δPKC), which results in 
activation of PDK2. Redox-dependent translocation of δPKC 
to the mitochondria upon reperfusion has been found to be 
associated with PDK2 activation and, in turn, PDH inhibition. 
Furthermore, disruption of this process by infusion of the 
δPKC inhibitor, Tat-δV1-1, prevented δPKC translocation and 
resulted in almost complete regain of PDH activity.[29] Increased 
expression of hypoxia-inducible factor 1-alpha (HIF1α) may 
be another mode of PDK2-mediated inhibition of PDH. Using 
PDH deficient fibroblasts, which are similar to hypoxic cells 
in that they exhibit increased glycolysis, lactate accumulation, 
and diminished oxidative phosphorylation, researchers have 
demonstrated a 1.5-fold enhancement of HIF1α expression.[30] 
HIF1α is known to induce transcription of an array of genes 
related to glucose metabolism, including that for PDK.[31] 
Thus, enhanced HIF1α expression may contribute to the 
metabolic dysfunction observed in ischemic stroke injury by 
PDK-mediated modulation of PDH.

Loss of pyruvate dehydrogenase activity
Other studies propose that the reperfusion-induced reduction 
in PDH activity is attributable to a loss of total PDH activity, 
rather than the modulation of reversible phosphorylation 
events.[6,7,32-34] Mitochondria extracted from the postischemic 
dorsolateral striatum and prepared under fixed phosphorylation 
conditions demonstrated significant losses in PDH activity 
when subjected to 3 h (29% decrease), 6 h (36% decrease), 
and 24 h (57% decrease) of recirculation. In comparison, no 
significant changes were measured in the activity of two other 
mitochondrial enzymes, alpha-ketoglutarate dehydrogenase 
and NADH-cytochrome c oxidoreductase.[32] Such PDH‑specific 
loss of total activity further emphasizes the critical role this 
enzyme complex plays in impaired energy metabolism 
following reperfusion.

Mechanisms of Neuroprotection in Relation to 
Pyruvate Dehydrogenase

Antioxidants
Given the critical role of PDH in cerebral energy metabolism 
and the notion that its reduced activity contributes to 
ischemic brain injury, interventions that prevent PDH 
inhibition or that compensate for its impairment have 
been explored as neuroprotective strategies. Based on data 
implicating oxidative stress as a cause of PDH inactivation, 
it is reasonable that antioxidants should provide a beneficial 
effect. Alpha‑LA has been identified as a potent metabolic 
antioxidant that may serve as an ideal treatment for ischemic 
injury involving free radical processes.[35-38] The influence of 
R-(+)-alpha-LA, the naturally occurring enantiomer of LA, 
on pyruvate metabolism has been documented in primary 
cultured hepatocytes isolated from 24 h fasted rats. The 
results showed enhanced pyruvate oxidation and decreased 
gluconeogenesis. Of note, these changes were associated with 
significant increases in the activation state of PDH, which 
may reflect a return of normal metabolic function conferred 
by antioxidant therapy.[39]

While exogenous antioxidants may improve mitochondrial 
resistance to oxidative stress, another promising approach 
utilizes pharmacologic stimulation of endogenous gene 
expression to protect against metabolic dysfunction.[40] The 
transcriptional activating factor Nrf2 regulates expression of 
many genes encoding mitochondrial antioxidant enzymes, as 
well as targets of oxidative stress.[41,42] Of note, Nrf2 has been 
found to exert control over key mediators of cellular energy 
metabolism, including pyruvate dehydrogenase lipoamide β 
and PDK. Stimulation of the Nrf2 pathway by sulforaphane, 
a molecule with known antioxidative effects that is obtained 
from cruciferous vegetables, has proven effective in reducing 
brain infarct volume and increasing expression of the 
stress-response protein, heme oxygenase-1, in a rat model of 
focal ischemic stroke.[43] These results, coupled with additional 
findings of reduced flux through the PDH pathway in Nrf2 
knockdown cells, suggest that PDH or its regulators may be 
of those proteins under Nrf2 influence.[44] The critical role 
that PDH plays in energy metabolism and its vulnerability to 
oxidative stress may explain the protective effect that genetic 
manipulation by Nrf2 pathway activation has upon cerebral 
ischemic injury.
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Combination therapy with ethanol and normobaric oxygen
Dose-dependent neuroprotection by ethanol (EtOH) has been 
observed in rat models of middle cerebral artery occlusion.[45,46] 
EtOH has been found to raise expression levels of PDH and 
PDP and decrease those of PDK. Other signs of improved 
oxidative metabolism, including reduced ROS levels, lower 
ADP/ATP ratios and fewer neurological deficits, accompanied 
these changes. When these same parameters were assessed in 
rats treated with EtOH + normobaric oxygen (NBO), it was 
found that combination therapy conferred a greater therapeutic 
effect than each agent alone.[17] EtOH’s ability to reduce energy 
demands and to inhibit glucose metabolism more likely 
accounts for the limited ROS generation detected in EtOH 
treatment groups.[47,48] Removal of PDH from ROS-mediated 
inhibition promotes oxidative metabolism and is, therefore, one 
of the mechanisms that have been proposed in EtOH-induced 
neuroprotection. Conversely, NBO has been utilized to 
counteract ischemia-induced hypoxic conditions. Although 
NBO has been reported to confer neuroprotective effects 
during ischemic events when administered in clinical settings, 
its limited time window for efficacy and minor therapeutic 
effect limit its potential for clinical application. However, 
when administered concomitantly, NBO enhances the effects 
of EtOH, evidenced by a greater attenuation of impaired PDH 
activity and protein expression, which may reflect further 
facilitation of aerobic metabolism.[49-54] While further studies 
are needed to characterize PDH modulation by EtOH and NBO 
at the molecular level, their role in stabilizing cerebral energy 
metabolism makes these agents promising neuroprotectants 
in ischemic stroke injury.

Dichloroacetate
Dichloroacetate (DCA), a pharmacologic agent that activates 
PDH by inhibiting PDK, has also revealed significant 
neuroprotective potential.[55-57] Administration of DCA has been 
shown to enhance regional lactate removal and limit the lactic 
acidosis associated with brain hypoperfusion and metabolic 
dysregulation.[58-61] In addition, a proton magnetic resonance 
spectroscopy study revealed that DCA delivered in high dose 
or within 2 days of ischemic stroke produced similar reductions 
in lactate levels.[62] Treatment with DCA appears to be most 
effective during reperfusion by enhancing the postischemic 
reactivation of PDH.[63-65] This effect on PDH activity has been 
demonstrated in rat and gerbil models of cerebral ischemia, 
which exhibited a reduction in lactate levels in addition to 
a restoration of ATP and phosphocreatine levels later on in 
reperfusion, but displayed no demonstrable effect during 
the ischemic phase.[57,66] These findings of reduced lactate 
production and increased oxidative energy metabolism by 
DCA administration further implicate PDH impairment in the 
delayed cerebral energy failure that occurs after ischemic insult. 
By enhancing activity of the rate-limiting enzyme that links 
pyruvate production with pyruvate oxidation, DCA promotes 
oxidative metabolic recovery. Despite early recognition of 
DCA’s selectivity and ease of delivery, clinical studies have 
raised concern regarding its potential toxicity.[67-69] This 
includes a randomized, controlled clinical trial evaluating the 
efficacy of 25 mg/kg/day DCA in patients with mitochondrial 
encephalopathy with lactic acidosis and stroke-like episodes 
that resulted in early termination due to associated peripheral 
nerve toxicity.[70]

Acetyl‑L‑carnitine
Acetyl-L-carnitine (ALCAR) is an endogenous metabolic 
intermediate which has been shown to be neuroprotective 
in cerebral ischemia models when administered at 
supraphysiologic doses.[71-74] Human and animal studies 
suggest that ALCAR’s neuroprotective effect is derived from its 
restoration of oxidative energy metabolism. Delivery of ALCAR 
acetyl groups to the tricarboxylic acid cycle is understood to 
improve aerobic energy metabolism by providing a fuel 
supply alternative to pyruvate, allowing for circumvention 
of the PDH pathway.[75] This hypothesis of metabolically 
mediated neuroprotection by ALCAR is supported by rat 
models of global cerebral ischemia. These models exhibit 
reductions in lactate and inorganic phosphate levels, along 
with elevations in levels of ATP and creatine-phosphate,[71] 
consistent with the metabolism of ALCAR acetyl units, 
and indicative of augmented oxidative cerebral energy 
production, and diminished anaerobic glycolysis and lactic 
acidosis. Another proposed mechanism of ALCAR-mediated 
neuroprotection is by relief of oxidative tissue injury.[76] This 
effect has been demonstrated in a canine cardiac arrest model 
by the substance’s ability to limit protein carbonyl formation, a 
marker of oxidative stress, in brain tissue during reperfusion.[77] 
PDH’s critical function in oxidative energy metabolism and its 
known susceptibility to inactivation by ROS support the role 
ALCAR may play in attenuating the mitochondrial dysfunction 
observed during ischemic stroke injury by either preventing 
PDH inhibition or compensating for its impairment.

Conclusion

The structural and regulatory complexity of PDH, coupled 
with its important role in aerobic cerebral energy metabolism, 
makes it a vulnerable and potentially destructive target in 
ischemia-reperfusion injury. PDH’s known reduction in 
activity upon reperfusion has encouraged exploration of 
the mechanisms behind its impairment and has led to the 
identification of oxidative stress and altered regulatory 
enzymatic control as the likely mediators. As discussed, 
such investigation has also elucidated the influence of PDH 
impairment upon metabolic and, consequently, neuronal 
dysfunction during stroke. This understanding has guided 
studies focused on evaluating the ability of various agents 
to protect against PDH impairment by means of PDH 
upregulation or via the impediment of PDH inhibition. Studies 
indicate that agents that are able to restore PDH activity are 
associated with improvements in oxidative energy metabolism 
and, therefore, may be an efficacious means of conferring 
neuroprotection.
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