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Abstract: Gait is a core motor function and is impaired in numerous neurological diseases, including
Parkinson’s disease (PD). Treatment changes in PD are frequently driven by gait assessments in
the clinic, commonly rated as part of the Movement Disorder Society (MDS) Unified PD Rating
Scale (UPDRS) assessment (item 3.10). We proposed and evaluated a novel approach for estimating
severity of gait impairment in Parkinson’s disease using a computer vision-based methodology.
The system we developed can be used to obtain an estimate for a rating to catch potential errors,
or to gain an initial rating in the absence of a trained clinician—for example, during remote home
assessments. Videos (n = 729) were collected as part of routine MDS-UPDRS gait assessments of
Parkinson’s patients, and a deep learning library was used to extract body key-point coordinates for
each frame. Data were recorded at five clinical sites using commercially available mobile phones or
tablets, and had an associated severity rating from a trained clinician. Six features were calculated
from time-series signals of the extracted key-points. These features characterized key aspects of
the movement including speed (step frequency, estimated using a novel Gamma-Poisson Bayesian
model), arm swing, postural control and smoothness (or roughness) of movement. An ordinal
random forest classification model (with one class for each of the possible ratings) was trained and
evaluated using 10-fold cross validation. Step frequency point estimates from the Bayesian model
were highly correlated with manually labelled step frequencies of 606 video clips showing patients
walking towards or away from the camera (Pearson’s r = 0.80, p < 0.001). Our classifier achieved
a balanced accuracy of 50% (chance = 25%). Estimated UPDRS ratings were within one of the
clinicians’ ratings in 95% of cases. There was a significant correlation between clinician labels and
model estimates (Spearman’s p = 0.52, p < 0.001). We show how the interpretability of the feature
values could be used by clinicians to support their decision-making and provide insight into the
model’s objective UPDRS rating estimation. The severity of gait impairment in Parkinson’s disease
can be estimated using a single patient video, recorded using a consumer mobile device and within
standard clinical settings; i.e., videos were recorded in various hospital hallways and offices rather
than gait laboratories. This approach can support clinicians during routine assessments by providing
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an objective rating (or second opinion), and has the potential to be used for remote home assessments,
which would allow for more frequent monitoring.

Keywords: Parkinson’s disease; gait; time series analysis; computer vision; pose estimation; inter-
pretable machine learning

1. Introduction
1.1. Parkinsonian Gait

Walking is critical to independent mobility, activities of daily living and quality of
life [1], and can be affected by a large number of factors including age, sex [2], height [3],
weight [4] and emotional state [5]. Gait is commonly impaired in numerous neurological
diseases [6], including Parkinson’s disease (PD) in which it is progressively impaired and
ultimately becomes a key source of disability [7].

Gait impairments in PD are complex and symptoms vary across individuals but
commonly include a reduction in velocity, shorter stride length, reduced arm swing,
involuntary limb posturing (dystonia) and a stooped posture [8]. As the disease progresses,
additional symptoms such as freezing of gait, dyskinesias and balance impairment become
more common [7].

In clinical practice, the assessment of PD is commonly performed based on the Move-
ment Disorder Society Unified PD Rating Scale (MDS-UPDRS, [9]), wherein gait is assessed
using a combination of patients’ verbal accounts of their daily living (items 2.12 [Walking
and Balance] and 2.13 [Freezing]) and rater evaluations (items 3.10 [Gait] and 3.11 [Freezing
of Gait]). For the rater assessment of gait (item 3.10), the patient is asked to walk away
from and towards the examiner who then estimates a severity score on a 5-point scale
between “normal” and “severely impaired” for this action (see Supplement for additional
details about the instructions). Although assessors are usually highly trained and the score
categories are made as clear as practicable, at least, to some extent, they are subjective,
and it is not uncommon for raters to diverge from one another by one point [10].

1.2. Technology

Technological advances have made it possible to obtain a rich characterisation of gait
by using specialised equipment and/or dedicated laboratories [11-13]. Previous studies
have relied on a variety of technologies, including gait walkways and wearable sensors such
as accelerometers or thythmograms, for objective assessments of gait in PD. Although they
allow for a detailed characterisation of gait, they are typically burdensome to both subjects
and assessors, requiring additional equipment, and adding complexity, time and cost to
the assessment [14-16], as well as often being impracticable in the home environment.

However, it is already common practice for clinicians to record video during gait
examinations using commercially available camera equipment. In combination with recent
advances in deep learning based markerless pose estimation [17-21], this allows for an
algorithmic system to objectively measure features of a patient’s gait from a video recording,
and then estimate an objective severity score. Such a system could be employed without
requiring additional equipment, cost, or inconvenience for examiners or patients.

1.3. Previous Work

A recent review of video gait analysis found the majority of research focused on marker
based pose estimation, noting that such systems can result in error due to inconsistent
marker placement, with only a small number of studies (3 of 30) using markerless pose
estimation [22].

Previous work has used markerless pose estimation for gait analysis [23], but only a
small portion of studies involved patient populations [22]. The existing studies including
PD patients had low sample sizes, meaning models were trained using many video clips of
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the same few patients, while the MDS-UPDRS ratings used as ground truth were made
by a single clinical assessor [24,25]. This means the models were trained to agree with a
single clinician, and could only learn about the small set of PD manifestations seen in a
few patients.

Studies focusing on classification of PD gait achieved good accuracy, but relied on
“black box” systems which are difficult to interpret [25]. Previous studies focusing on
interpretability of gait analysis systems used marker based motion capture systems [26,27],
and devices such as inertial measurement units [28]. However, to our knowledge, no
study has focused on interpretability of systems that utilise markerless pose estimation for
classification of PD gait.

1.4. Our Approach

A robust system for quantifying Parkinsonian gait requires a dataset consisting of
many patients, in order to learn the large number of ways in which the condition can
manifest, with clinical ratings made by many different assessors, in order to deal with the
subjectivity of MDS-UPDRS ratings.

We proposed and evaluated a novel approach for estimating severity of gait impairment
in Parkinson’s disease using a computer vision-based method, utilising a dataset consisting
of hundreds of patients, examined at different sites by thirteen assessors. This is the first
study to validate that computer vision methods to classify Parkinsonian gait can learn from
the opinions of many clinical assessors and generalise across a wide patient population.

The system used markerless pose estimation to extract objective features of patients’
gait characteristics, which were then used to train a machine learning model to estimate a
severity score. We showed how objective estimates of features and labels could be used to
support clinicians” decision-making.

Extracted features and model estimates are closely linked to key aspects of gait, making
them easily interpretable. This also allows clinicians to understand which characteristics of
a patient’s gait caused the model to estimate a certain score, and why the model’s rating
might differ from their own estimate.

As it is already common to record videos of PD assessments, our approach seamlessly
integrates into existing clinical practice. It would offer clinicians a second objective opinion
for MDS-UPDRS ratings, and could be used to gain an initial rating in the absence of a
trained examiner—for example, during remote home assessments.

2. Materials and Methods
2.1. Proposed Methodology

Our methodology is summarised in Figure 1, which shows the end-to-end pipeline of
the computer-vision system. Inputs are videos and UPDRS ratings from clinics (Section 2.2).
These feed into a pipeline which begins with markerless body key-point detection, with se-
quential key-point coordinates used to construct time-series signals which characterise
gait (Section 2.3). From these signals, features are extracted which are designed to capture
the gait characteristics of arm swing, roughness of walking, postural control Section 2.5)
and speed (Section 2.4). Finally, these features feed into an ordinal classification model
(Section 2.6), which outputs estimates of UPDRS ratings.
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Figure 1. An overview of the pipeline used for this study, which included markerless pose estimation,

signal estimation, feature extraction and classification.



Sensors 2021, 21, 5437

4 0f 21

2.2. Data

Videos were recorded using the KELVIN-PD™ mobile application and then collected
on the KELVIN-PD™ motor assessment platform developed by Machine Medicine Tech-
nologies [29]. Examiners included nurses, neurologists and researchers who performed
UPDRS assessments of PD patients at one of the five largest sites currently using this plat-
form (Figure 2). Gait (impairment) was rated on a 5-point ordinal scale ranging from “normal”
to “severe” (ref. [9], see also Supplement for details about the MDS-UPDRS instructions).
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300 88 PDMDC (n =61)
S50 | TSL (n=33)
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Figure 2. The distribution of UPDRS ratings across the five assessment centres. Severity scores were
imbalanced, with low scores being more common than high scores, reflecting the distribution of
ratings commonly encountered in the clinic [30]. DCMN: Department of Clinical and Movement
Neurosciences, Institute of Neurology, University College London; DRC: Dementia Research Center,
Institute of Neurology, University College London; NRC: Neuroscience Research Centre, Molecular
and Clinical Sciences Research Institute, St. George’s, University of London; PDMDC: Parkinson’s
Disease and Movement Disorders Center, Baylor College of Medicine; TSL: The Starr Lab, University
of California San Francisco.

We analysed 729 videos showing gait assessments (“item 3.10”) of patients who
received a score of 0-3. The recordings show patients walking directly towards and/or
away from the camera. Approximately two thirds (481/729, 66%) of the videos showed
examinations of patients who had recently taken PD medication. Many of the videos were
recorded as part of ‘levodopa challenges’, whereby patients are assessed before taking
levodopa and again after taking it (252 videos, corresponding to 126 levodopa challenges).
Two videos showing “severity 4” (i.e., severe impairment, usually meaning patients are
unable to walk) were not included. Importantly, we did not perform any manual selection
of videos, and they therefore accurately reflected the current state of data routinely collected
at these institutions. The videos were recorded by a variety of different assessors, using
different cameras (integrated within their mobile device), in hallways or office settings.

We manually annotated all videos with regions of interest (ROIs) of times when
patients were walking towards or away from the camera, without including the section
of the video when they were turning. All videos except one showed both directions and
we therefore extracted two ROIs from them. In addition, we counted the number of
steps during a subset of 606 ROIs (302 “away”, 304 “towards”) and used this information
together with the length of the ROISs to calculate the “ground truth” step frequency for these
video clips. The mean length of all ROIs was 210 frames (approximately 7 s at 30 frames
per second).
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2.3. Signals

The deep learning library OpenPose [17] was used to extract 25 body key-point
coordinates on each frame without any markers (Figure 3A). OpenPose is a popular open-
source library (The GitHub repository (https://github.com/CMU-Perceptual-Computing-
Lab/openpose (accessed on 16 July 2021)) has more than 20,000 stars and more than
6000 forks) providing state-of-the-art pose estimation performance. Sequential key-point
coordinates were used to construct seven normalised time-series signals as follows.

(A) Pose (B) Signals (C) Feature
estimation Leg ratio difference extraction

: Bayesian step i
@ : frequency i
: model

=

Vertical angle (body)

Descriptive

Horizontal angle (ankles) @ é StatIStICS
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Ankie specd (D) Ordinal
Random Forest
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Z

Figure 3. Methods overview. (A) Body key-points were extracted from each frame using the deep learning library

OpenPose [17]. (B) Signals were created by combining the time-series of various key-points (see Section 2.3 and Table 1).

(C) Features were extracted from the signals based on two different methods (Section 2.5): (1) a Bayesian step frequency

model integrating information from three signals over time, and (2) summary statistics such as the median amplitude.

(D) An ordinal random forest classifier was used to estimate patients” UPDRS scores (see Section 2.6).

The leg ratio difference (Rj.¢s) was defined as the difference between the ratios of left-to-

right and right-to-left leg lengths. The vertical angle of the body (AE;Z;Z;]) was defined as the

angle between the y-axis of the video and the line going through the neck key-point and

the mid-point between the two ankle key-points. The horizontal angle of the ankles (At[lhnokrliezs])

was defined as the angle between the x-axis of the video and the line going through the
two ankle key-points. Similarly, the horizontal angle of the wrists (Ag::irsifs]) was defined as the
angle between the x-axis of the video and the line going through the two wrist key-points.
The horizontal distance between the heels (D}[ZZZZ]) was defined as the distance between the

x-coordinates of the two heel key-points, normalised by the estimated standing height of

the patient. Finally, the speed of the left (and right) ankle (DLiZ;;]( 1) and Dz[zszlcel]( R)) was defined
as the Euclidean distance between coordinates of the left (and right) ankle on successive
frames, normalised by the estimated standing height. Table 1 summarises these signals

and their equations.
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Table 1. Summary of signal computation. The first column denotes the symbol used for each signal,
the second column gives a brief non-rigorous description of each signal and the third column lists
the exact formula used to calculate the value of a signal on frame . Plgt) denotes the coordinates of
body key-point i at frame ¢, i.e., a pair of values (xl(t), y}t) ). Relevant key-point indices were neck = 1,
right wrist = 4, left wrist = 7, right hip = 9, right ankle = 11, left hip = 12, left ankle = 14, left heel =
right heel = 24. L and R denote the left and right side, respectively, H*) denotes the estimated height
of the patient (see Supplement), d denotes a distance function, < denotes an angle.

Signal Description Formula

Rppee(£) leftleg  rightleg |P§;)P§ié| _ |Pgt)P§t15|
legs rightleg  leftleg

0P| plpY)
(t) (t)

Al[gf;yt](t) <(y-axis, d(neck, ankles)) sin~1 %
[Py Py )]
[horiz] . ]/14 yll)
A kies (1) <(x-axis, d(ankle(L), ankle(R))) tan™
x14 - x11
Agﬁfirsitzs](t) <(x-axis, d(wrist(L), wrist(R)) tan~ <
_ x4
plher ) d(heel(L), heel(R)) abs(x{) — x{f)
heels H(t) H)
t t+1
(Euet] d(ankle(L)®), ankle(L)*+1)) ) — Pl
unkle(L)( ) H® W
() (t+1) () _ pt+1)
[Eucl] d(ankle(R)""/, ankle(R) ) Py — Py |
ankte(r) () HO ~ HO

A peak detection algorithm (see Supplement) was used to extract “peaks” and
“troughs” from the four signals Ry, A[vert] Alherizl g alherizl, By definition, peaks

body 7 * “ankles wrists *
and troughs of the leg ratio difference signal correspond to a maximal difference between
left and right leg; i.e., they were expected to be detected on frames at the end of each gait
cycle. Similarly, periodically occurring peak and trough “events” of the other signals were

expected to reflect gait cycles.

2.4. Step Frequency (Speed)

Step frequency (speed) is known to be an important characteristic of gait [8] and is
generally altered in PD [7]. Here, step frequency was estimated using the three signals

ankles *
each frame using a Gamma-Poisson model (see also Figure 4A,B):

Riegs, A[bzzryt] nd A A posterior distribution over step frequency was obtained for

N
A ~ Gamma(ag + 2 Y;, Bo+ N), (1)
i=1

where ap and B are the parameters for the prior; Y; is the number of events across the three
signals in the ith frame, and N is the number of elapsed time intervals (i.e., three times the
length of the ROI divided by the frame rate of the video).

The prior was set to A ~ Gamma(ag = 2, Bp = 1), which corresponds to a distribution
with a 95% credible interval of (0.24, 5.57) Hz, and for which the mean is E[A] = ay/Bo = 2.
The choice of prior reflects the range of plausible human movement. A step frequency of
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Figure 4. Bayesian step frequency estimation. (A) Examples of the prior distribution (left) and a posterior distribution after

129 updates (i.e., after 129 frames or approximately 4.3 s of video); (B) the evolution of the posterior mean and 95% credible

interval for the first 129 updates; (C) point estimates of the Bayesian step frequency model’s posterior distributions at the

last frame of each video were highly correlated with the true labels (Pearson’s r = 0.80, p < 0.001). The mean squared error

between estimated and true step frequency was 0.018 Hz; (D) the distribution of errors of step frequency point estimates in

the last frame of each video. The mean error was 0.03 Hz, indicating a tendency to under-predict. The null-hypothesis that
the population is normally distributed was rejected (Shapiro Wilk’s W = 0.98, p < 0.001).

The posterior was updated at each frame as

ix3
F

Gamma(a; = aj1 +Y;, pi = Bi1 + ) @
where F is the frame rate of the video. The final step frequency estimation for the video was
the mean of the posterior (E[A] = ay /) at frame k during which the last event occurred.

Performance of the model was evaluated by calculating the mean squared error of the
estimation in relation to the manually labelled ground truth step frequencies.

2.5. Features

In addition to speed, five other features were extracted from the signals described
in Section 2.3. These features were chosen because we hypothesise that the values of
these features would covary with clinical judgements of disease severity. We furthermore
confirmed the clinical relevance of our features by showing that they correlate with severity
ratings and are affected by medication (see Section 3).

Two features related to patients’ “arm swing” were extracted from the horizontal
angle of the wrists (AEZ:;SZ]) time-series signal: (a) the median of the absolute first difference
of the signal, (“median velocity”), and (b) the median amplitude at its peaks for which
we used the detected troughs to span a “lower bound” and then computed the height of
the signal from this lower bound at each peak, which were then averaged. Arm swing is
an important characteristic of human gait [31] and is commonly reduced in PD [32], often
early in the disease progression [33,34]. The MDS-UPDRS instructions [9] list arm swing
as one of the rating criteria for gait.

Two features were used to capture patients’ roughness of walking. They were based

on the speed of the left and right ankle (Db[lizlcg). These features were calculated as the

median of the first difference of this signal (“absolute acceleration”) divided by the value of

Eucl] . [ ..
the D[[l nZ;:e} signal on each frame. For classification, we re-coded these features as minimum
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and maximum feature values instead, to make them independent from laterality. A number
of studies used accelerometers to measure (ankle) acceleration and showed that it can
contain important information about PD severity [35,36]. Beck et al. [37] used acceleration
data to estimate smoothness in gait, and found that smoothness measures were lower in
PD patients than healthy controls. For our features, a less smooth movement should result
in higher “roughness” feature values than very smooth movement (see Supplement for
additional details).

The horizontal distance between the heels (D}[ZZ;Z]) was used to estimate patients
variability in the width of their strides. A feature was calculated as the coefficient of
variation of the whole signal, and was used as a measure of postural control. Postural
control is an important factor for the assessment of quality of gait in older adults [38] and
Parkinson’s disease [39]. A recent study applied machine learning techniques to distinguish
between PD patients and healthy controls, and concluded that stride width variability was
one of the most important features for the classification of these groups [40]. Similar to
our results (Section 3.1), they found that healthy participants had a higher stride width
variability than PD patients, indicating lower postural control in PD.

’

2.6. Classification

An ordinal classifier [41], based on random forest classifiers (RFCs), was trained and
evaluated using 10-fold (stratified) cross validation. Ordinal classification was used because
classes (degrees of impairment) are inherently ordered. The ordinal classification system
was internally comprised of three binary RFCs which were trained to distinguish {0} vs.
{1,2,3},{0,1} vs. {2,3} and {0,1,2} vs. {3}. For example, the probability of class {1} can
then be computed as the probability of classes {0,1} (from classifier 2) minus the probability
of class {0} (from classifier 1). Due to the class imbalance (Figure 2), we used the Synthetic
Minority Oversampling Technique (SMOTE; [42]) to up-sample minority classes within
each training fold. Multiple ROIs per video (“towards” and “away from” camera) were
treated as independent samples within each training fold. Within testing folds, the classifier
made a prediction for each ROI (i.e., estimated a probability for each of the four classes),
which were then averaged to give the prediction for the video. Importantly, both ROIs
of each video were ensured to always be in the same (training or testing) fold to avoid
information leakage.

We trained and evaluated six types of models: Random Forest Classifier, Linear
Discriminant Analysis, Logistic Regression, Artificial Neural Network, Linear Support
Vector Machine, and Gradient Boosted Trees. Details about these models are shown in the
Supplement. Each model was used as a based classifiers within an ordinal classification
system as described above. The RFC was chosen because it achieved the highest accuracy,
although overall all six ordinal classifiers achieved similar performance (see Section 3).

Primary metrics used to judge the model’s performance were balanced accuracy (mean
of correct proportion per class), accuracy (+1), binary sensitivity and binary specificity. The
accuracy (£1) metric was defined as the proportion of estimates for which the absolute
residuals were one or less, and was used because it is not uncommon for UPDRS assessors
to disagree with one another by one point [10]. For the binary metrics, all Parkinsonian
ratings ({1,2,3}) were grouped together as the “positive” class, and the non-Parkinsonian
rating ({0}) was denoted the “negative” class.

2.7. Explainability and Interpretability

In addition to relying on well defined and interpretable computations of features in
general, we also focused on the explainability of specific model estimates. Especially in
clinical applications, if a model is to be used to support a clinician’s decision-making, it can
be important to understand (a) what a specific feature value means and how it is related to
feature values of other patients, and (b) how a model arrived at its decision.

Given the objectively estimated feature values of some specific sample, we calculated
where in the distribution of all examples in our data set the specific feature value would
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fall. For a specific feature value, v, we computed the proportion of feature values smaller
or equal to v, conditioned on each severity. More precisely, for a video with estimated
feature values {vy, ..., 04}, we calculated an “eccentricity table” (or matrix), C, so that, for

each entry,
1 ¥

Cio = — Y (o), @)
]

N; &
where vl(j ) e D; is the value of feature i for sample j, D; is the set of samples with a severity
rating s, N; is the cardinality of Ds, and

unw{l =y @

0 otherwise.

To ease interpretation, we shaded the tables according to absolute distance from the
center of the distribution, meaning values close to the center of the distribution would
receive a darker shade. For a “typical” patient receiving a rating of 0, it would be expected
that the first column (which corresponds to typical distributions for severity 0), showing
the data conditioned on severity 0, would be the darkest. We provided examples which
show how these eccentricity tables could be used to support a clinician’s decision-making.

SHAP (SHapley Additive exPlanations) values [43,44] can be used to understand
why a model made a certain prediction. For a specific example, more important features,
i.e., features which contributed more to the prediction for this example, receive larger
(absolute) SHAP values. Because our ordinal classifier was comprised of three binary
random forest classifiers, we could compute SHAP values for each of these three classifiers.
We show how SHAP values, in combination with eccentricity tables, could provide valuable
“step-by-step” insight into how the model arrived at its severity estimate.

3. Results
3.1. Objective Feature Values

Manually labelled and automatically estimated step frequencies were highly corre-
lated (Pearson’s r = 0.80, p < 0.001; Figure 4). The mean squared error (MSE) between
estimated and ground truth step frequencies was 0.018 Hz, and was similar between clips
showing patients walking from (MSE = 0.019 Hz) or towards (MSE = 0.017 Hz) the camera.
At the end of the video clips, ground truth step frequency fell within the 95% credible
interval of the posterior distribution in 605 of 606 cases (99.8%). Step frequency estimates
were significantly higher for patients with non-Parkinsonian compared to patients with
Parkinsonian gait ratings (Welch’s #(827.5) = 9.43, p < 10719).

Figure 5 shows the distribution of all feature values conditioned on UPDRS ratings.
We also looked at the association between estimated feature values and total MDS-UPDRS
part-III scores which include 18 items [9]. All features were significantly correlated with
total UPDRS part-III scores (see Table 2 and Figure 6), indicating that they are related to
general disease progression.

Table 2. Association between feature values and total UPDRS part-III scores. The postural control
feature showed the highest correlation with total UPDRS part-III (Pearson’s r = —0.31, p < 0.001).

Feature Pearson'’s r p-Value
Speed —0.26 <0.001
Arm swing (velocity) —0.31 <0.001
Arm swing (amplitude) —0.27 <0.001
Postural control -0.31 <0.001
Roughness (min) 0.15 <0.001

Roughness (max) 0.13 <0.001
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Figure 5. Distribution of the six features by clinical UPDRS gait (item 3.10) rating. For each of the six features, a one-way
ANOVA test found a highly significant (p < 0.001) difference in means between the clinical UPDRS groups. All features
were significantly correlated with total UPDRS part-III scores (see Table 2 and Figure 6).

1.0 °

Postural control
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Total UPDRS part-3 Total UPDRS part-3

Figure 6. Correlation of feature values with total UPDRS part-III scores. Most features were significantly correlated with
total UPDRS part-III scores (Table 2). (A) Estimated step frequency (speed) was significantly correlated with total UPDRS
part-III scores (Pearson’s ¥ = —0.26, p < 0.001). (B) Postural control feature values were significantly correlated with total
UPDRS part-III scores (Pearson’s r = —0.31, p < 0.001).

An effect of medication was evident within the 126 levodopa challenges in our data
set. We looked at the differences of estimated feature values in assessments conducted after
and before the patient took their medication (“on medication” minus “off medication”),
see Figure 7). These differences were significant for 5 of the 6 features (Table 3).
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Figure 7. Distributions showing the change in each feature value related to medication (n = 126, in each subplot), with the

mean value marked as an orange dashed line. The change is calculated as the feature value during the ‘on medication’

assessment, of the levodopa

challenge, minus the ‘off medication” assessment. As the medication generally improves motor

function for PD patients, the directions of change make sense intuitively (see also Figure 5). For example, feature values

related to speed and arm swing increased after taking medication. For most features, the change in feature value was

significant (see Table 3).

Table 3. Results of Mann—-Whitney U tests [45] for the difference between feature values from ‘on
medication” and ‘off medication” assessments, alongside the probability of this difference being
greater than zero and the corresponding binomial test (two-sides test for this probability differing
from 0.5).

Feature Mann-Whitney's U  p-Value P (Diff >0) p-Value
Speed 6144 0.001 0.64 0.002
Arm swing (velocity) 4776 <0.001 0.75 <0.001
Arm swing (amplitude) 4965 <0.001 0.77 <0.001
Postural control 6908 0.038 0.58 0.090
Roughness (min) 6303 0.002 0.35 <0.001
Roughness (max) 6658 0.014 0.33 <0.001

3.2. Model Comparison

All six ordinal classifiers achieved similar performance (Table 4). The RFC achieved
the highest accuracy, accuracy (£1) and Spearman’s correlation. The linear SVM achieved
the highest balanced accuracy. The random forest was chosen as the primary classifier and
the following results are based on that model. The supplement includes additional details
about results based on other models.

3.3. Model Performance

Figure 8 shows the confusion matrix of the model estimates. Balanced accuracy was
50%, which outperformed chance significantly (two-tailed label permutation-based [46],
p < 0.001). accuracy (+£1) was 95% (accuracy (£2) was 99.7%), binary sensitivity was
73% and binary specificity was 68%. This means our model greatly outperformed chance
performance and diverged from clinicians’ ratings by more than one point in only 5% of
cases. There was a significant correlation between clinician labels and model estimates
(Spearman’s p = 0.52, p < 0.001). In addition, 125 of 185 patients were correctly identified
as healthy walkers, and 396 of 544 patients with a Parkinsonian gait rating were correctly
identified as displaying symptoms of an impaired gait.
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Table 4. Summary of classification metrics for the six types of models. RFC, Random Forest Classifier;
LDA, Linear Discriminant Analysis; LOGIS, Logistic Regression; ANN, Artificial Neural Network;
SVM, Support Vector Machine; XGBoost, Gradient Boosted Trees. The RFC was picked as it gave the
best performance on three of the four classification metrics.

Accuracy Balanced Accuracy Accuracy (£1) Spearman’s p
RFC 0.50 0.50 0.95 0.52
LDA 0.48 0.51 0.93 0.47
LOGIS 0.45 0.50 0.92 0.47
ANN 0.46 0.41 0.92 0.32
SVM 0.46 0.52 0.93 0.49
XGBoost 0.47 0.49 0.93 0.50
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Figure 8. Confusion matrix showing the results from the 10-fold cross-validation based on ratings
given by the original examiners at the clinical sites where the assessments were performed. Note that
15 videos were later re-rated by a senior neurologist, which changed the ratings of six videos (see
Table 5).

Table 5. Fifteen videos were sent to a senior neurologist for re-rating: Five videos for which the model estimation disagreed

with the original examiner’s rating by 2, and ten videos for which the residual was 1 or 0 points. Each column shows the

three different ratings (original examiner, model and expert) for a video, with color shading indicating the level of absolute

residual (red = 2, yellow =1, green = 0).

Residuals =2 Residuals =1 Residuals =0

Original Clinical UPDRS
Re-rated Clinical UPDRS
Model Estimated UPDRS

2 1 2 0 2 1 2 2 0 2 0 3 1 2 1
0 2 1 1 2 1 2 2 0 2 0 3 1 1 0
0 3 0 2 0 2 1 1 1 2 0 3 1 2 1

3.4. Interpretability of the Model Features

We inspected the feature importance for each of the three RFCs contained within the
ordinal classifier trained on the full data set (Figure 9). The impurity-based (Gini) impor-
tance was calculated as the normalized total reduction of the Gini coefficient [47] by the
feature [48]. (See Supplement for the ranking of feature importance based on SHAP values,
which was almost identical.) Consistent with previous reports [33,34], arm swing was
found to be important for distinguishing normal gait from Parkinsonian gait but became
less important for the classification in later stages of the disease. Roughness of movement
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was found to be relatively less important for detecting Parkinsonian gait in general but very
important for distinguishing between higher UPDRS ratings. This is consistent with reports
by Rastegari et al. [49] who found that data from ankle accelerometers could be used to
distinguish between healthy controls and later-stage PD patients, but not between healthy
controls and early-stage PD patients. Similarly, Hatanaka et al. [50] reported significantly
different mean acceleration between healthy control and PD patients, with the difference
being more pronounced in later stages of the disease.

9]
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s 0.20
5 )
$ {0,1} vs {2,3} 0.15
2
£ -0.10
S
£ {0,1,2} vs {3} -0.05
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Figure 9. Feature importance of the three random forest classifiers contained within the ordinal
classifier. The impurity-based (Gini) importance was calculated as the normalized total reduction of
the Gini coefficient by the feature. Arm swing features were important to distinguish normal gait
from Parkinsonian gait. Roughness of movement features were important to distinguish between
different levels of Parkinsonian impairment.

3.5. Interpretability of Model Estimates

Figure 10 shows two examples for which clinician and model ratings agreed. In both
cases, the eccentricity tables illustrate that feature values are typical of the scores they
received. For a clinician, this can provide valuable supporting evidence that their rating is
likely accurate.
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Figure 10. Examples with complete agreement between clinician and model. At the top, eccentricity
tables for patients who were rated as “normal” (left) and “moderately impaired” (right) are shown.
At the bottom, the model’s estimates for the two examples are shown. In both cases, the model
agreed with the clinician and estimated the correct ratings with high probability.
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Roughness (min)-
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Conditioned on severity

Figure 11A shows an example for which there was a slight disagreement between
the clinician (rating 0) and the model (rating 1, although class 0 had an almost identical
probability). The eccentricity table shows that, while most feature values (speed, arm swing,
postural control) were typical of patients with a rating of 0, the roughness of movement
feature values were more typical of more severe ratings. Figure 11B provides a more
detailed explanation of how the ordinal classifier arrived at its probability estimates. Within
the first internal classifier (which distinguishes between {0} and {1, 2, 3}), the roughness
features were deemed important enough to cancel out most of the “push” of the other
features towards a low rating. Within the second classifier, the feature values for roughness
were considered less important (i.e., they added less to the prediction) and the model
estimated a probability of only 18% for ratings {2, 3}. Note that the probability for rating 1
(41.1%) is computed as the probability of ratings {0,1} (82.1%) minus the probability of
rating 0 (41%).
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Figure 11. Example with a slight disagreement between the clinician’s rating and the model’s estimate. (A) The eccentricity

table at the top shows a less clear structure than the example in Figure 10. While speed, arm swing, and postural control are

typical of low severity ratings, the roughness of the movement was fairly typical for higher severity ratings. The Clinician

gave the patient a rating of 0, while the model estimated a score of 1, although the distribution at the bottom shows that the

model’s probability estimate for rating 0 was very close to the probability for rating 1. (B) The three figures illustrate how

the model arrived at its estimates. We computed SHAP values for the example based on each of the three different binary

classifiers which are part of the ordinal model. It can be seen that, in all three classifiers, all feature values “push” towards

lower ratings, except the two feature values that are related to the roughness of movement. The first classifier estimated the

probability of the example receiving a rating of greater than 0 as 59%. The second classifier estimated the probability of

the example receiving a rating of 2 or 3 as 18%. For both of the first two classifiers, the specific value for the “arm swing

(velocity)” feature was most important.

3.6. UPDRS Score Re-Ratings

We asked a senior neurologist (Prof. Thomas Foltynie, UCL Queen Square Institute of
Neurology) for his expert opinion about 15 videos. Five videos were selected for which the
model disagreed with the original rater by 2 points. Four videos with a disagreement of
1 and six videos with a disagreement of 0 were also randomly selected. The expert was
asked to provide a rating for all of these videos without any information about the original
assessor’s or the model’s scores. Table 5 shows the results of this re-rating. For the five
videos with an original score difference of 2, the expert agreed with the original ratings
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in only a single case. Three videos were re-rated with a score in between the original
examiner’s and the model’s score, and, in one case, the expert disagreed with the original
rating by two points which matched the model estimation. For the four videos with a
rating difference of one, the expert agreed with the original rater in all cases. For four of the
six videos with zero difference, the expert agreed with model and clinician ratings, and, in
two cases, disagreed with them by one point. See Supplement for additional analysis
(eccentricity tables and SHAP values) of some of these examples.

4. Discussion
4.1. Overview of Results

Video data of gait assessments were collected at five active clinical sites. The collection
was part of the routine examinations of Parkinson patients and did not require additional
equipment or time. Markerless pose estimation was used to extract objective features
characterizing patients’ gait. Features included step frequency which was estimated based
on a Bayesian model. Comparison with ground truth showed that step frequency point
estimates were highly accurate. An ordinal random forest classifier was trained to estimate
UPDRS severity scores. It achieved high performance (50% balanced accuracy) and only
rarely diverged from clinical examiners’ ratings by more than one (95% accuracy (£1)).

By sending fifteen videos for re-rating, we showed that ratings by clinical assessors
can often disagree. Given that our model was trained on ratings from multiple assessors,
and so has the benefit of learning from multiple perspectives, it is possible that the model
could outperform any individual assessor. We also provided examples of how a clinician
could understand objective feature and model estimates and how this could support
decision making.

Although much work remains to be done before gait severity scores can be reliably
estimated completely autonomously, useful applications in quality control are already
plausible. Our results suggest that any disagreement between the examiner and model’s
estimation would in approximately 5% of cases be large (rating of 2 or more points) and in
roughly 50% cases be small (rating of 1 point). This means the model could, for example, be
used to make central ratings far more efficient by identifying the subset of data points which
are likely to require re-rating, thus eliminating the need to re-rate all samples. Objective
model estimates could be used to improve clinical ratings, and, as mistakes are discovered
and corrected through re-ratings, model performance would also be expected to improve,
resulting in a beneficial cycle of improvements and standardisation.

4.2. Comparison with Previous Work

As far as we are aware, only a single group, Lu et al. [25], has tried to tackle the task
of estimating UPDRS scores of PD patients directly from video data. They used a neural
network classifier to estimate severity within a small group of 30 PD patients, who were all
assessed by a single rater, and achieved a balanced accuracy of 81%. Notably, although the
accuracy in the current study is lower, it is based on a much larger sample collected at
multiple clinical sites by multiple raters and our results are therefore much more likely to
generalise. In addition, while neural networks are powerful, they are also a “black-box”
approach and feature interpretation is difficult.

One other group, Sabo et al. [24], estimated UPDRS scores from video data, al-
though the patients were not diagnosed with PD. While this research did provide clinically
interpretable features, the work used a much smaller sample size, with multiple recordings
of each patient. This means it is less likely to generalise (to the wider PD patient population)
than our result.

Previous studies have used a range of different technologies, including accelerom-
eters [51,52], load sensors integrated into shoes [53-56], inertial measurement units [57],
gyroscopes [12], and pressure-sensitive walkways or other laboratory setups [13] to ob-
jectively capture gait parameters. Due to their fixed place and high cost, dedicated gait
laboratories are unlikely to be useful for routine assessments during clinical practice.
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Although wearable technologies provide some advantages as they allow patients to
move freely and can be employed at any location, they still require additional dedicated
equipment which needs to be bought and maintained. In addition, while such wearable
technologies have the potential to provide more precise measurements, in comparison to
video data, issues around set up, such as inconsistent marker placement in motion capture
systems, can result in errors [22].

In contrast to these technologies, video data are already routinely collected at many
institutions (including the five sites in this study) and therefore do not require any addi-
tional equipment. It can be collected on any smart phone or tablet with integrated video
recording capability and does not add time or cost to the gait examinations.

4.3. Interpretability of Results

Our method provided transparent and clinically interpretable computations. The
Bayesian step frequency model relied on three signals, and detected peaks and troughs
within these signals, extracted from each video clip, and updated its prediction on each
frame. Because a continuous probability distribution was maintained over step frequency,
point estimates were accompanied by measures of uncertainty. Step frequency estimates
were robust for both patients walking towards and away from the camera, and, for rela-
tively short video clips (mean duration of 7 s), thereby increasing flexibility for assessors.
Consistent with previous work [58], step frequency (speed) was significantly reduced in
Parkinsonian gait (UPDRS rating € {1,2,3}), compared to “normal” gait (rating 0).

Other features were constructed to measure arm swing, postural control, and rough-
ness of movement. Many of these have been examined in previous studies and are generally
altered in PD [7]. All features showed a strong association with total UPDRS part-III scores,
indicating that objectively calculated features based on patients’ gaits might be useful for
tracking general disease progression. A reduction in arm swing can be seen early in the
disease progression [33,34], while changes in acceleration might become more apparent
during later stages of the disease [49,50]. Consistent with this, inspection of feature impor-
tance revealed that features capturing arm swing were important to distinguish between
normal and Parkinsonian gait, while roughness of movement features were important to
distinguish between patients with slight, mild and moderate impairment.

We trained a machine learning classifier to distinguish between different UPDRS
severities based on these features. Because features are interpretable, the model and its
estimates could be inspected in a straightforward manner, and could provide valuable
support for assessors. We showed how eccentricity tables and the model’s probability
distribution could be used to support a clinician’s decision-making. Feature values for
a patient without impairment should generally look most similar to feature values of
other patients without impairment. Similarly, feature values of a patient with moderate
impairments would be expected to fall most closely to the center of the distribution of
other patients with the same level of impairment. Ratings are not always clear-cut, and we
showed an example where the model estimate disagreed with the clinician’s rating by one
point. The eccentricity table showed less “columnar” structure, with some feature values
being typical of healthy gaits, while others were more similar to those of patients with more
severe disease. SHAP values provided insight into how the model weighed the importance
of these feature values at each step (i.e., within each binary classifier) for the specific
example. It was also shown that the estimated probability distribution across severity
ratings was considerably flatter than those of the unambiguous examples, highlighting
how the model can provide useful information beyond a single most likely estimate.

We selected five videos for which examiner and model scores diverged by two points
for re-evaluation by a senior neurologist. The expert agreed with the original assessors’
ratings in only one of these videos. In three cases, the expert’s rating was between the
clinician’s and the model’s rating. In one case, the expert agreed with the model rating,
disagreeing with the clinician’s rating by two points. Ten additional videos were selected
for which the scores of examiners and our model differed by 0 or 1 points. In eight cases,
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the expert’s ratings matched the original assessor’s rating, half of which also matched the
model’s estimates. In two cases, the expert disagreed with the clinician and the model by
one point.

4.4. Limitations

Several limitations of this study should be noted. Firstly, all gait assessments were
performed on patients diagnosed with Parkinson’s disease and our sample therefore did
not include healthy control participants. Similar to a previous study [25], we excluded
patients with the highest (“severe”) rating on the MDS-UPDRS gait item, due to the small
representation of these patients within the dataset. We note that MDS-UPDRS instructions
mention that patients should receive a score of 3 (“moderate”) if they require an object to
assist, such as a walker or walking stick, but currently our system does not identify any
such objects.

Video clips did not show patients walking at an angle substantially away from the
coronal plane as examiners asked the patients to walk directly away from and towards the
camera. While this is consistent with UPDRS instructions, it is a limitation of the system to
have been developed using videos clips that were all recorded at a similar angle.

Our approach relied on manually labelled regions of interest indicating when a patient
would start or stop walking towards or away from the camera. This means that, in our
analysis, we did not include sections of the video during which patients were turning.
Difficulty in turning is another important indicator for PD [59-61]. Therefore, it is likely
that, for some examples in our data set gait, impairments were primarily evident during
turning, leading to misclassifications by the model. Our approach was to focus on a small
number of simple and interpretable features, though it is clear they do not capture all of
the rich complexities of human gaits [62].

We note that the use of a homogeneous Poisson model, for peak/trough detection
when computing step frequency, implies that the probability of a step occurring in any one
frame is independent of all other frames and constant across all frames, and that higher step
frequency implies a higher variance. However, the probability of a peak/trough occurring
at any time is clearly dependent upon the timing of previous peak/troughs. In spite of
this assumption, it was clear that estimates were close to the true values that were also
contained within the credible intervals in 99.8% of cases.

5. Conclusions
5.1. Future Work

Further work is needed to establish whether this system could be used to differentiate
gait characteristics of healthy controls from those of PD patients, potentially aiding clini-
cians during (early) diagnosis. Patients are given high ratings (“moderate” or “severe”
if they require assistance in walking (by an object or person, respectively). A system that
incorporates the identification of this assistance would likely perform better on these high
ratings. Such work would require a dataset with a greater representation of “moderate” or
“severe” patients.

Additional work is required to validate the system for different recording methods,
such as video clips recorded at 90 degrees from the coronal plane. To that point, 3D models
may prove more feature computation more robust to the angle of recording, and so it is
possible that 3D reconstruction would improve the performance of this system. Recent
studies have shown promise in estimating full 3D pose reconstruction based on data
recorded using a single 2D camera [63-66], although challenges remain [21].

The use of 3D pose estimation may be crucial to addressing other potentially important
gait characteristics of PD patients, such as stopped posture [61], left-right asymmetry of
arm swing [33], or difficulty in turning [59-61]. Furthermore, such a system may potentially
not require the need for manually labelled regions of interest, instead using 3D positioning
to reliably and automatically label each region of interest (walking towards, turning,
walking away).
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The use of a non-homogeneous Poisson process to model peak/trough detection when
computing step frequency could be investigated, as this would reflect how the probability
of peak/trough detection should vary over the course of a gait cycle. Additionally, while
the current system only used point estimates of the posterior distributions, future work
could consider making use of the estimated uncertainty around it.

5.2. Contributions

Quantitative analysis of gait examination has not yet been widely adopted for use
by clinicians assessing patients [67], despite readily available technologies enabling this
for multiple decades (e.g., accelerometer based systems, [11,68]). Acceptability of new
methods rests not only on analytical superiority but also cost and ease of adoption. The
approach advanced here relied on videos which are already routinely recorded during
examinations at many assessment centers, meaning it did not require alteration of the
current gait examination process, during which patients simply walk up and down within
an available hallway or some other space.

It is worth emphasising that this means our data were not collected in specialised
laboratories or equipment and thus accurately reflect current routine clinical practice.
Settings included a number of different rooms, corridors and offices. For this study, videos
were collected using an Android app uploaded to a web platform [29]; however, the
approach does not rely on any specific device and could be applied to videos recorded
using any application or device.

Our approach can support clinicians by providing them with interpretable features.
The availability of these objective features in PD has the potential to improve individualised
treatments, particularly device based therapies. Deep brain stimulation and infusion
therapies may benefit from the ability to titrate against precisely measured motor features.

Automated systems for quantifying Parkinsonian gait have great potential to be used
in combination with, or the absence of, trained assessors, during assessments in the clinic
or at home. As both clinicians and patients often value explainability, “black box” systems
are unlikely to gain widespread adoption. Our approach provides interpretability as well
as the ability to trace any (unusual) output back to clinically interpretable features.

5.3. Practical Application

In conclusion, we showed that the severity of gait impairment in Parkinson’s disease
could be accurately estimated using a single patient video. Data were collected using
consumer mobile devices during routine assessments within standard clinical settings. The
approach is simple and cheap to implement within existing clinical practice as it does not
require any additional setup or equipment, and we showed how the system could support
clinicians during routine examinations by providing objective and interpretable estimates.
In addition to providing a second objective opinion for gait severity ratings, the model
could also be used to estimate an initial rating in the absence of trained assessors—for
example, during remote home assessments.
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