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Summary
Background The high heterogeneity of tumour and the complexity of tumour microenvironment (TME) greatly
impacted the tumour development and the prognosis of cancer in the era of immunotherapy. In this study, we aimed
to portray the single cell-characterised landscape of lung adenocarcinoma (LUAD), and develop an integrated
signature incorporating both tumour heterogeneity and TME for prognosis stratification.

Methods Single-cell tagged reverse transcription sequencing (STRT-seq) was performed on tumour tissues and
matched normal tissues from 14 patients with LUAD for immune landscape depiction and candidate key genes
selection for signature construction. Kaplan–Meier survival analyses and in-vitro cell experiments were conducted to
confirm the gene functions. The transcriptomic profile of 1949 patients from 11 independent cohorts including nine
public datasets and two in-house cohorts were obtained for validation.

Findings We selected 11 key genes closely related to cell-to-cell interaction, tumour development, T cell phenotype
transformation, and Ma/Mo cell distribution, including HLA-DPB1, FAM83A, ITGB4, OAS1, FHL2, S100P,
FSCN1, SFTPD, SPP1, DBH-AS1, CST3, and established an integrated 11-gene signature, stratifying patients to
High-Score or Low-Score group for better or worse prognosis. Moreover, the prognostically-predictive potency of
the signature was validated by 11 independent cohorts, and the immunotherapeutic predictive potency was also
validated by our in-house cohort treated by immunotherapy. Additionally, the in-vitro cell experiments and drug
sensitivity prediction further confirmed the gene function and generalizability of this signature across the entire
RNA profile spectrum.

Interpretation This single cell-characterised 11-gene signature might offer insights for prognosis stratification and
potential guidance for treatment selection.
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Research in context

Evidence before this study
We searched from 1st Jan. 2006 to 30th Mar. 2023 with the
keywords “lung cancer” (“prognosis” or “prognostic”),
(“biomarker” or “signature”), (“immunotherapy” or “immune
checkpoint inhibitor” or “ICI”) in PubMed and proceedings of
international meetings, restricting the language to English,
and found that the unsatisfactory long-term survival of cancer
stemmed from the high heterogeneity of tumour, the
complexity of tumour microenvironment (TME) and the
uncomprehensive characterization provided by current
prognostic and predictive indicators. Thus, it holds immense
significance to keep exploring prognostic and predictive
biomarkers that rely on integrated characterization
incorporating both tumour heterogeneity and TME.

Added Value of this study
We provided a comprehensive portrayal of the single cell-
characterised TME landscape in 14 patients with lung
adenocarcinoma, and developed an integrated signature
incorporating both tumour heterogeneity and TME based on
high-precision single-cell transcriptome analysis, as validated
by 1949 patients from 11 independent cohorts including nine
public datasets and two in-house cohorts.

Implications of all the available evidence
This study underscored the importance of the current
immunotherapy approach for advanced-stage tumour,
highlighted the potential for future drug development by
targeting TME components, and offered promising insights of
integrated signature incorporating tumour heterogeneity and
TME for prognostic stratification and treatment selections.
Introduction
Lung cancer stands as the leading cause of cancer-
related death worldwide, with lung adenocarcinoma
(LUAD) representing the predominant pathological
subtype.1,2 Although various treatments, including im-
mune checkpoint inhibitors (ICIs), have transformed
the management of lung cancer and led to significantly
improved clinical outcomes, challenges including the
unsatisfactory 5-year survival rate and the limited pro-
portion of patients experiencing durable response still
existed. Such issues stemmed from the high heteroge-
neity of tumour, the complexity of tumour microenvi-
ronment (TME) and the uncomprehensive
characterization provided by current prognostic and
predictive indicators.3–5 Therefore, it holds immense
significance to keep exploring prognostic and predictive
biomarkers that rely on integrated characterization
incorporating both tumour heterogeneity and TME.

Over the past decade, there has been growing
recognition of the crucial role played by TME in the
development of lung cancer. It is now understood that
both tumour cells which exhibit significant heteroge-
neity, and the immune cells which infiltrate the TME,
collectively influence the progression of cancer and
shape the response to treatment.6–11 Numerous prior
studies have underscored the impact of both the quan-
tity and nature of infiltrating cells in TME on the
response to immunotherapy in lung cancer, particularly
focusing on T lymphocytes and mononuclear macro-
phages. Notably, research by Zemin Zhang et al. has
emphasized the important role of T cell migration and
transformation in non-small cell lung cancer.12 Wu K
et al. made a notable contribution by differentiating
tumour-associated macrophages (TAMs) into M1-TAMs
and M2-TAMs, elucidating their distinct roles in anti-
tumour and tumour-promoting functions. Their work
shed light on the significant involvement of macro-
phages in tumour genesis and development.13 There-
fore, it becomes imperative to thoroughly characterize
tumour cells, lymphocytes, mononuclear macrophages,
and other relevant components in order to explore
comprehensive biomarkers and future druggable targets
in the era of immunotherapy.

In recent years, single-cell RNA sequencing has un-
dergone rapid development, allowing for the clear
distinction of cell origins and the comprehensive display
of interactions between various cells. It has emerged as
a crucial tool for characterizing the TME and identifying
potential biomarkers across multiple cancer types.14

Previous studies have delved into the creation of prog-
nostic or predictive biomarkers, either based on the
overarching TME characteristics or specific components
revealed through single-cell sequencing, albeit inde-
pendently.15 For instance, Jiang A et al. developed a 6-
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gene prognostic model based on the overall TME char-
acteristics in patients with LUAD using 10× scRNA-
seq.16 Pang J et al. emphasized the crucial role of
neutrophil-related genes, considering different neutro-
phil subsets with varying differentiation states and
established a 6-gene prognostic model.17 Chen J et al.
unveiled the inhibitory capability of naive-like B cells
towards lung cancer cells, driven by the secretion of four
factors known to negatively regulate cell growth and
impact prognosis, thereby suggesting them as potential
prognostic biomarkers.18 Additionally, Zemin Z et al.
detailedly described the heterogeneity of infiltrated
CD8+T cells and Treg cells, providing a new way to
classify patients.12 However, to date, there have been no
biomarkers that exhibiting both prognostic and predic-
tive potential by combining considerations of both
tumour heterogeneity and infiltrating immune cells.

Herein, we provided a comprehensive portrayal of
the single cell-characterised TME landscape in LUAD,
and developed an integrated signature incorporating
both tumour heterogeneity and TME based on high-
precision single-cell transcriptome analysis, aiming to
offer insights for prognosis stratification and potential
guidance for the selection of treatment strategies.
Methods
Experimental design
14 Patients with pathologically-diagnosed lung adeno-
carcinoma underwent surgical resections at the National
Cancer Center/Cancer Hospital and Chinese Academy
of Medical Sciences were prospectively recruited as
NCC cohort from May 18th 2017 to Apr 9th 2018. All
patients had signed informed consent. Tumour tissues
and matched normal tissues were both collected from
each patient for single-cell tagged reverse-transcription
(STRT)-single cell analysis, with detailed methods as
previously reported.19 Rigorous quality control measures
were employed to ensure high cell viability for single-
cell RNA-seq. This study received approval from the
ethics committees of the National Cancer Center (NCC-
22/250-3454, NCC-22/429-3631, NCC1798).

Dimension reduction and unsupervised clustering
By using STRT technology, we isolated single cells from
14 tumours and 14 adjacent tissues of 14 patients. Single-
cell cDNA amplification was performed based on a
modified STRT-seq protocol. The constructed libraries
were sequenced on HiSeq 4000 system as paired-end
150-bp reads. After removing the low quality, poly A,
TSO, and adapter contaminated reads, 6985 cells were
obtained through filtering based on specific conditions,
ensuring that the proportion of red blood cells was less
than 2%, and the proportion of mitochondria was less
than 10%. Then, we used R package Seurat 3.2.2 to create
SeuratObject, and candidate cells filter by the following
criteria: min.cells = 10 & nFeature_RNA >2000 &
www.thelancet.com Vol 102 April, 2024
nFeature_RNA <12,000 & percent.mt < 10 & percent.
HB < 2. Finally, we acquired 5543 cells in total for sub-
sequent analysis. We generated normalized expression
matrices using the log 2 (TPM/10 + 1) and function
ScaleData in Seurat. To reduce the data dimension, we
performed principal component analysis with top 2000
variable genes characterised by FindVariable function.
The first 50 principal components were used as input to
perform clustering based on shared nearest neighbor
(SNN) algorithm at a resolution of 2. Further dimen-
sionality reduction was performed by unsupervised t-
distributed stochastic neighborhood embedding (t-SNE)
analysis using RunTSNE function in Seurat. DimPlot
function was applied to visualize the clustering results.

Cell–cell interaction analysis
We employed CellPhoneDB20 to identify significant
ligand-receptor pairs within samples. Specific expres-
sion of a receptor by one cell type and a corresponding
ligand by another cell type was identified to reflect the
potential interaction between cell types. The interaction
score was determined as the total mean of the average
expression values of individual ligand-receptor partners
within their respective interacting pairs of cell types.
The expression of any complexes generated by Cell-
PhoneDB was calculated as the sum of the expression
values of their constituent genes.

Identification of differentially expressed genes and
functional analysis
We employed the “FindAllMarkers” function within the
Seurat package (v3.2.2) to identify differentially
expressed genes (DEGs) across various groups. Signifi-
cant DEGs were selected from the genes with P
value ≤ 0.01 and average fold change (avglog FC) ≥ 0.5
after applying a logarithmic transformation, setting the
stage for further analysis and visualization. To gain in-
sights into the biological significance of these important
DEGs, we conducted Gene Ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis. These analyses were per-
formed using the Metascape platform (http://
metascape.org). Additionally, we explored pathway
enrichment comparisons across various combinations
of the two clusters through Gene Set Enrichment
Analysis (GSEA). For GSEA, we utilized a matrix
encompassing all genes detected in our dataset. We
employed the desktop tool available for download at
http://software.broadinstitute.org/gsea/index.jsp to
perform GSEA. We further conducted Gene Set Varia-
tion Analysis (GSVA) utilising the GSVA package 34. To
determine differences between distinct cell groups, we
utilized a linear model provided by the Limma package.

Cell developmental trajectory
We inferred the cell lineage trajectory of T cells and
monocytes/macrophages (Ma/Mo)Ma/Mo cells using
3
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Monocle 2.21 To start, we utilized the ‘relative2abs’
function in Monocle2 to convert TPM values into
normalized mRNA counts. Subsequently, we created an
object with the ‘expression Family = negbinomial. size’
parameter, in accordance with the Monocle2 tutorial. To
identify DEGs, we employed the differentialGeneTest
function on each cluster, selecting relevant genes with q-
value <1e-8 were assessed to order the cells for subse-
quent pseudotime analysis. Once the cell trajectories
were constructed, we conducted an analysis of differ-
entially expressed genes along the pseudotime, once
again utilising the differentialGeneTest function. Sub-
sequently, plot cell trajectory was performed to visualize
cells order in pseudotime progression.

Simultaneous gene regulatory network analysis
To measure the difference between cell clusters based
on transcription factors or their target genes, SCENIC, a
new computational method used in the construction of
regulatory networks and in the identification of different
cell states from scRNA-seq data,22 was performed on all
single cells, and the preferentially expressed regulons
were calculated by the Limma package.23 Only regulons
significantly upregulated or downregulated in at least
one cluster, with adj. P-value <0.05, were involved in
further analysis.

Public data acquisition and pre-processing
We conducted a comprehensive search in publicly
available databases, including The Cancer Genome
Atlas (TCGA) and Gene Expression Omnibus (GEO), to
access mRNA expression data and clinical information
related to LUAD. TCGA, GEO databases were used to
search mRNA expression and clinical information of
LUAD. We identified a total of 9 public LUAD cohorts
for validation. To ensure the reliability of our analysis
and the relevance of our findings, we carefully curated
these datasets. We excluded patients who lacked suffi-
cient follow-up information from further consideration.

In-house patient cohorts
We incorporated two additional in-house datasets into our
study. One dataset comprised 183 patients with stage I-III
LUAD who had undergone surgery (NCC-bulk cohort).
The second dataset consisted of 40 patients with advanced-
stage lung cancer who received treatment with single anti-
PD-(L)1 antibodies at our centere (NCC-ICIs cohort). For
bulk RNA sequencing, we obtained Formalin-Fixed and
Paraffin-Embedded (FFPE) samples from the NCC-bulk
cohort and NCC-ICIs cohort. The RNA extraction,
sequencing library construction, sequencing and FASTQ
data quality control were performed in accordance with
the protocol by Nick D.L. Owens et al.24

In-vitro cell experiments
The human lung cancer cell line H1650
(RRID:CVCL_B260) and PC-9 (RRID:CVCL_B260) were
procured from the Cell Resource Centere at Peking
Union Medical College, which serves as the headquar-
ters of the National Infrastructure of Cell Line Re-
sources (NSTI). Both cell lines were validated and
recently assessed to ensure they were free of myco-
plasma contamination.

H1650 and PC-9 cells were transfected with
FAM83A, ITGB4, OAS1, FHL2, S100P, FSCN1 siRNAs
and normal cell in parallel using Lipofectamine 3000.
Following transfection for 24 h, we evaluated cell
viability using the CellTiter 96 AQueous Non-
Radioactive Cell Proliferation Assay (MTS), following
the manufacturer’s guidelines (Promega). Simulta-
neously, cell proliferation test and cell scratch test was
conducted following previously-reported protocols.25

Full length of DBH-AS1, CST3, HLA-DPB1 and
SFTPD were constructed into plasmid pCDNA3.1 vector
and electroporated into T cells from Peripheral blood
mononuclear cells (PBMCs) who volunteered for. Then
enzyme linked immunospot assay (ELISPOT) test was
conducted following protocols.26 Then the cells were
subsequently subjected to flow cytometry analysis under
Human anti-cytokine (CD3, CD4, CD8) detection anti-
bodies (RRID:AB_400457 and AB_398476) using the
BD FACSymphony™ A1 flow cytometer, supported by
BD FACSDiva™ software, following manusfacturer’s
guidelines.27

SPP1 was constructed into plasmid pCDNA3.1 vec-
tor and electroporated into Ma/Mo cells from Peripheral
blood mononuclear cells (PBMCs) who volunteered for.
CD206 is a highly expressed co-stimulatory molecule in
M2-type macrophages after polarization, so we applied it
as a marker of macrophage polarization. Flow cytometry
was then performed to sort the isolated macrophages
and determine the number of macrophages expressing
CD206 in both the experimental and control groups.

Signature construction
To analyse the gene signature within the context of a gene
expression matrix E, we initiated a process involving gene
binning. Initially, we categorized genes into 50 expression
bins based on their average expression levels across the
sample set. Ei,j denotes the expression value of gene i in
sample j. The average expression of a gene i across a set of
N samples is defined as∑jEi,j/N.The Raw Score of a gene
i in sample j is defined as: Raw Score i,j= (Ei,j−∑jEi,j)/N.
Next, we introduced the concept of a gene signature S,
comprised of K genes, with kb genes situated in bin b. We
implemented random sampling of S-compatible signa-
tures to facilitate normalization. A random signature was
considered S-compatible if it consisted of a total of K
genes, with kb genes residing in each bin (b). To compute
the overall expression of a gene i in sample j, we employed
the following formula: OEi,j = Raw Scorei,j–Random
Scorei,j. The overall expression of a gene i in sample j is
then defined as: OEi,j = Raw Scorei,j−Random Scorei,j.
Our scoring formula is: Score = (OEDBH-AS1+
www.thelancet.com Vol 102 April, 2024
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OECST3+OEHLA-DP1+OESFTPD)–(OEFAM83A + OEITGB4+
OEOAS1+OEFHL2+OES100P + OEFSCN1+OE SPP1).

Statistical analysis
For NCC cohort, the lockup date of follow-up was July
28th, 2022, with a median follow-up time of 52.4
[interquartile range (IQR): 39.8, 62.3]. The origin and
start times for survival analysis were the same. The
survival analysis was carried out using R function survfit
from survival package. Kaplan–Meier survival curves
were plotted, and log-rank test was performed using R
function ggsurvplot from survminer package. Cox
regression analysis was applied to determine the hazard
ratio (HR)28,29 along with its corresponding 95% confi-
dence interval (95% CI). Wilcoxon rank-sum test was
used to compare groups of variables. Kruskal–Wallis test
was used to compare three or more groups of variables.
Fisher’s exact test was used to compare categorical var-
iables. Clinicopathological features associated with lung
cancer and significantly associated with survival through
univariable Cox regression analyses (with an alpha level
<0.2) were included in the multivariable Cox regression
analyses. A statistical significance threshold of P < 0.05
was used. Statistical analysis was performed using R
(version 4.0.3).

Role of funders
This study was independently conducted by authors and
the funders had no role in study design, collection,
analysis, interpretation, manuscript writing and
submission.
Results
The single cell-originated landscape and cell–cell
mutual interaction of patients with lung
adenocarcinoma
STRT seq was performed on tumour tissues and
matched normal tissues from 14 patients with LUAD
(NCC cohort). The clinicopathological characteristics of
these patients were listed in Table 1 and the study
flowchart was shown in Fig. 1. A total of 5543 cells were
included for analysis, revealing the presence of seven
major cell types based on their characteristic expression
of typical cell markers. These cell types included
epithelial cells, alveolar cells, and various immune cell
populations, such as Ma/Mo, T lymphocytes, B lym-
phocytes, mast cells, and follicular dendritic cells
(Figure S1a).

Generally, the most annotated cells were Ma/Mo
cells, followed by EPCAM + epithelial cells, and T lym-
phocytes. Almost all EPCAM + epithelial cells were
captured in tumour tissues compared to normal tissues,
suggesting the captured EPCAM + epithelial cells
mainly represented tumour cells in our study. In all
patients, a higher abundance of T lymphocytes was
observed in tumour tissues compared to normal tissues.
www.thelancet.com Vol 102 April, 2024
However, inconsistent results could be observed across
different clinical stages. Among patients in the early
stages (Stage I-II), normal tissues exhibited a higher T
cell count, whereas in patients with late stages (Stage III-
IV), tumour tissues recruited more T cells, suggesting a
progressive increase in T cell infiltration within tumour
tissues as the tumour developed, underscoring the sig-
nificance of T cell-targeted immunotherapy particularly
for patients in advanced stages. In contrast, Ma/Mo cells
were predominantly enriched in normal tissues, partic-
ularly in patients with advanced stages, highlighting the
need for further exploration of the potential therapeutic
strategies targeting Ma/Mo cells (Fig. 2a).

To provide a more comprehensive and direct
illustration of the immune status, we conducted
further analyses of innate and adaptive immune cell
infiltration concerning different regions and stages.
Our findings revealed that innate immune cell infil-
tration (Ma/Mo cells, Mast cells, Dendritic cells) was
notably more pronounced in normal tissues, while in
contrast, tumour tissues exhibited a higher level of
adaptive immune invasion (T cells, B cells), particu-
larly in patients with advanced stages when compared
to normal tissues (Fig. 2b). However, there were no
difference in immune status between tumour tissues
and normal tissues in patients with early stage
(Figure S1b). These results suggested that the signif-
icance of adaptive immunity increases progressively
with the tumour development, while innate immunity
primarily functions within the adjacent immune
microenvironment.

Moreover, we focused on the difference between
relapsed vs. non-relapsed patients. 12 out of 14 patients
had complete follow-up information, and the other two
patients were lost to follow-up due to their subjective
withdrawl from the regular visit or on-line communi-
cation. Among the 12 patients, six patients experienced
disease recurrence, with the median follow-up time of
52.4 [IQR 39.8, 62.3] months. Among the relapsed pa-
tients, the proportion of Ma/Mo cells was significantly
higher compared to the non-relapsed ones, again
emphasizing the potential significance of Ma/Mo cells
in tumour progression (Fig. 2a).

To better illustrate the interaction between tumour
cells and immune cells, we conducted a detailed analysis
of cell-to-cell communication involving EPCAM + cells
and other immune cells. Our findings revealed that the
interactions between Ma/Mo cells and EPCAM + cells,
as well as Ma/Mo cells and T cells, were more pro-
nounced in tumour tissues compared to normal tissues,
highlighting the close interplay between the immune
system and malignant cells, as well as the intimate
mutual interactions among various immune cell types
within the tumour environment (Fig. 2c). Further
ligand-receptor analyses revealed significant enrichment
of AXL-GAS6 and CXCR3-CXCL9 interactions in the
communication between tumour cells and macrophages
5
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NCC TCGA GSE31210 GSE8894 GSE68571 GSE42127 GSE4573 GSE37745 GSE30219 GSE50081 NCC-bulk NCC-ICIs NCC-ICIs

N 14 522 226 138 86 176 130 172 106 170 183 40 22

Cancer
Type

LUAD LUAD LUAD LUAD + LUSC LUAD LUAD + LUSC LUAD LUAD + LUSC LUAD + LUSC LUAD + LUSC LUAD Lung
cancer

LUAD

Agea

(years)
58.3 ± 9.0 65.4 ± 10.0 59.3 ± 7.8 60.8 ± 9.5 63.8 ± 9.8 66.3 ± 9.7 67.5 ± 9.8 63.8 ± 9.2 61.5 ± 11.6 68.8 ± 9.4 60.5 ± 8.8 56.9 ± 9.2 55 ± 8.9

Biological and Self-reported Sex

Female 8 (57%) 280 (54%) 121 (54%) 34 (24%) 51 (59%) 83 (47%) 48 (37%) 80 (47%) 20 (19%) 80 (47%) 105 (57%) 10 (25%) 9 (41%)

Male 6 (43%) 242 (46%) 105 (46%) 104 (75%) 35 (41%) 93 (53%) 82 (63%) 92 (53%) 86 (81%) 90 (53%) 78 (43%) 30 (75%) 13 (59%)

TNM Stage

I 6 (43%) 279 (53%) 168 (74%) – 67 (78%) 112 (64%) 73 (56%) 110 (64%) 75 (71%) 119 (70%) 79 (43%) – –

II 1 (7%) 124 (24%) 58 (26%) – 32 (18%) 34 (26%) 34 (20%) 18 (17%) 51 (30%) 44 (24%) – –

III 6 (43%) 85 (16%) – – 19 (22%) 26 (15%) 23 (18%) 23 (13%) 4 (4%) – 60 (33%) 5 (12.5%) 4 (18%)

IV 1 (7%) 26 (5%) – – – 5 (3%) – 4 (2%) 5 (5%) – – 35
(87.5%)

18 (82%)

Smoking

Ever 2 (14%) 356 (68%) 111 (49%) – 74 (86%) – 120 (92%) – – 23 (18%) 57 (31%) 24 (60%) 9 (41%)

Never 12 (86%) 166 (32%) 115 (51%) – 9 (10%) – 4 (3%) – – 92 (72%) 126 (69%) 16 (40%) 13 (59%)

TP53

MUT – 247 (47%) – – – – – – – – – – –

WT – 260 (50%) – – – – – – – – – – –

EGFR

70 (13%) 127 (56%) – – – – – – – – – –

WT 2 (14%) 437 (84%) 68 (30%) – – – – – – – – – –

KRAS

MUT – 140 (27%) 20 (9%) – 39 (45%) – – – – – – – –

WT – 367 (70%) 68 (30%) – 46 (54%) – – – – – – – –

ALK

MUT 1 (7%) 23 (4%) – – – – – – – – – – –

WT 13 (93%) 484 (93%) – – – – – – – – – – –

Platform – Illumina-
Hiseq

Affy.Plus 2 Affy.Plus 2 Affy.HuGeneFL Illu.WG-6 V3 Affy.U133A Affy.Plus 2 Affy.Plus 2 Affy.Plus 2 – – –

Reference – TCGA Okayama
et al., 2012

Lee et al.,
2008

Beer et al.,
2002

Tang et al.,
2013

Raponi
et al., 2006

Botling et al.,
2013

Rousseaux
et al., 2013

Der et al.,
2014

– – –

Abbreviations: LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; TP53, Tumour Protein P53; MUT, mutation; WT, wild type; EGFR, epidermal growth factor receptor; KRAS, kirsten rat
sarcoma viral oncogene; ALK, anaplastic lymphoma kinase; TKI, tyrosine kinase inhibitor; N/A = Not Applicable; SD, standard deviation. aMean (SD).

Table 1: The clinicopathological characteristics of patients enrolled.
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in tumour tissues (Figure S1c–d). In the communica-
tion between T cells and macrophages, we observed
significant enrichment of interactions involving HLA-
DP1/TNFSF13B and LAIR1/LILRB4. Notably, among
these ligands and receptors, HLA-DPB1 showed a
consistent positive correlation with prognosis, as
demonstrated consistently across TCGA and GSE 3141
dataset (Table S1).

The tempospatial distribution and the differential
gene expression analyses between heterogenous
subsets of EPCAM + cell
To identify candidate genes associated with tumour
development, we conducted a subdivision analysis of
EPCAM + cell subsets in 11 patients with adequate
EPCAM + cell annotated, revealing substantial hetero-
geneity among individuals (Fig. 1).
We conducted DGE analysis on EPCAM + cells,
comparing tumour tissues vs. adjacent normal tissues,
early-stage vs. late-stage cases, and relapsed vs. non-
relapsed patients. The immune-related functional
enrichment analysis revealed significant interactions be-
tween EPCAM + cells and both T cells and Ma/Mo cells,
underscoring their importance in the context of tumour
development (Figure S2a–l). Among the DEGs, we
identified 8 key genes consistently associated with prog-
nosis across multiple datasets, including DEGs between
tumour tissues vs. normal tissues (FAM83A, ITGB4,
OAS1, FHL2), between early vs. late stage (S100P,
FSCN1), and between relapsed vs. non-relapsed patients
(SFTPD, SPP1) (Table S1). Of these 8 genes, SFTPD was
identified as a protective gene, while the remaining 7
genes were associated with poorer prognoses based on
survival analyses across multiple datasets.
www.thelancet.com Vol 102 April, 2024
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Fig. 1: The overview of this study. 14 samples from the NCC cohort were analysed through STRT sequencing. By separately detecting differentially-
expressed genes and key genes of TME landscape, EPCAM cells, T cells and Ma/Mo cells, 11 genes (HLA-DPB1, FAM83A, ITGB4, OAS1, FHL2, FSCN1,
S100P, SFTPD, SPP1, DBH-AS1, CST3) were obtained to construct a prognostic and immunotherapeutic predictive signature with validation from public
datasets and in-house cohorts. Abbreviations: STRT, Single-cell Tagged Reverse Transcription; EPCAM, epithelial cell adhesion molecule; Ma/Mo,
macrophage and monocyte; TME, tumour microenvironment; HR, hazard ratio.
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The temporal/spatial distribution, the subset
transformation analyses and the differential gene
expression analyses between heterogenous subsets
of T cells
Next, we subcategorized T cells into four traditional
subsets: naïve T cells, proliferative T cells, cytotoxic T
cells and exhausted T cells, and further investigated the
critical factors associated with T cell subset trans-
formation (Figure S3a).

We observed a significant enrichment of naïve T cells
in adjacent normal tissues, while tumour tissues
www.thelancet.com Vol 102 April, 2024
predominantly contained a higher proportion of prolif-
eration T cells, cytotoxic T cells, and almost all exhausted
T cells, suggesting that T cells infiltrating tumour tis-
sues underwent a complete immune process of activa-
tion, proliferation, and exhaustion within the immune
microenvironment (Fig. 2d). In patients with early stage,
we observed a higher presence of naïve T cells and an
absence of exhausted T cells. Conversely, in patients
with late stage, there was an increased abundance of
proliferative T cells, cytotoxic T cells and exhausted T
cells, suggesting that T cell-mediated killing processes
7
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Fig. 2: The subdivision analyses of EPCAM cells, T cells and Ma/Mo cells. (a) Cell fraction difference between tumour vs. normal, relapsed vs.
non-relapsed in different patient groups. P values were determined by Fisher’s exact test. (b) The differences in adaptive and innate immune
infiltration between tumour tissue and normal tissue in patients with all stages and late stages separately. P values were determined by
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were more prevalent as the tumour progressed (Fig. 2d).
In patients with early stage, we observed increased
proliferation of T cells in tumour tissues compared to
normal tissues. In contrast, in patients with late stage,
exhausted T cells firstly appeared, and the fraction of
cytotoxic T cells decreased in tumour tissues compared
to normal tissues, again indicating that infiltrated T cells
initiated to proliferate in the primary stage of tumouri-
genesis while generally exhausted as tumour developed
(Fig. 2e). The further function analyses of these four
subsets emphasized different hallmark function of
different phase of T cells (Figure S3b–e).

To identify key factors associated with T cell trans-
formation, we conducted T cell differentiation trajectory
analysis, followed by DGE analysis and transcription
factor analysis among various CD8+ T cell subsets. Our
findings revealed a noticeable differentiation process
from proliferative T cells to cytotoxic T cells and
exhausted T cells within tumour tissues, emphasizing
the importance of identifying key factors related to the
transformation from cytotoxic T cells to exhausted T
cells (Fig. 2f). Through DGE analysis, we identified
several genes associated with the transformation from
cytotoxic T cells to exhausted T cells. Based on following
validation of survival analysis, we pinpointed two key
genes, DBH-AS1 and CST3, that consistently correlated
with a favourable prognosis across multiple datasets
(Figure S3f, Table S1). The transcription factor analyses
comparing cytotoxic and exhausted T cells revealed that
cytotoxic T cells were more inclined to immune pro-
cesses, while exhausted T cells were more linked to cell
metabolism (Fig. 2g).

The temporal/spatial distribution and the
differential gene expression analyses between
heterogenous subsets of Ma/Mo cells
Given the high heterogeneity of Ma/Mo cells, we further
characterised Ma/Mo cells using multiple specific
markers, revealing the presence of five distinct sub-
populations, namely classical monocytes, immunosup-
pressed monocytes, granulocytes, THBS1+ macrophages,
and HLA-DRB6+ macrophages (Figure S4a).

We observed a significant increase in monocytes,
including both classical monocytes and immunosup-
pressed monocytes, in tumour tissues compared to
normal tissues, regardless of whether patients were in
the early or late stage of the disease (Fig. 2h). This
Wilcoxon rank-sum test. (c) The analysis of cellular interaction in EPCAM
***P＜ 0.001. P values were determined by Fisher’s exact test. (d) Cell fra
values were determined by Fisher’s exact test. (e) Cell fraction of T cell sub
T cell differentiation trajectory analysis between tumour/normal tissues
between cytotoxic T cells and exhausted T cells. (h) Cell fraction of Ma/M
were determined by Fisher’s exact test. (i) Cell fraction of Ma/Mo cell sub
Ma/Mo cell differentiation trajectory analysis. (k) The heatmap of differ
epithelial cell adhesion molecule; Ma/Mo, macrophage and monocyte; DE
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highlighted the consistent and underlying immune
suppression status within tumour tissues and under-
scored the potential for future interventions targeting
these monocytes, especially the immunosuppressed
monocyte subset, to reshape the immune microenvi-
ronment. Interestingly, THBS1+ macrophages were
predominantly found in normal adjacent tissues, irre-
spective of the patient’s stage, indicating the stability of
this subset in the peritumoural environment throughout
tumour development (Fig. 2h). HLA-DRB6+ macro-
phages were predominantly observed in samples from
patients with late stage, suggesting a gradual increase in
the interaction of this macrophage subset with tumour
cells as the disease progressed (Fig. 2i). Similarly, Ma/
Mo cell pseudotime inference analysis exhibited a
comparable distribution pattern, it revealed that
immunosuppressive monocytes had a tendency to
differentiate into classical monocytes, together consti-
tuting the two most prevalent subsets of Ma/Mos in
tumour tissues, highlighting the importance of
exploring factors that might promote this trans-
formation in the future (Fig. 2j).

We next conducted analyses of the function and
hallmark pathways among different Ma/Mo subsets,
revealing distinct physiological processes emphasized by
each subset (Fig. 2k, Figure S4a–c). In general, classical
monocytes and HLA-DRB6+ macrophages exhibited a
more active inflammatory response. Furthermore, the
differential functional analysis comparing tumour and
normal tissues indicated an inflammatory reaction in
THBS + macrophages (Figure S4c and d).

To identify key genes related to prognosis, we con-
ducted a DGE analysis of Ma/Mo cells comparing
tumour tissues to normal tissues (Figure S4e and f), and
identified SPP1 to be differentially expressed in tumour
tissues as well as consistently associated with poorer
prognosis in multiple datasets (Table S1), the same gene
identified by DGE analysis in EPCAM + cells between
relapsed/non-relapsed patients.

The in-vitro validation of candidate genes
To further validate the function of candidate genes, we
conducted in-vitro cell experiments on the selected 11
key genes.

Overall, the selected 11 key genes were: gene related
to immunocytes interactions (HLA-DPB1), genes spe-
cifically prognosis-related in tumour cells (differentially-
+ cell, Ma/Mo cell and T cell with different type of cells. **P ＜ 0.01;
ction of T cell subset in tumour/normal tissues and early/late stage. P
set in tumour/normal tissues in patients with early/late stage. (f) The
. (g) The heatmap of differentially-expressed transcriptomic factors
o subset in tumour/normal tissues, and early and late stage. P values
set in tumour/normal tissues in patients with early/late stage. (j) The
ent functions in different Ma/Mo subsets. Abbreviations: EPCAM,
Gs, differentially expressed genes.
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expressed genes between tumour tissues/adjacent tis-
sues [FAM83A, ITGB4, OAS1, FHL2] & early stage/late
stage [S100P, FSCN1] & relapsed/non-relapsed [SFTPD,
SPP1]), genes related to T cell transformation (DBH-
AS1, CST3), and gene associated with Ma/Mo cell
distribution (SPP1, the same gene as differentially-
expressed genes of EPCAM + cells between relapsed/
non-relapsed patients). Among them, HLA-DPB1,
SFTPD, DBH-AS1 and CST3 were positively correlated
with survival, while the rest demonstrated negative
correlation with the survival (Table S1).

We conducted cell experiments using specific
siRNAs for genes with different functions. After be-
ing transfected with FAM83A, ITGB4, OAS1, FHL2,
S100P, and FSCN1 siRNAs, we observed a significant
inhibition of cell proliferation and migration ability in
H1650 and PC-9 cell lines (Fig. 3a–e). After being
electroporated with DBH-AS1, CST3, HLA-DPB1, and
SFTPD, peripheral blood mononuclear cells (PBMC)
derived T cells with overexpression of these genes
displayed significantly enhanced immune effects, as
indicated by ELISPOT assays, as well as notably
higher expression levels of CD3 and CD8, as
demonstrated by flow cytometry (Fig. 3f–j). After be-
ing electroporated with SPP1, the PBMC-derived
macrophages exhibited an enhanced M2 polarization
(Fig. 3k). These in-vitro results all aligned with the
clinical findings mentioned earlier, providing further
validation of the prognostic capability of these candi-
date genes.

The prognostic signature development and
validation
Given the crucial role of various cells and their in-
teractions in the immune microenvironment, we sub-
sequently combined the candidate genes to establish an
integrated prognostic signature.

The 11-gene signature was established based on the
positive or negative impact on survival: Score = (OEDBH-

AS1 + OECST3 + OEHLA-DP1 + OESFTPD)−(OEFAM83A +
OEITGB4 + OEOAS1 + OEFHL2 + OES100P + OEFSCN1 + OE
SPP1), classifying High-Score and Low-Score subgroup.

Next, we assessed the prognostic performance of the
signature in nine public datasets and our in-house
dataset (NCC-bulk cohort with 183 samples, with a
median follow-up time of 66.3 [ IQR: 41.4, 72.2 ]
months). The baseline clinicopathological characteris-
tics of these datasets were summarized in Table 1. In
TCGA and eight GSE cohorts, patients in the High-
score group exhibited significantly prolonged overall
survival (OS) compared to those in the Low Score group
(Fig. 4a, Table S2). In our in-house validation NCC-bulk
dataset, we also observed a significantly longer OS in
patients in the High-Score subgroup compared to the
Low-Score subgroup (median OS NA [not applicable] vs.
NA, HR 0.41 [95% CI 0.22–0.76], P = 0.0074, log-rank
test.) (Fig. 4b, Table S2).
To validate the signature’s independence as a prog-
nostic biomarker, we conducted multivariate analyses.
The results indicated that, among important clinico-
pathological characteristics such as age, gender, TNM
stage, smoking status, etc., the 11-gene scoring signa-
ture could function as an independent biomarker
(Table 2).

The immunotherapeutic predictive potency of the
signature
To evaluate the signature’s predictive potency for
immunotherapy, we conducted immune microenviron-
ment analyses using CYBERSORT and XCELL, and also
performed survival analyses in one in-house cohort,
which comprised patients with lung cancer treated with
immune checkpoint inhibitors, stratified by the model.

In the High-Score group, CD8+ T lymphocytes were
the most commonly enriched cells, while in the Low-
Score group, M0/M1 macrophages predominated.
Additionally, the immune score, stroma score, and
microenvironment score were generally higher in the
High-Score group, indicating a more active immune
microenvironment (Figure S5). Functional analyses
revealed that the Low-Score group was linked to mitosis
and cell proliferation, while the High-Score group
showed associations with antigen presentation, mem-
brane transport, and other immune reactions. These
findings underscore the “hot” immune microenviron-
ment in the High-Score group and suggest the model’s
potential predictive power for patients undergoing
immunotherapy (Figure S6).

Therefore, we enrolled an in-house cohort of 40
patients with lung cancer treated with single immune
checkpoint inhibitors (named NCC-ICI cohort, Table 1,
with a median follow-up time of 19.7 [IQR: 8.5, 42.9]
months). In 40 patients with OS results, patients in
High-Score group harbored a significantly longer OS
than those in Low-Score group (Median OS NA vs. 18.3
months, HR 0.37 [95% CI 0.16–0.88], P = 0.025, log-
rank test). In 29 patients with progression-free sur-
vival (PFS) outcomes, patients in High-Score group
had a longer PFS compared to those in Low-Score
group (Median PFS 5.6 vs. 3.4 months, HR 0.62
[95% CI 0.29–1.34], P = 0.18, log-rank test), although
not statistically significant, there was a clear trend
(Fig. 4c). For the 22 patients with LUAD, patients in
High-Score subgroup also exhibited a statistically
higher OS and significantly higher PFS (median OS
NA vs. 28.9 months, HR 0.36 [95% CI 0.11–1.12],
P = 0.073, median PFS 17.9 vs. 2.0 months, HR [95%
CI 0.11–1.08], P = 0.021, log-rank test) (Fig. 4c,
Table S2). These results indicated the potential of this
11-gene signature to stratify beneficiaries from
immunotherapeutic strategies, especially in patients
with LUAD.

Thus, we drew a clinical flow-diagram to demon-
strate the overall survival rate of patients with different
www.thelancet.com Vol 102 April, 2024
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Fig. 3: Results of In-vitro cell experiments. (a) The scatter plot shows the expression difference of multiple genes in multiple lung cancer cell lines.
The black arrow represents H1650 and the red arrow represents PC9. (b) The fold change of the gene expression following multiple gene respectively
knockdown in PC-9 cells was confirmed by RT-PCR. (c) The cell variability curve demonstrated a significant decrease in cell survival following genes
knockdown in PC9 and H1650. (d) Wounding assay shows cells movement following genes knockdown after 24-h. Scale Bar = 100 μm. (e) The bar
chart shows the distance of migration by the cells of genes knockdown in PC-9 and H1650. (f) The flow cytometry results revealed the presence of the
percentage of CD3 cells in the peripheral blood mononuclear cells (PBMCs) of patients with overexpression of DBH-AS1, CST3, HLA-DPB1 and SFTPD.
(g) The flow cytometry results the percentage of CD4 and CD8 in PBMCs of patients. (h) and (i) Elispots assay shows number of spots signature in
DBH-AS1, CST3, HLA-DPB1 and SFTPD overexpressed cells of PBMCs. The horizontal lines denoted the mean quantity of spots per well. Scale
Bar = 2 mm. (j) ELISA assay shows ACP activity in genes overexpressed cells of PBMCs. (k) The flow cytometry results revealed the presence of the
percentage of CD206 cells in PBMCs with SPP1 overexpression. All experiments were conducted independently three times. The error bars refer to the
standard deviation of the values. P values were determined by independent t-test. Two-tail paired t-test for b and c by mean with SD; One-way analysis
of variance for e, i and j by mean with SD; Chi-square test for f, g and k by medium with 95% CI. Abbreviations: RT-PCR, reverse transcription-
polymerase chain reaction; OE, overexpression model; siRNA, small interfering RNA; CI, confidence interval.
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stages stratified by this signature (stage I-III referenced
on NCC-bulk cohort, and stage IV on NCC-ICI cohort),
and made suggestions on clinical surveillance and
treatment selection (Fig. 4c).
www.thelancet.com Vol 102 April, 2024
The prediction of drug sensitivity by the signature
To validate the representativeness of the 11 key genes,
we conducted drug sensitivity prediction analyses using
both all gene expression profiles and the 11 key genes.
11
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Fig. 4: The validation of the signature and the overallflow-diagram. (a) The OS stratified by High/Low score in TCGA dataset, GSE8894,
GSE68571, GSE42127, GSE4573, GSE37745, GSE50081, GSE31210, GSE30219 datasets. P values were determined by log-rank test. (b) The OS
stratified by High/Low score in NCC-bulk cohort. P values were determined by log-rank test. (c) The OS and PFS stratified by High/Low score in
all patients and patients with LUAD in NCC-ICI cohort, respectively. P values were determined by log-rank test. (d) The clinical flow-diagram
demonstrating different overall survival rate of different stages and suggestions for surveillance stratified by the signature. (e) Drug sensitivity
prediction analysis of 183 samples to 198 drugs was predicted based on 11-gene signature and prediction based on all genes (n = 55,880) of the
RNA-seq expression profile. P values were determined by Kruskal–Wallis test. Abbreviations: CI, confidence interval; DEGs, differentially
expressed genes; HR, hazard ratio; ICI, immune checkpoint inhibitors; IC50, half maximal inhibitory concentration; OS, overall survival; PFS,
progression-free survival; TCGA, The Cancer Genome Atlas.

Articles

12 www.thelancet.com Vol 102 April, 2024

http://www.thelancet.com


Dataset Factor HR (95% CI) P value Dataset Factor HR P value

TCGA 11-gene signature (High Score vs. Low Score) 0.5 (0.4–0.8) 0.0046 GSE68571 11-gene signature (High Score vs. Low Score) 0.3 (0.1–0.8) 0.021

Age (years) 1.0 (1.0–1.0) 0.10 Age (years) 1.0 (1.0–1.1) 0.34

Sex (Male vs. Female) 1.3 (0.8–1.9) 0.27 Sex (Male vs. Female) 1.5 (0.6–3.7) 0.38

Stage (III-IV vs. I-II) 2.6 (1.7–4.0) <0.0001 Stage (III vs. I) 5.3 (2.1–13.4) 0.00045

Smoking status (Ever vs. Never) 0.7 (0.4–1.2) 0.15 Smoking (Ever vs. Never) 0.8 (0.2–4.0) 0.81

GSE31210 11-gene signature (High Score vs. Low Score) 0.3 (0.1–0.8) 0.017 KRAS status (Mutated vs. Wild Type) 1.5 (0.6–3.5) 0.40

Age (years) 1.0 (1.0–1.1) 0.17 GSE50081 11-gene signature (High Score vs. Low Score) 0.6 (0.3–1.0) 0.056

Sex (Male vs. Female) 1.1 (0.5–2.7) 0.82 Age (years) 1.0 (1.0–1.0) 0.22

Stage (II vs. I) 3.2 (1.6–6.4) 0.0010 Sex (Male vs. Female) 1.9 (1.1–3.2) 0.020

Smoking status (Ever vs. Never) 1.2 (0.5–3.0) 0.70 Stage (II vs. I) 1.9 (1.2–3.2) 0.012

GSE37745 11-gene signature (High Score vs. Low Score) 0.6 (0.4–0.9) 0.0055 Smoking status (Ever vs. Never) 0.8 (0.4–1.8) 0.62

Age (years) 1.0 (1.0–1.0) 0.0056 GSE30219 11-gene signature (High Score vs. Low Score) 0.7 (0.5–1.0) 0.048

Sex (Male vs. Female) 1.0 (0.7–1.4) 0.90 Age (years) 1.0 (1.0–1.1) <0.0001

Stage (III-IV vs. I-II) 1.7 (1.1–2.6) 0.012 Sex (Male vs. Female) 1.4 (0.9–2.3) 0.14

GSE4573 11-gene signature (High Score vs. Low Score) 0.6 (0.4–1.0) 0.043 T Stage (T3-4 vs. T1-2) 1.7 (1.1–2.6) 0.014

Age (years) 1.0 (1.0–1.0) 0.15 N Stage (N+ vs. N0) 1.8 (1.3–2.7) 0.0015

Sex (Male vs. Female) 1.3 (0.8–2.3) 0.27 M Stage (M+ vs. M0) 3.2 (1.3–8.0) 0.014

Stage (III-IV vs. I-II) 2.08 (1.1–3.7) 0.029 NCC-bulk 11-gene signature (High Score vs. Low Score) 0.5 (0.2–0.9) 0.033

Smoking status (Ever vs. Never) 0.5 (0.1–2.3) 0.38 Age (years) 1.0 (1.0–1.1) 0.25

GSE42127 11-gene signature (High Score vs. Low Score) 0.5 (0.3–0.9) 0.013 Sex (Male vs. Female) 1.8 (0.6–5.0) 0.27

Age (years) 1.0 (1.0–1.1) 0.033 Stage (III-IV vs. I-II) 3.2 (1.7–6.1) 0.00039

Sex (Male vs. Female) 1.2 (0.7–2.1) 0.52 Smoking status (Ever vs. Never) 1.6 (0.6–4.4) 0.34

Stage (III-IV vs. I-II) 1.7 (1.0–3.1) 0.072

Abbreviations: OS, overall survival; TCGA, The Cancer Genome Atlas; NCC, National Cancer Center; HR, hazard ratio; CI, confidence interval; KRAS, kirsten rat sarcoma viral oncogene; DFS, disease free
survival. The dichotomized continuous variables were based on previous studies.30–32

Table 2: The Multivariable Cox regression analyses of OS in separate cohort.
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We obtained response data for 198 drugs from the Ge-
nomics of Drug Sensitivity in Cancer (GDSC) database.
In the NCC cohort with 14 patients, bortezomib, dacti-
nomycin, and daporinad were the most sensitive drugs,
while carmustine and temozolomide were the most
resistant drugs when considering all gene expression
profiles (n = 20,317) (Figure S7). Notably, the drug
prediction results based on the 11-gene signature were
consistent with those based on all genes. We further
validated these findings in the NCC-bulk cohort, where
bortezomib, daporinad, dactinomycin, and docetaxel
were identified as sensitive drugs, while nelarabine,
carmustine, and temozolomide were insensitive. This
consistency underscores the representativeness of these
11 genes across all RNA profiles (Fig. 4e).
Discussion
In this study, we systematically characterised the tumour
heterogeneity and immune microenvironment landscape
of LUAD using comprehensive single-cell analysis. We
provided a detailed exploration of the spatial and temporal
dynamics of key cell subsets, delved into the functions and
intrinsic transformation modes of key immune cells
(T cell and Ma/Mo cell subsets), and ultimately con-
structed a prognostic and immunotherapeutic predictive
www.thelancet.com Vol 102 April, 2024
signature based on 11 key genes closely related to tumour
development, immune cell interactions, T cell trans-
formation, or Ma/Mo cell distribution. To the best of our
knowledge, this study represented the frontier of a
comprehensive single-cell-characterised signature
combining both tumour heterogeneity and immune
microenvironment for prognosis stratification.

Current immunotherapy, especially anti-PD-1/PD-L1
therapies, primarily relies on T cell-mediated adaptive
immunity.33,34 We emphasized the importance of T cell-
based treatment for patients with advanced stage due to
the gradually increasing adaptive immune infiltration,
particularly T cells, as tumours developed. Additionally,
research has underscored the essential role of innate im-
mune components in activating and modulating the
adaptive anti-tumour immune response, leading to the
exploration and development of therapeutic strategies tar-
geting the innate immune system, including NK cells and
macrophages.35 Our study focused on Ma/Mo cells and
provided further evidence to support the consideration of
these cells as potential therapeutic targets in future
research.

With advances in cell-originated detection tech-
niques and bioinformatics, we have gradually unveiled
cell–cell interactions. For instance, granulocytes can
influence the recruitment and activation of dendritic
13
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cells, thus impacting T cell responses,36 and macro-
phages were reported to interact closely with CD8+ T
cells and CD4+ T cells.37,38 However, limited interpre-
tation of mutual interactions has hindered the trans-
lation of these observations into clinical practice. In our
study, we highlighted the close interactions between T
cells and Ma/Mo cells, as well as between
EPCAM + cells and Ma/Mo cells, highlighting the
crucial and central role of Ma/Mo cells in the TME. We
also identified a key interaction-related gene, HLA-
DPB1, a transmembrane glycoprotein mainly found on
the surfaces of lymphocytes and macrophages, which
plays an important role in promoting T cell proliferation
and cytotoxic reactions.39

Currently, the intrinsic transformation of cell subsets
has been recognized as a promising and potential
exploration hotspot, especially the T cell transformation,
due to its vital importance in TME. Among all the T cell
subsets, the cytotoxic T cell was the most important
component to kill cancer cells, however the inevitable
transformation to exhausted T cell limited the long-
lasting anti-tumour effect, making it important to
explore the transition pattern and dig out key factor for
promoting the T cell exhaustion. Our study provided a
visual representation of the T cell evolution process
alongside tumour development and highlighted the
active metabolic processes associated with exhausted T
cells. Previous research has suggested that cholesterol
may contribute to the dysfunction and exhaustion of
CD8+ T cells,40 implying the potential of targeting
metabolic pathways, such as reducing cholesterol levels,
as a promising strategy to reverse T cell dysfunction.
Additionally, we identified two key genes related to T
cell transformation, DBH-AS1 and CST3, which could
enhance T cell immune activity.41,42 These findings may
provide insights for future research on T cell recovery.

As another important component in the immune
landscape, Ma/Mo cells were demonstrated to interact
closely with both tumour cells and T cells,37,38,43,44 also
shown in our study, implying its essentiality in TME. In
our study, we identified a key gene, SPP1, which was
significantly related to both tumour development and
macrophage polarization. SPP1 has been confirmed by
previous studies to up-regulate PD-L1 mediating the
polarization of macrophages and promote immune
escape, and high expression of SPP1 can lead to low
infiltration of CD8+ T cells and high infiltration of M2
macrophages. Other than the regulatory effect on M2
polarization and T cells, SPP1 was also reported to
associate with the apoptosis of lung adenocarcinoma
cells.45,46 Our finding again highlighted the importance
and rationale for focusing on SPP1 for future drug
development.

Recent studies have highlighted the concept of
tumour niche integrity, where the components of the
immune environment and tumour cells form an
interactive and symbiotic entity.2,47 Current prognostic
or predictive models were often based on individual
components, lacking the comprehensive integration of
different elements, which limited their representation of
the integrated TME. In our study, we combined the key
factors of heterogeneous tumourigenesis with essential
microenvironment components to create an integrated
signature based on single-cell characterization. This
signature stratified patients into High-Score or Low-
Score groups, effectively predicting prognosis, and was
validated in both public databases and our in-house
cohorts, indicating a more intensive surveillance of pa-
tients with Low-Score in clinical practice. Importantly, it
also showed the potential to predict improved
progression-free survival in our in-house cohort treated
with immune checkpoint inhibitors. Patients in our
immunotherapy cohort were treated with single-agent
immunotherapy using PD-1 or PD-L1 inhibitors,
including a variety of commonly used immunotherapy
regimens (atezolizumab, Nivolumab, pembrolizumab,
toripalimab, sintilimab, etc.). Our results suggest the
selection of treatment in patients with Low-Score might
have to turn to other therapeutic strategies.

Furthermore, in drug prediction analysis, we found
that the response predictions using our 11-gene signa-
ture and all 55,880 genes from RNA-seq expression
profiles significantly overlapped. This indicated the
representativeness of the selected genes across all RNA
profiles, underscoring the promising feasibility and
potential practicality of our signature for specific RNA
sequencing due to its representativeness and cost-
effectiveness.

This study has certain limitations. Firstly, we used a
previous generation single-cell sequencing technique,
which identified fewer cells compared to newer tech-
niques like 10× sequencing, leading to the cautious
interpretation of our results. However, this technology
allowed a measurement of broader range of gene ex-
pressions enabling the detection of long noncoding
RNA (lncRNA); Moreover, the key genes we identified
demonstrated the expected functionality in subsequent
in vitro experiments, and their representative nature was
confirmed in drug sensitivity analysis, further under-
scoring the high specificity of this technology. Secondly,
the analyses involving other crucial immune cells, such
as B cells, NK cells, etc. were limited, future research
with higher depth and diversity could provide denser
information. Thirdly, the unavoidable confounding fac-
tors, the measurement bias of sequencing data from
different platforms, and the built-in selection bias in
HRs48 may impact the viability of our model thus further
standardization was warranted.

In conclusion, we provided a comprehensive view of
the single cell-characterised TME landscape in LUAD,
underscoring the importance of the current immuno-
therapy approach for advanced-stage tumour and
www.thelancet.com Vol 102 April, 2024
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highlighted the potential for future drug development
by targeting TME components. Moreover, we developed
an integrated signature consisted of 11 key genes
incorporating both tumour heterogeneity and TME, as
validated in multiple independent public datasets and
our in-house cohorts, demonstrating its potential for
prognostic stratification and treatment selections.
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