
Introduction
Breast cancer is the most common cancer in women 
worldwide, with an incidence of more than 410,000 new 
cases per year in the USA, Europe and Japan. In OECD 
countries, the chance of developing invasive breast 
cancer in a woman’s life is about 1 in 8 (13% of women) 
[1]. The disease is curable in the early stages. About 50% 
of patients have stage II or III tumors at the point of 
diagnosis and are candidates for chemo- and biological 
therapy. This patient group would benefit from tailored 
therapy that is based on biomarker testing. Although 
genetic alterations have been extensively characterized in 
breast cancer, we are just beginning to understand the 
changes in metabolism [2,3] that occur downstream of 
genomic and proteomic alterations in different types of 
breast tumors.

The metabolome reflects alterations in the patho-
physiological state of biological systems [4]. Metabolic 
alterations can be the consequence of genetic changes in 
metabolic pathways, but they also reflect control of 
enzymatic activities by signaling pathways, catabolism 
(including membrane turnover) and competitive inhibi-
tion or activation by small molecules. Because small 
changes in enzyme activities can lead to large changes in 
metabolite levels, the metabolome can be regarded as the 
amplified output of a biological system [5]. Metabolomics - 
in analogy to the terms transcriptomics and proteomics - 
is defined as the study of all metabolites in a cell, tissue or 
organism for a comprehensive understanding of a 
biological process [6]. This is based on recently developed 
technologies that allow the quantitative investigation of a 
multitude of different metabolites. A comprehensive 
coverage of metabolism can be achieved only by a 
combination of analytical approaches. The most popular 
approaches for metabolomics involve gas chromatography-
mass spectrometry (GC-MS), liquid chromatography-
mass spectrometry (LC-MS) or nuclear magnetic reso-
nance (NMR) spectroscopy. MS-based approaches are 
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typically more sensitive. NMR spectroscopy can be applied 
to intact tissue samples and even to observe metabolites in 
vivo [7], with the technology being referred to as magnetic 
resonance spectroscopy in the clinic.

Recent metabolomics studies have improved the 
under standing of the basic mechanisms underlying 
cancer pathogenesis, which will - after translation to the 
clinical setting - help to improve treatment strategies. For 
example, phospholipids in tumor tissue are synthesized 
de novo; this process is increased during tumor progres-
sion [8]. This suggests that therapeutic approaches 
targeting lipid biosynthesis for cellular membranes might 
be a promising approach in breast cancer.

Here, we provide an overview of cancer metabolism, 
focusing on recent advances in understanding breast 
cancer metabolism. We examine results from the 
European FP7 METAcancer project, which combined the 
three major technologies for metabolic profiling (GC-
MS, LC-MS and NMR) to maximize metabolite coverage 
(Figure  1). This project aimed at characterizing the 
metabolism of breast cancer to identify new biomarkers 
and new targets for therapeutic interventions, and we 
compare these findings with results from other groups 
working in this area. We discuss how such data can be 
further evaluated by mining available databases, includ-
ing expression data at the transcriptional level, as well as 
by additional investigations on protein and mRNA 
markers relevant for metabolic alterations.

What do we know about cancer metabolism?
Several recent publications have shown that metabo-
lomics can be used to investigate changes in tumor tissue 
related to apoptosis, hypoxia and energy metabolism 
[9,10]. However, it is not clear how mutations in tumor 
cells, and specifically in metastatic tumor cells, help 
establish the known hallmarks of cancer cell metabolism 
[11,12]. Otto Warburg made the seminal observation [13] 
that glucose usage in tumors does not lead to production 
of excess NADH for subsequent oxidative phos-
phorylation in mitochondria for production of ATP, but 
instead lactate accumulates, even when enough oxygen is 
present for mitochondrial respiration. Despite this 
seemingly less efficient use of glycolysis, large amounts of 
glucose are taken up by tumor cells. Clinically, this 
phenomenon can be used for the detection of tumors by 
positron emission tomography (PET) imaging. In tumor 
cells glucose is not used for production of NADH and 
ATP, but instead biosynthetic pathways are activated that 
lead to accumulation of building blocks for biopolymers 
that sustain rapid cell growth, namely glycerol-3-
phosphate (via glycerol-3-phosphate acyltransferase 1 
(GPAM) from triose phosphate intermediates) [14] and, 
more importantly, NADPH production via the pentose 
phosphate pathway [15]. NADPH is a key metabolite for 

cell division [16]. Although many studies of NADPH 
production have focused on its role in the regulation of 
redox milieus, in particular for antioxidant activity via 
regenerating glutathione pools [17], NADPH production 
can more easily be explained by the general need for 
reductive energy in anabolic reactions [15], specifically in 
fatty acid biosynthesis [18] and increased generation of 
polar lipids that are required for production of cellular 
membranes during cell division. Secondary products of 
the pentose phosphate pathways are pentose phosphates, 
which are required for production of nucleotides in DNA 
and RNA and thus can also indicate cell division. The 
increase in metabolic fluxes towards biosynthesis of 
lipids is also marked by accumulation of cholines, which 
has been observed by NMR-based metabolomics in 
several studies [19,20]. However, until recently, the 
scientific community had been puzzled by one remark-
able discrepancy: if many classic mutations in cancer 
biology can be explained by fostering dysregulation of 
cellular metabolism in favor of production of choline, 
glycerol-3-phosphate and NADPH as building blocks 
[18] for polar membrane lipids, how is the main fatty acid 
biosynthetic substrate acetyl-CoA produced? When 
glyco lysis is used in conjunction with mitochondrial 
oxidation of NADH, acetyl-CoA is a direct product of 
oxidative decarboxylation of pyruvate through the 
pyruvate dehydrogenase complex. However, as stated 
above, cancer cells produce lactate instead of pyruvate; 
thus, less acetyl-CoA is produced through glycolysis 
(Figure 2). In a recent study using metabolomics, stable 
isotope flux analysis demonstrated that glutamine meta-
bolism provides acetyl-CoA in the reverse reaction of 
citrate synthase, using citrate lyase, which splits citric 
acid into oxaloacetate and acetyl-CoA [21]. Under 
mutation of isocitrate dehydrogenase 1 [22], flux in the 
Krebs cycle is partly reversed under hypoxic conditions, 
unlike in normoxic media [21] (Figure  2). Citrate is 
produced using reductive carboxylation of glutamine-
derived α-ketoglutarate and, overall, much less NADH is 
produced in cancer cells than in non-malignant cells 
under aerobic conditions. These results showed that 
studies in cancer cell lines that were undertaken under 
normal oxygen levels might lead to false interpretations, 
and that greater care must be used to mimic in vivo 
tumor microenvironments in mechanistic studies target-
ing metabolic regulation.

One of the other profound changes that accompany 
tumor proliferation is alteration in the proportion of 
choline-containing metabolites. Choline, phosphocholine 
and glycerophosphocholine can be observed in clinical 
magnetic resonance spectroscopy. Numerous studies 
have noted alterations in choline metabolism during 
cancer cell metabolism, and these metabolites have been 
used for classifying tumor types [23,24] during the 

Denkert et al. Genome Medicine 2012, 4:37 
http://genomemedicine.com/content/4/4/37

Page 2 of 9



immortalization of cell lines [25] and during apoptosis 
and necrosis [26,27]. These changes are thought to 
represent the turnover in cell membranes, with 
perturbations in choline metabolism reflecting either the 
synthesis or degradation of the cell membranes in the 
tumors. In addition, changes in mobile lipid droplets 
have been observed [28]. Such lipids move through the 
cytosol at a similar rate to small molecules; their 

tumb ling nature allows detection by solution state NMR 
spectro scopy [29]. Mobile lipid droplets have been 
associated with a number of processes, including pro-
lifera tion [30], inflammation [31], malignancy [32], growth 
arrest, necrosis [33] and apoptosis [34], using specific 
NMR resonances for unsaturated or saturated lipid acyl 
chains. Mobile lipids are thought to represent either the 
accumulation of lipids in cytosolic vesicles or the 

Figure 1. Workflow of samples in the METAcancer project. Tissue samples were analyzed in parallel with mass spectrometry (GC-MS and LC-MS) 
and nuclear magnetic resonance (NMR) spectroscopy. The metabolic profiles were linked to the analysis of mRNA markers and protein markers. 
DASL, cDNA-mediated annealing, selection, extension, and ligation assay; FFPE, formalin-fixed, paraffin-embedded; RT- PCR, reverse transcriptase 
PCR; TMA, tissue microarray.
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formation of microdomains in the cell membrane [35]. 
Furthermore, there is evidence that some of these lipid 
changes may be characteristic of distinct processes. A 
selective accumulation of polyunsaturated lipids com-
pared with saturated lipids appears to be distinct to 
apoptosis rather than necrosis [36,37], for example, in 
glioma [28].

Metabolomic approach for classification of tissue 
types
The European FP7 METAcancer consortium analyzed 
breast tumor and non-malignant breast tissue samples 
from over 300 patients with three different technologies 
(Figure  1). In combination, more than 600 metabolites 
could be structurally identified, consisting of complex 
lipids [8], primary metabolites and a vast array of un-
identified metabolic signals. Although metabolome 
coverage cannot be computed [38] (unlike for other 
genomics technologies), this number of identified meta-
bolites is certainly the largest ever reported in human 
breast carcinoma. Metabolomic technologies are 

comple mentary in metabolome coverage and can be used 
for structural identification of hundreds of metabolites 
[39], many of which could be identified and linked to bio-
chemical pathways and to evaluate changes in metabolic 
pathways in different types of tissue.

As expected, the largest differences were observed 
between normal breast tissue and malignant breast 
tumors [8]. With the metabolomics approach it is 
possible to distinguish between normal and malignant 
breast tissue in unsupervised and supervised analyses; an 
example is shown in Figure 3. Unsupervised multivariate 
statistics is used to display the overall data variance in 
large datasets, whereas supervised statistics tries to 
identify only those data that contributed most to a 
statistical question [40], such as different cancer stages. 
Metabolomics data from breast cancer patients can be 
used in a similar way to gene expression microarray data, 
using, for example, hierarchical clustering and heat maps. 
Using data generated in the METAcancer project [8], the 
resulting heat map (Figure  3) of 15 normal and 289 
cancer tissue samples showed a clear separation of 

Figure 2. Simplified schema of major metabolic fluxes in (a) aerobic non-malignant cells and (b) hypoxic tumor cells of breast carcinoma. 
Thickness of arrows and bold text indicate relative intensity of fluxes. CL, citrate lyase; CS, citrate synthase; IDH1, isocitrate dehydrogenase 1; PDH, 
pyruvate dehydrogenase. According to Metallo et al. [21], the increased flux from glutamine into the Krebs cycle by mutation of IDH1 provides the 
acetyl-CoA for lipid biosynthesis under hypoxic conditions, because most pyruvate in cancer cells is converted to lactate. Increase in flux through 
the pentose phosphate pathway delivers ribose-5-phosphate needed for DNA synthesis and NADPH required for lipid biosynthesis. Conversely, less 
NADH is produced through pyruvate dehydrogenase or the Krebs cycle, as mitochondrial respiration for ATP production is less favored.
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normal and cancer samples on the basis of the detected 
metabolites with very few outliers or cancer samples that 
were misclassified as non-malignant tissues. In addition, 
metabolic differences were observed between different 
types of breast cancer. The major groups of breast cancer, 
hormone receptor-positive and -negative tumors, have a 
different biological background, different clinical charac-
ter istics and are treated by different therapeutic strate-
gies. Similarly, it was possible to detect differences 
between grade 1 or 2 and grade 3 tumors. Therefore, we 
conclude that it is possible to generate meaningful 
biological information from tumor tissue by metabolic 
profiling.

Changes in membrane phospholipid synthesis are 
involved in the progression of breast cancer
Analyzing the LC-MS lipidomics data, significant differ-
ences were observed in the tumor compared with normal 
tissue (Figure  3) [8]. In tumors, it was observed that 
tumor grade and estrogen receptor (ER) status affect the 
lipid profiles most radically. Phospholipids containing 
major (C16:0 fatty acids, where 16 is the number of 
carbon atoms and 0 is the number of double bonds) or 
minor (C14:0 and C18:0 fatty acids) products of the fatty 
acid synthase (FASN) enzyme, showed the highest 
changes regarding ER status and grade. The majority of 

the ER-negative tumors are of grade 3 [41], which was 
evident also in our patient population. Thus, either grade 
or ER status could explain these results. The ER status 
only within grade 3 tumors and the grade only within ER-
positive tumors was therefore analyzed, confirming that 
both ER status and grade independently affected the 
same lipids, with the highest levels found in ER-negative 
grade 3 tumors. Increased levels of several related phos-
pholipids were also associated with poorer overall 
survival of the patients [8].

On the basis of the lipidomics findings and using the 
GeneSapiens in silico transcription database [42] for data 
mining, key enzymes of lipid biosynthesis were identified 
(Figure 4). These enzymes were stained by immuno histo-
chemistry in tumor tissue and analyzed together with the 
LC-MS data of the same patient cohort. In particular, 
FASN and acetyl-CoA carboxylase  1 (ACACA), which 
are two major enzymes involved in de novo fatty acid 
synthesis, were increased at the protein level in the 
tumors that had high levels of phospholipids containing 
de novo synthesized fatty acids [8]. These results show 
that it is possible to connect protein expression data by 
immunohistochemistry with LC-MS lipidomic profiles of 
the identical tumors.

To evaluate the function of these lipid-metabolizing 
enzymes for breast cancer proliferation and apoptosis, 

Figure 3. Heat map derived from the GCTOF MS metabolomics dataset comparing 289 tumor samples and 15 normal samples [14]. 
Metabolites are plotted on the y-axis and samples on the x-axis. Data were log2-transformed and median centered in a metabolite-wise manner. 
Blue indicates data points with a value smaller than the median of the respective metabolite and red indicates higher values. The hierarchical 
clustering reveals that the measured metabolites can separate normal and cancer tissues. Only two cancer samples cluster together with the 
normal samples, and one normal sample behaves as an outlier.
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breast cancer cell lines were investigated by down regu-
lating several central genes using small interfering RNA 
(siRNA) - for example, elongation of very long chain fatty 
acid-like 1 (ELOVL1), FASN, stearoyl-CoA desaturase 
(SCD), and sterol regulatory element-binding protein 
cleavage-activating protein (SCAP). This resulted in 
decreased cell viability and lower phospholipid levels 
measured by LC-MS [8]. Increased de novo lipid synthesis 
is typically found in tumor cells but not in normal cells, 
which would make it a promising target for new tumor-
specific therapeutic approaches.

NMR-based metabolites separate ductal from 
lobular carcinoma, different tumor grades and 
different molecular subtypes
In addition to MS-based approaches, 1H high-resolution 
magic angle spinning (HRMAS) 1H NMR spectroscopy 
can be used to profile tumor metabolism in intact 
tumors. HRMAS 1H NMR spectroscopy has been applied 
to a wide range of intact tumors, including prostate 
cancer, human brain tissue, liposarcoma, malignant 
lymph nodes, kidney cancer and glioma [36,43-46].

Using a combination of HRMAS 1H NMR spectroscopy 
and multivariate statistics, spectra from cancer and 
normal tissues are readily separated, both normal breast 
and ductal tissue [47,48]. Normal breast tissue typically 
does not contain many of the small-molecule metabolites, 
such as amino acids, glycolytic intermediates and 
choline-containing metabolites, found in breast tumors.

A more difficult, but more relevant, classification 
problem is the discrimination of different tumor types or 
grades. Using HRMAS 1H NMR spectroscopy and 
multivariate statistics, invasive ductal cancer could be 
separated from lobular cancer [49]. Using data from the 
METAcancer consortium [8], tumors of grade  1 and 3 
could readily be separated by NMR-based metabolomic 
analysis, although tumor grade  2 formed a dispersed 
group between these two extremes, as might be expected. 
The separation of ER-positive and progesterone-
receptor-positive tissue by NMR was poor and only 
marginally better than the random predicted model from 
the negative samples. Giskeødegård and colleagues [50] 
have shown that HRMAS 1H NMR spectroscopy can be 
used to determine ER and progesterone receptor status 
and lymph node status, with classifications ranging from 
68% to 88% for these three status markers on a dataset of 
50 tumors. At present, data from neither of these studies 
[49,50] are validated as clinical diagnostic tools for 
treatment, but they do indicate that NMR-based metabo-
lomics detects altered metabolism in different subtypes 
of breast tumors despite the challenges of building 
datasets from multiple sites and of having variable 
amounts of healthy breast tissue associated with biopsy 
samples, as in the METAcancer study.

Combined markers - GPAM analysis and metabolic 
profiles
GPAM is one of the key enzymes in the biosynthesis of 
triacylglycerols and phospholipids. Therefore, the 

Figure 4. Overview of the analysis of lipid metabolism in breast tumors. Using LC-MS, lipidomic profiles were measured in breast tumor, and 
these profiles were linked to analysis of key enzymes by immunohistochemistry (IHC) in corresponding tumor tissue samples. From an in silico 
analysis of candidate lipid pathways, siRNA knockdown experiments were designed to evaluate the function of these lipid-metabolizing enzymes 
for breast cancer proliferation and apoptosis. The detailed results of this part of the project have already been published [8].
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expression of GPAM in malignancies is of particular 
interest as phospholipids are an important and major 
component of all cell membranes. To investigate the 
protein expression of GPAM, 228 breast cancer samples 
were immunohistochemically stained and evaluated [14]. 
This study showed that GPAM is differentially expressed in 
malignant breast tumors and that the levels of its substrate 
sn-glycerol-3-phosphate level are higher in breast cancer 
than in normal breast tissue. The immuno histochemical 
results showed a significant correlation of high cytoplasmic 
GPAM expression with negative hormone receptor status 
and a significant correlation of high GPAM expression 
with a better overall patient survival. In the metabolomic 
analysis, GPAM expression is associated with increased 
levels of phospholipids, especially phosphatidylcholines 
[14]. The results indicated that, in breast cancer, GPAM 
affects the level of phospholipids more than it does 
triglycerides, and most of the changes are independent of 
those associated with ER status and tumor grade. This 
implies that, at least in the context of breast cancer, the 
function of GPAM is directed more towards phospholipid 
production rather than triglyceride synthesis. Accordingly, 
it has been shown previously that increased de novo fatty 
acid synthesis is a hallmark of cancer cells and the products 
of this lipogenic pathway are directed mainly to the cell 
membrane phospholipids [8].

To extend the number of metabolic pathways covered 
by the analysis, an additional GC-MS-based metabolic 
analysis was performed. GC-MS-based analyses of 
metabolic impact or changes in metabolism have a long 
history in breast cancer research - for example, analysis 
of phospholipids [51], pharmacology (including tamoxifen 
metabolism) [52,53], exposure to xenobiotics [54], 
estrogen levels [55] or urinary metabolomic profiles 
[56,57]. However, clinical and biochemical phenotypes of 
large sets of breast cancer tissues had not been published 
until recently. Using retention-index-based metabolomic 
libraries [58], GC-MS-based metabolomics of breast 
cancer tissue analyses led to the identification of 467 
metabolites [14]. Of these, 161 metabolites had a known 
chemical structure and could be mapped to metabolite 
names. The analysis from the GPAM expression with the 
data showed 57 significantly changed metabolites 
(P < 0.05). Of these 57 metabolites, 19 could be identified 
[14]. Pathway analysis led to a more detailed investigation 
of GPAM, showing significant correlation of GPAM 
expression with survival of patients, clinico-pathological 
features and metabolomic and lipidomic profiles.

The identification of differentially regulated, but 
structurally unidentified, metabolites in untargeted meta-
bo lomic analyses remains a major bottleneck for 
advance ment of the field and more comprehensive 
understanding of cancer metabolism, including metabolic 
regulators. A novel approach using 

GC-MS-based accu rate mass spectrometry in 
conjunction with a chem informatics workflow recently 
showed how unknown metabolites can be identified from 
breast cancer tissues [59]. Accurate mass spectrometry 
can be used to derive unique elemental compositions 
[60], which are then used to screen a diverse set of 
biochemical and chemical databases. On average, over 
500 different chemical struc tures are retrieved in such 
accurate-mass-based searches [59]. The concept is to use 
multiple lines of evidence to constrain these hit lists - for 
example, by structure-based prediction of 
chromatographic retention times [61], by using 
substructure information [62], such as the number of 
acidic protons, and by excluding structures that do not 
match the detected accurate masses of ion fragmentation 
pathways [63]. Although this workflow method [59] is 
not yet available as a standalone software program, it 
outlines the pathway to new discoveries using advanced 
instrumentation and database queries.

Impact for cancer research and clinical 
management of breast cancer patients
Treatment options for breast cancer are initially identi-
fied according to the stage of the disease. There are 
several modes of treatment, including surgery, radio-
therapy, endocrine therapy and cytotoxic chemotherapy. 
However, the management of the disease for an 
individual patient will depend on many factors, including 
menopausal status, hormone receptor status and treat-
ment preferences. The final treatment regimen selected, 
following discussion with the patient, will depend on the 
individual circumstances, making it difficult to manage 
the disease by following a systematic treatment algor-
ithm. To enable a better stratification of patients, it is 
important to identify the pathways that are relevant for 
tumor progression and therapy response and to deter-
mine biomarkers that could be used to monitor the 
activity of those pathways.

Metabolomic analyses by GC-MS, LC-MS and NMR 
spectroscopy are suitable for the analysis of tumor tissue 
and provide valuable information that can be integrated 
with proteomic and transcriptomic data. This makes it 
possible to study the changes in malignant tumors by 
constructing a correlation network that consists of com-
bined RNA, protein and metabolite data. This will lead to 
new insights into the mechanisms of cancer progression 
and cancer patient management through improved 
molecular diagnostics leading to improved therapeutic 
concepts by selection of effective drugs as part of systems 
medicine. The METAcancer project has been the first 
large-scale effort to combine the three major 
metabolomic technology platforms for analyzing a major 
human disease. This improves the likelihood that genuine 
metabolic biomarkers for breast cancer tissues can be 
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detected and validated, and will eventually lead to 
diagnostic toolkits that will facilitate a much more 
precise predictive and prognostic assessment. Current 
research efforts are focused on the integration of high 
quality metabolomic data to proteomics and trans-
criptomics data to enable better insights into the cellular 
mechanisms that define the onset and progression of 
breast carcinoma as a basis for clinical applications.
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