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SUMMARY
Acute respiratory distress syndrome (ARDS) is the main complication of coronavirus disease 2019 (COVID-
19), requiring admission to the intensive care unit (ICU). Despite extensive immune profiling of COVID-19 pa-
tients, to what extent COVID-19-associated ARDS differs from other causes of ARDS remains unknown. To
address this question, here, we build 3 cohorts of patients categorized in COVID-19�ARDS+, COVID-
19+ARDS+, and COVID-19+ARDS�, and compare, by high-dimensional mass cytometry, their immune land-
scape. A cell signature associating S100A9/calprotectin-producing CD169+ monocytes, plasmablasts, and
Th1 cells is found in COVID-19+ARDS+, unlike COVID-19�ARDS+ patients. Moreover, this signature is essen-
tially shared with COVID-19+ARDS� patients, suggesting that severe COVID-19 patients, whether or not they
experience ARDS, display similar immune profiles. We show an increase in CD14+HLA-DRlow and
CD14lowCD16+ monocytes correlating to the occurrence of adverse events during the ICU stay. We demon-
strate that COVID-19-associated ARDSdisplays a specific immune profile andmay benefit from personalized
therapy in addition to standard ARDS management.
INTRODUCTION

The severe acute respiratory syndrome-coronavirus-2 (SARS-

CoV-2) virus has rapidly affected >30 million people worldwide,

requiring admission to intensive care units (ICUs) for >2 million

patients.1 Whereas most patients exhibit mild-to-moderate

symptoms, acute respiratory distress syndrome (ARDS) is the

major complication of coronavirus disease 2019 (COVID-19),2,3
Cell
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leading to prolonged ICU stays and a high frequency of second-

ary complications, notably cardiovascular events, thrombosis,

pulmonary embolisms, and strokes.1,4 The immune system

plays a dual role in COVID-19, contributing to both virus

elimination and ARDS development.5 Excessive inflammatory

response has been proposed as the leading cause of COVID-

19-related clinical complications, thus supporting intensive

efforts to better understand the specificities and mechanisms
Reports Medicine 2, 100291, June 15, 2021 ª 2021 The Authors. 1
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of SARS-CoV-2-induced immune dysfunction.6,7 Moreover,

even if therapies such as those provided by convalescent

plasma or neutralizing antibodies at an early stage of the disease

can lower the viral burden, this was demonstrated only in spe-

cific populations such as patients older than age 75,8 and no

antiviral treatment has yet been able to definitively prevent the

evolution of some patients toward deregulated inflammation

and critical respiratory complications. The benefit of corticoste-

roids in severe COVID-19 for lowering overall mortality is now

widely acknowledged.9,10 Conversely, steroid therapy was

shown to be harmful in other ARDS etiologies, such as in influ-

enza-associated ARDS,11 suggesting specific biological fea-

tures of COVID-19-related ARDS. A detailed understanding of

the COVID-19-specific immune dysfunctions underlying ARDS

development and severity is thus a high priority and will, it is

hoped, help us to adopt a specific therapeutic strategy.

A number of high-resolution studies have recently concen-

trated on the determination of circulatingmarkers that can distin-

guish severe from mild forms of COVID-19, providing a tremen-

dous amount of data describing phenotypic and functional

alterations in T cell, B cell, and myeloid cell subsets.12–25 In

particular, CD14+HLA-DRlow, CD14+CD16+, and immature

monocytes were demonstrated to be increased among periph-

eral blood mononuclear cells (PBMCs) from critically ill COVID-

19 patients.15,21,23,26–29 Interestingly, the monocyte number is

reduced in COVID-19 patients compared to influenza patients,

suggesting specific myeloid dysregulation.30 Various COVID-

19-related alterations of lymphoid cells have also been

described, including a T cell lymphopenia, predictive of patient

outcome; a broad T cell activation, including T helper cell 1

(Th1), Th2, and Th17; an alteration of B cell and T cell repertoires;

and a strong increase in plasmablasts, most prominently in

COVID-19 ARDS patients.14,17,25,31–33 Importantly, COVID-19

ARDS immune profiling was performed using healthy donors

as a control, thus precluding any conclusions on whether re-

ported immune alterations could be related to COVID-19 and/

or ARDS status. Answering this question has the potential to

decipher whether ARDS induced by SARS-CoV-2 is mechanisti-

cally different from other ARDS etiologies.

To fill this gap, we performed a high-throughput mass cytom-

etry approach on PBMCs obtained from 3 complementary series

of 18 COVID-19�ARDS+, 18 COVID-19+ARDS+, and 20 COVID-

19+ARDS� patients, including exploratory and validation

cohorts. We report common myeloid cell alterations in all

COVID-19 patients, which are absent from non-COVID-19

ARDS patients. This includes in particular a strong increase in

an unusual population of activatedmonocytes showing the upre-

gulated expression of CD169, associated with major COVID-19-

specific alterations of T and B cell compartments.

RESULTS

Study population
Analyses were performed on cohort 1 of 63 cryopreserved

PBMC samples isolated from 42 patients included in ICUs (n =

36) or infectious standard wards (n = 6). The demographic char-

acteristics of patients included are provided in Table 1 and Table

S1. All patients but 1 were classified as severe at admission,
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requiring oxygen at a flow rate >2 L/min. ARDS was defined in

accordance with international guidelines.34 Patients were classi-

fied in 3 groups: COVID-19�ARDS+ (n = 12, ARDS stages: 1mild,

4 moderate, 7 severe), COVID-19+ARDS+ (n = 13, ARDS stages:

8 moderate, 5 severe), and COVID-19+ARDS� (n = 17, including

11 from ICUs and 6 from infectious standard wards). In the

COVID-19+ARDS�, no statistical differences were noticed for

immune cell abundance or phenotype between ICU and stan-

dard ward patients. Within the COVID-19�ARDS+ group, ARDS

etiologies were bacterial pneumonia (n = 9), anti-synthetase syn-

drome (n = 1), and unknown (n = 2) (Table S1). For 21 patients, a

second blood sample obtained on day 7 (D7) after enrollment

was studied (n = 7 for COVID-19�ARDS+, n = 8 for COVID-

19+ARDS+, and n = 6 for COVID-19+ARDS�). In addition, a

validation cohort (cohort 2) was set up with 16 patients, with de-

mographic data detailed in Tables S1 andS2. Patientswere clas-

sified in 3 groups: COVID-19�ARDS+ (n = 6), COVID-19+ARDS+

(n = 5), and COVID-19+ARDS� (n = 3); additionally, COVID-

19�ARDS� (n = 2) samples were included. None of our patients

received corticosteroids at the time of the study nor immuno-

modulators. The presence of SARS-CoV-2 in respiratory speci-

mens (nasal and pharyngeal swabs or sputum) was detected

by real-time reverse transcription-polymerase chain reaction

(RT-PCR) methods. To rule out undetected infections, negative

RT-PCR samples were confirmed when possible by the absence

of neutralizing antibodies. Neutralizing antibodies were unde-

tectable for the 11 samples of the 18 COVID-19� patients for

which material was available. In contrast, neutralizing antibodies

were detected in 29 of 30 COVID-19+ tested. The timeline of the

sample collection is shown in Figure S1.

SARS-CoV-2 induces phenotypic changes in circulating
immune cells
To decipher the impact of SARS-CoV-2 on circulating immune

cells, we characterized PBMCs from COVID-19+ versus

COVID-19� patients at admission using two separate mass cy-

tometry panels exploring myeloid and lymphoid subsets,

respectively (Table S3; Key resources table). The full pipeline

of analysis is depicted in Figure S1. We performed an unbiased

discovery approach with CellCnn, a neural network-based artifi-

cial intelligence algorithm allowing the analysis of single-cell data

and detection of cells associated with clinical status.35–37 During

training, CellCnn learns combinations of weights for eachmarker

in a given panel that best discriminate between groups of pa-

tients. These weight combinations, called filters, can be used

to highlight the specific profiles of cells associated with patient

status. We identified the best-performing CellCnn filters for

both the myeloid and the lymphoid panels, highlighting a popu-

lation of cells significantly enriched in COVID-19+ patients as

compared to COVID-19� patients (p < 0.0001 for both panels)

(Figure 1A). Projecting these cells on t-distributed stochastic

neighbor embedding (t-SNE) maps generated with either the

myeloid or the lymphoid panels revealed that they fell into several

distinct areas (Figure 1B). The cells selected by the CellCnn filter

on the myeloid panel showed high expression for CD169, CD64,

S100A9, CD11b, CD33, CD14, and CD36 compared to back-

ground, while the cells selected by the CellCnn filter on the

lymphoid panel showed high expression for CD38 and CXCR3



Table 1. Patients’ characteristics for cohort 1

COVID-19�ARDS+ COVID-19+ARDS+ COVID-19+ARDS�

Patients D0/D7, n 12/7 13/8 17/6

Age, median (IQR) 62 (48.2–66.7) 59 (53.5–67.5) 55 (46–67)

Male, n (%) 7 (58) 10 (77) 12 (71)

ICU/clinical ward, n 12/0 13/0 11/6a

SAPS II, median (IQR) 44.5 (29.2–59.2) 33 (19.5–39.5) 22 (13–28)a

Length of stay in ICU, median (IQR) 11.5 (4.5–18.7) 15 (11–54) 2 (1–2)b

Length of stay in hospital, median (IQR) 18 (7–30.5) 22 (15–62.5) 9 (7.5–13)

Comorbidities

BMI, median (IQR) 26.4 (19.5–28.4) 28.6 (25–32) 28.1 (22.3–32.1)

Chronic cardiovascular disease, n (%) 1 (8.3) 3 (23) 1 (5.8)

Diabetes, n (%) 2 (16.7) 3 (23) 1 (5.8)

Chronic respiratory disease, n (%) 1 (8.3) 0 (0) 0 (0)

Chronic kidney disease, n (%) 0 (0) 2 (15.4) 0 (0)

Cancer, n (%) 3 (25) 0 (0) 0 (0)

Severity criteria

Maximal O2 (L/min), median (IQR) 10 (7.5–15) 14 (9.2–15) 3 (2–5)

Invasive ventilation, n (%) 12 (100) 13 (100) 0 (0)

PaO2/FiO2, median (IQR) 116.5 (75.2–161.9) 106 (95.5–240) 313 (218.5–340.3)

Events occurring during follow-up

Thromboembolic, n (%) 4 (33.3) 4 (30.8) 1 (5.8)

ICU-acquired infections, n (%) 2 (16.7) 7 (53.8) 0 (0)

Septic shock, n (%) 3 (25) 2 (15.4) 0 (0)

Renal failure, n (%) 5 (41.7) 8 (61.5) 0 (0)

Deaths, n (%) 4 (33.3) 1 (7.7) 0 (0)

IQR, interquartile range; SAPS II, simplified acute physiology score.
aAll patients except 1 required O2 at >2 L/min at admission.
bFor patients in ICU.

Article
ll

OPEN ACCESS
(Figures 1B and S2). These results were replicated in cohort 2

(Figure S3) and confirmed on a public set of data by using the

CellCnn analysis, showing high expression of CD14, CD36,

CD64, and CD169 cells on COVID-19+ patients (Figure S4).15

As a whole, this broad and unbiased approach reproducibly

showed that immune markers, in particular related to mono-

cytes, segregated COVID-19� and COVID-19+ patients.

SARS-CoV-2 induces CD169-expressing monocyte
subsets
To investigate circulating monocyte heterogeneity and define

consistent phenotypes, we used the FlowSOM algorithm. This

approach led to the identification of 15 monocyte metaclusters

from the myeloid panel (Figure 2A). In particular, Mo30, Mo11,

and Mo28 metaclusters were defined by higher expression of

CD16 and lower expression of CD14, CD36, and CD64, corre-

sponding to a non-classical monocyte phenotype. Mo21 and

Mo22 were defined by the high expression of S100A9 and the

low expression of CD36. Finally, Mo243 and Mo180 strongly ex-

pressed S100A9, CD169, and CD36. To assess the phenotypic

changes in monocytes during SARS-CoV-2 infection, we deter-

mined the frequencies of these metaclusters in each patient at

admission and performed hierarchical clustering on these values
(Figure 2B). The upper branch of the hierarchical clustering

included 20 COVID+ (10 ARDS� and 10 ARDS+) patients and 1

COVID�ARDS+ patient, whereas the lower branch included 10

COVID+ (7 ARDS� and 3 ARDS+) and 11 COVID�ARDS+ (chi-

square test = 0.001) (Figure 2B). We then analyzed the abun-

dance of individual metaclusters and identified only 4 of 15meta-

clusters as differentially represented between the 3 groups of

patients (Figures 2C and S2). In particular, within ARDS+ pa-

tients, Mo11 and M181 were less abundant in COVID-19+ pa-

tients (p < 0.01 and p < 0.05, respectively), while Mo243 and

Mo180 were more abundant (p < 0.05 and p < 0.001) (Figure 2C).

No differences were detected within COVID-19+ groups (ARDS+

versus ARDS�) (Figure 2C). Interestingly, Mo243 and Mo180

were both enriched in cells highly expressing CD169, CD64,

CD36, andCD14 (Figures 2A and 2D). In addition, Mo22was pre-

sent only in some COVID+ patients and also expressed CD169

(Figure 2B). Taken together, Mo243, Mo180, and Mo22 meta-

clusters were highly enriched in COVID-19+ patients when

compared to COVID-19� patients (p < 0.0001), with no differ-

ence regarding the ARDS status (Figure 2E). Accordingly,

CD169 was differentially expressed in COVID-19+ versus

COVID-19� patients (p < 0.001) (Figure 2E). Our study including

COVID-19 and non-COVID-19 critically ill patients suggests a
Cell Reports Medicine 2, 100291, June 15, 2021 3
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Figure 1. SARS-CoV-2 induces specific phenotype of circulating

immune cells

CellCnn analysis performed on single cells from myeloid (top) and lymphoid

(bottom) panels on 39 samples at admission (day 0) (COVID-19� [n = 9] and

COVID-19+ [n = 30])

(A) Frequencies of cells discovered by the best-performing CellCnn filter in

COVID-19� (blue) and COVID-19+ (orange) patients for each panel. Mann-

Whitney tests, ****p < 0.0001.

(B) Cells defined by the best-performing CellCnn filters enrichment shown on

tSNE and representative markers for each panel (CD14 and CD38 [see addi-

tional markers in Figure S2]).
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specificity of CD169 expression in COVID-19 patients, and

greatly extends previous single-cell RNA sequencing (scRNA-

seq) data showing an expansion of CD169-expressing mono-

cytes in COVID-19 patients compared to healthy donors (Fig-

ure 2F).15,25,38–40 We then performed the FlowSOM analysis on

cohort 2 and validated the enrichment of Mo243 and Mo180 in

COVID-19+ samples (Figures S3A and S3B), these metaclusters

also presenting a trend for high CD169 expression (Figure S3C).

Monocyte metacluster enrichment in COVID-19 is
correlated with a specific increase in effector memory
T cells and plasma cells
To define a more global immune pattern and the relationship be-

tween immune cells in the context of the SARS-CoV-2 infection,

we sought correlation between the frequencies of clusters of T,

natural killer (NK), B, and plasma cells (n = 136 clusters from

the lymphoid panel; Figure S1) and the 4 monocyte metaclusters

(Mo11, Mo181, Mo243, and Mo180) previously described. This

analysis identified 70 clusters with significantly correlated varia-

tions (p < 0.05) (Figure S2). To strengthen the relevance of these

correlations, we restrained further analysis to the 29 strongest

relationships (R > 0.5 or < ��0.5 and p < 0.01) between

Mo180 or Mo243 (the 2 metaclusters enriched in COVID-19 pa-

tients) and other immune cell subsets (Figure 3A; Table S4). As

expected, Mo180 and Mo243 metaclusters were correlated

(R = 0.93). Moreover, they were positively correlated with 18

clusters of T (n = 6), NK (n = 10), and plasma cells (n = 2), and

inversely correlated with 11 clusters of T (n = 9) and NK cells

(n = 2) (Figure 3A). Among positively correlated clusters,

plasmo_183 and plasmo_198 similarly expressed CD38, CD44,
4 Cell Reports Medicine 2, 100291, June 15, 2021
and CD27, whereas plasmo_183 was high for Ki-67 and human

leukocyte antigen-DR isotype (HLA-DR), corresponding to

an early plasma cell phenotype (Figure 3B). NK cells were

marked by CD7 and T-bet expression, NK_209 being CD8high,

and NK_241 and NK_197 displaying a Ki-67high prolifer-

ating phenotype. The related T8_147 and T8_161 clusters

exhibited a CD45RAhighCD45ROlowCCD7lowCD27lowTbethigh

CD38high effector phenotype. Few T4 clusters were positively

correlated with Mo180 and Mo243; among them, T4_106

displayed an effector memory proliferating phenotype (Ki-

67highCD45RAlowCCR7lowCD45ROhighCD27high and CTLA4high

PD1high). T4_25 was also marked by an effector memory

phenotype (CD45RAlowCCR7lowCD45RO+) and displayed a

CD27lowCD127+CCR6+CxCR3�CD161+ Th17 profile (Figure 3B).
Conversely, some T4 clusters were inversely correlated with

Mo_180 and Mo_243—in particular clusters T4_6, T4_20, and

T4_34—all three corresponding to naive cells (CD45RAhigh

CD45ROlowCCR7high), and T4_59 expressing a Th2 phenotype

(CCR4high). We then compared the abundance of these 29

lymphoid clusters correlated with Mo180 and Mo243 and high-

lighted the 22 differentially represented lymphoid clusters be-

tween the 3 groups of patients (p < 0.05) (Figures 3C and S2).

Only 7 clusters of CD4 T cells and 2 clusters of CD8 T cells

were at lower abundance in COVID-19+ARDS+ patients

compared to COVID-19�ARDS+ patients. As previously dis-

cussed, T4_6, T4_20, and T4_34 corresponded to naive cells,

whereas within the effector memory cells, T4_7 and T4_45

were CD127low, T4_24, T8_99, and T8_113 were CD127high

and T4_59 was CCR4high. Conversely, 13 clusters were enriched

in COVID-19+ARDS+ compared to COVID-19�ARDS+, including:

(1) CTLA4highPD1high effector memory activated CD4 T cells

(T4_106); (2) Tbethigh Th1-like CD8 effector phenotype (T8_146,

T8_147, and T8_161); (3) cytotoxic mature CD16+CD56low

CD7+Tbet+CD127� NK cells (NK_209, NK_241, NK_242, and

NK_244), with proliferating Ki-67high NK cells (NK_241); and (4)

proliferating plasmablasts (plasmo_183) and mature plasma

cells (plasmo_198) (Figures 3B and 3C). Of note, no cluster

was differentially expressed between COVID-19+ARDS+ and

COVID-19+ARDS� groups (Figures 3C and S2). Then, to explore

the whole immune profile and define relationships with groups of

patients, we performed a correspondence analysis (CA) using,

as a variable, the abundance of the myeloid (n = 4) and the

lymphoid (n = 22) clusters differentially expressed between

groups of patients (Figure 3D). CA was developed to analyze fre-

quency tables and visualize similarities between patients and co-

occurrence of cell subsets.41 The first and second dimensions of

the CA explained 80.5% and 13.5% of the difference, respec-

tively (Figure 3D). The top 10 cell populations accounting for

the difference between COVID+ and COVID� patients were

Mo243, Mo180, T8_146, NK_244, and T8_161 being increased

and Mo181, T4_6, Mo11, T8_99, and T4_45 being decreased

in COVID+. These subsets corresponded to an increase in in-

flammatory monocytes (CD169high CD64high), Tbethigh Th1-like

CD8 T cells, andmature NK cells and a decrease in naive T4 cells

and effector memory T4 and T8 cells. Interestingly, only the first

dimension of the CA segregated COVID-19+ARDS+ fromCOVID-

19�ARDS+ (p < 0.001), and no statistical differences was found

between COVID-19+ARDS+ and COVID-19+ARDS� (Figure 3D).
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Figure 2. CD169 monocytes are enriched in SARS-CoV-2-infected patients

(A) Heatmap of the 15 monocyte metaclusters defined after FlowSOM analysis.

(B) Relative abundance of metaclusters among monocytes for each patient and hierarchical clustering of COVID-19�ARDS+ (n = 12, green), COVID-19+ARDS+

(n = 13, blue), and COVID-19+ARDS� (n = 17, red).

(C) Abundance of metaclusters differentially expressed between groups, among singlet cells analyzed.

(D) Expression of the correspondingmarkers (meanmetal intensity) for background (gray), Mo11 andMo181 (orange), andMo243 andMo180 (blue) metaclusters.

(E) Abundance of Mo22, Mo180, and Mo243 and expression of CD169 (box and whiskers with 10th and 90th percentiles).

(F) Uniform manifold approximation and projection (UMAP) from scRNA-seq of COVID-19 patients (COVID-19) and healthy donors (healthy) highlighting CD14

and CD169 expression (data adapted from Wilk et al.25). Kruskal-Wallis test with Dunn’s multiple comparison correction, *p < 0.05, **p < 0.01, ***p < 0.001.
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Evolution of immune cell clusters between D0 and D7 in
COVID-19 patients defines high-risk clinical grade
We performed mass cytometry analysis for 21 patients at D7

of hospitalization, including 7 COVID-19�ARDS+, 8 COVID-

19+ARDS+, and 6 COVID+ARDS� patients, to follow up the ki-

netics of PBMC phenotypic alterations. The 42 samples (21 at

D0 and 21 at D7) were parsed by CA using, as a variable, the

abundance of myeloid and lymphoid clusters (Figure 4A). The

first and second dimensions of the CA explained 85.1% and

9% of the differences acquired between D0 and D7. The first

dimension captured the difference between D0 and D7 only for

COVID-19+ARDS+ (p < 0.01) (Figure 4A). Because of the limited

number of samples, only a trend was observed for COVID+

ARDS� (p = 0.062). The top 5 enriched populations accounting

for the differences between D0 and D7 for COVID-19+ARDS+ pa-

tients were Mo11, Mo181, T8_113, T4_34, and NK_197, corre-

sponding to an enrichment in non-classical monocytes

(CD14lowCD16highCD64lowCD36lowS100A9high), in monocytic
myeloid-derived suppressor cell (M-MDSC)-like (HLA-DRlow

S100A9high), in effector memory CD127high T8 cells, in T4 naive

cells, and in Ki-67high proliferating NK cells. These 5 cell subsets

were integrated in an immune score combining their fold change

between D0 and D7. To define the relevance of this immune

score in discriminating COVID-19 patients with unfavorable

prognosis, we built a clinical score as the sum of events occur-

ring during ICU stay (thromboembolic, ICU-acquired infection,

septic shock, renal failure, and death) (Table 1). Interestingly,

both the clinical and the immune scores were found to be corre-

lated in severe COVID-19 patients, irrespectively of their ARDS

status (Spearman R = 0.71; p = 0.006) (Figure 4B). Finally, we

analyzed changes between D0 and D7 of genes involved in the

interferon (IFN) pathway. We found an upregulation of IFNAR1

(interferon alpha and beta receptor subunit 1 gene) and IFNAR2

during time in COVID+ARDS+ (Figure S5A). Conversely, the evo-

lution of IFN type I target genes (ISG15, IFI27, IFI44L, RSAD2,

and IFIT1) revealed a specific downregulation in COVID+ARDS+
Cell Reports Medicine 2, 100291, June 15, 2021 5
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samples. Interestingly, both IFNAR score and type I IFN score,

obtained by combining the expression of IFN receptors and tar-

gets, respectively, presented a trend of correlation with the im-

mune score (Figure S5B), and the type I IFN score was signifi-

cantly correlated with the CD169 expression (Figure S5C).

DISCUSSION

Immune response to COVID-19 infection has been recently

intensively studied at both transcriptomic and proteomic levels.

However, most studies focused on either the lymphoid19,22,24 or

the myeloid compartments,12,21,23 and only a few performed a

wide analysis of the circulating immune landscape,13,16,25,42,43

thus precluding the definition of complex patterns of immune

parameter alterations associated with COVID-19 severity or

physiopathology. Moreover, these studies were designed to

identify differences in immune cell subset frequencies between

COVID-19 patients and healthy donors, and eventually corre-

lated with the severity of the disease, but did not include severe

non-COVID-19 patients as controls, although critically ill patients

were previously largely demonstrated to display immune reprog-

ramming.44 ARDS is a major adverse event occurring during

ICU stay, leading to an overall mortality rate of 40% to

60%. Whether COVID-19-associated ARDS is clinically and

biologically similar to other causes of ARDS remains controver-

sial.45,46 To address this point, we characterized for the first

time, by mass cytometry, the immune landscape in COVID-19-

associated ARDS compared to other causes of ARDS. We

demonstrated that an increase in CD169pos monocytes, corre-

lated with specific changes of T, plasma, and NK cell subsets,

defines COVID-19-associated ARDS and is not found in bacte-

ria-associated ARDS, suggesting a COVID-19-specific immune

reprogramming.

The amplification of CD169+ circulating monocytes has

already been highlighted in the context of COVID-19,15,23,38,47

and is reminiscent of other inflammatory conditions found in viral

infections, such as with human immunodeficiency virus or

Epstein-Barr virus, in which the CD169 sialoadhesin is induced

in an IFN-dependent manner on the surface of circulating mono-

cytes.48,49 Consistent with the inflammatory response, we

showed that the accumulation of CD169pos monocytes in

COVID-19+ patients is positively correlated with an increase in

plasmablasts and mature plasma cells, Th1-like CD8 effector

T cells, cytotoxic mature NK cells, and activated CD4 effector

memory T cells displaying a CTLA4highPD1high phenotype.

CD169+ activated monocytes were detected in mild disease23

and were proposed to rise rapidly and transiently in patients
Figure 3. Monocyte metaclusters enriched in COVID-19 are correlated

(A) Correlation betweenMo180 andMo243 and lymphoid clusters (see heatmap fo

19�ARDS+ [n = 12], COVID-19+ARDS+ [n = 13], and COVID-19+ARDS� [n = 17]). O

(see all significant correlations [p < 0.05] in Figure S2 and Table S4).

(B) Heatmap showing marker expression for the lymphoid clusters (Spearman R >

heatmap for all clusters and markers in Figure S2).

(C) Abundance of lymphoid clusters differentially expressed between groups, am

correction, *p < 0.05, **p < 0.01, ***p < 0.001 [see all clusters in Figure S2]).

(D) Two first dimensions of correspondence analysis accounting for 84% of the a

(n = 4monocyte and n = 22 lymphoid clusters), and patients. For clarity, patients an

are compared between groups of patients. Kruskal-Wallis test with Dunn’s multi
with COVID-19, in association with a high expression of IFN-g

and CCL8.15 This could be due to the transient nature of this

monocytic population, either losing CD169, being short-lived, or

being recruited into tissues as CD169+ macrophages, as sug-

gested by the high expression of CCR2 on Mo243 and Mo180,

the 2 monocyte subsets identified here in COVID-19 patients,

and the local inflammation and lung tissue destruction mediated

by monocyte-derived macrophages in severe cases of SARS-

CoV-2 infections.50,51 Interestingly, we also foundanupregulation

ofcytoplasmicS100A9 inmonocytesubsetsspecificallyamplified

in COVID-19 patients irrespective of their ARDS status. These

data suggest that, in the early stage of the disease, monocytes

could contribute to the burst of circulating calprotectin (S100A8/

S100A9), recently proposed to contribute to the secondary cyto-

kine release syndrome described in severe COVID-19 and attrib-

uted to neutrophils.21 Despite phenotypic alterations, our data

revealed a specific alteration of the response to type I IFN in

COVID-19+ versus COVD-19� ARDS patients after a short stay

in the ICU,with an upregulation of IFN receptorswithout induction

of IFN target genes. These results are reminiscent of the demon-

stration that deficiency of the type I IFN pathway is associated

with poor outcomes in COVID-19 patients.52,53

Whereas a seroconversion score was recently associated with

huge modifications in immune parameters reflecting B, T, and

NK cell function in non-ICU COVID patients,54 our ICU patients

clearly stand at a later stage of the disease, with 22 of 29 already

carrying neutralizing antibodies at D0. It is thus highly unlikely

that the differential evolution of monocytic markers identified be-

tween D0 and D7 in our study could be attributable to

seroconversion.

Within severe COVID-19 patients, we detected no significant

differences between ARDS+ and ARDS� immune profiles, indi-

cating a specificity of the phenotype induced by SARS-CoV-2

infection, irrespective of the respiratory complications. While

most published studies showed differences between mild and

severe COVID-19 diseases, some of their conclusions may be

obscured by the fact that ARDS by itself, mechanical ventilation,

and/or nonspecific treatments may affect immune parameters.55

A strength of our study comparing 2 groups of severe COVID-19

patients with or without ARDS is to highlight features directly

related to the viral infection rather than to its respiratory compli-

cations or their treatment. Importantly, our cohort was homoge-

neous regarding treatment, with, in particular, no immunosup-

pressive therapy at the time of sampling.

The small size of our cohort did not allow us to pinpoint a mor-

tality prognostic factor based on our phenotypic data. However,

we identified a specific immune pattern associated with the
with effector memory T cells and plasma cells

r all lymphoid clusters andmarkers in Figure S2) from all patients at D0 (COVID-

nly strong correlations (Spearman R > 0.5 or R <�0.5 and p < 0.01) are shown

0.5 or R <�0.5 and p < 0.001) strongly correlated with Mo180 andMo243 (see

ong singlet cells analyzed. Kruskal-Wallis test with Dunn’s multiple comparison

ssociation between immune clusters differentially expressed between groups

d immune cells are shown on 2 different plots. Dimensions 1 and 2 coordinates

ple comparison correction, ****p < 0.0001.
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Figure 4. Evolution of immune cell subsets between D0 and D7,

defines high-risk clinical grade COVID-19 patients

(A) Two first dimensions of correspondence analysis accounting for 94.1% of

the association between immune clusters differentially expressed between

groups (n = 4 monocyte and n = 22 lymphoid clusters) and patients for which a

follow-up of 7 days was available (COVID-19�ARDS+ [n = 7], COVID-

19+ARDS+ [n = 8], and COVID-19+ARDS� [n = 6]). For clarity, patients and

immune cells are shown on 2 different plots. Dimensions 1 and 2 coordinates

were compared between D0 and D7 for each group of patients. Wilcoxon

matched-pairs signed rank tests, **p < 0.01.

(B) Spearman correlation between immune and clinical score for COVID-19+

patients (ARDS+ [n = 8] and ARDS– [n = 6]).
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occurrence of the major adverse clinical events (thrombosis,

nosocomial infection, septic shock, acute renal failure, and

death) described in COVID-19 and combined as a clinical score.

In particular, an increase in non-classical CD14lowCD16+ mono-

cytes (Mo11), and CD14+HLA-DRlow M-MDSC-like (Mo181),

both not expressing CD169, are markers of adverse events.

This suggests that besides the early increase in CD169+ mono-

cytes in all COVID-19 patients associated with T cell dysfunc-

tions, the immunological response to SARS-CoV-2 infection fea-

tures multiple alterations of monocytic subsets reflecting the

severity of the disease. Consistent with these data, it was shown

that CD14+HLA-DRlow cells were increased in critical COVID-19

patients,21,26,56–58 while CD14lowCD16+ monocytes, able to
8 Cell Reports Medicine 2, 100291, June 15, 2021
migrate to the lung, were correlated with the length of stay in

the ICU.15,23,59 Our study correlates the accumulation of non-

classical monocytes and M-MDSCs occurring during the first

days of ICU to adverse events.

Limitations of study
Besides the low number of included patients, our study has other

limitations. By focusing on severe patients with and without

ARDS, we cannot reach conclusions about phenotypic changes

in mild and moderate diseases. The analysis would also benefit

from comparison with other virus-associated ARDS. We thus

analyzed a published dataset of flu-like illness and COVID pa-

tients, analyzed by mass cytometry.21 Interestingly, by using

CellCnn, we were able to define a filter that accurately discrimi-

nates flu-like illness from COVID samples, suggesting immune

differences between both diseases (Figure S4). Moreover, since

themass cytometry was conducted on PBMCs, we lack informa-

tion on the neutrophil lineage, which appears affected in COVID-

19 disease.21 It would also be interesting to link these data with in

situ data from lung tissue samples and bronchoalveolar lavages.

Unfortunately, at the time of the study, bronchoalveolar fluid

collection was not allowed in our institution for patients who

were positive for SARS-CoV-2. However, our detailed analysis

of circulating immune cells shows that immune monitoring of se-

vere COVID-19 patients brings interesting prognostic bio-

markers independent of their clinical classification in ARDS+

versus ARDS�. Moreover, we demonstrated that at the biolog-

ical level, COVID-19-associated ARDS is different from other

causes of ARDS, and may benefit from personalized therapy in

addition to standard ARDS management.23,60
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declare no competing interests. M.R., S.C., V.K.T., J.M.T., and K.T. are the in-

ventors of a patent, EP 20305642.9, ‘‘A method for early detection of propen-

sity to severe clinical manifestations methods’’ submitted June 11, 2020 under

University Hospital of Rennes and Scailyte AG names.

Received: December 3, 2020

Revised: March 14, 2021

Accepted: April 29, 2021

Published: May 6, 2021

REFERENCES

1. Williamson, E.J., Walker, A.J., Bhaskaran, K., Bacon, S., Bates, C., Mor-

ton, C.E., Curtis, H.J., Mehrkar, A., Evans, D., Inglesby, P., et al. (2020).

Factors associated with COVID-19-related death usingOpenSAFELY. Na-

ture 584, 430–436.

2. Guan, W.-J., Ni, Z.-Y., Hu, Y., Liang, W.-H., Ou, C.-Q., He, J.-X., Liu, L.,

Shan, H., Lei, C.L., Hui, D.S.C., et al.; China Medical Treatment Expert

Group for Covid-19 (2020). Clinical Characteristics of Coronavirus Disease

2019 in China. N. Engl. J. Med. 382, 1708–1720.

3. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu,

J., Gu, X., et al. (2020). Clinical features of patients infected with 2019

novel coronavirus in Wuhan, China. Lancet 395, 497–506.

4. Helms, J., Tacquard, C., Severac, F., Leonard-Lorant, I., Ohana, M., De-

labranche, X., Merdji, H., Clere-Jehl, R., Schenck, M., Fagot Gandet, F.,

et al. (2020). High risk of thrombosis in patients with severe SARS-CoV-

2 infection: a multicenter prospective cohort study. Intens. Care Med.

46, 1089–1098.

5. Schultze, J.L., and Aschenbrenner, A.C. (2021). COVID-19 and the human

innate immune system. Cell 184, 1671–1692.

6. Chen, G., Wu, D., Guo,W., Cao, Y., Huang, D., Wang, H., Wang, T., Zhang,

X., Chen, H., Yu, H., et al. (2020). Clinical and immunological features of

severe and moderate coronavirus disease 2019. J. Clin. Invest. 130,

2620–2629.

7. Jeannet, R., Daix, T., Formento, R., Feuillard, J., and François, B. (2020).

Severe COVID-19 is associated with deep and sustained multifaceted

cellular immunosuppression. Intensive Care Med. 46, 1769–1771.
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Coats, A.J.S., Falk, V., González-Juanatey, J.R., Harjola, V.P., Jankowska,

E.A., et al.; ESC Scientific Document Group (2016). 2016 ESC Guidelines

for the diagnosis and treatment of acute and chronic heart failure: The

Task Force for the diagnosis and treatment of acute and chronic heart fail-

ure of the European Society of Cardiology (ESC). Developed with the spe-

cial contribution of the Heart Failure Association (HFA) of the ESC. Eur.

Heart J. 37, 2129–2200.

66. Le Gall, J.R., Lemeshow, S., and Saulnier, F. (1993). A new Simplified

Acute Physiology Score (SAPS II) based on a European/North American

multicenter study. JAMA 270, 2957–2963.

67. Gaudriot, B., Uhel, F., Gregoire, M., Gacouin, A., Biedermann, S., Roisne,

A., Flecher, E., Le Tulzo, Y., Tarte, K., and Tadié, J.M. (2015). Immune
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Antibodies

CD11c (3.9), Purified BioLegend Cat# 301602; RRID: AB_314172

CD33 (WM53), Purified BioLegend Cat# 303402; RRID: AB_314346

CD209 (9E9A8), Purified BioLegend Cat# 330102; RRID: AB_1134253

CD14 (M5E2), Purified BioLegend Cat# 301802; RRID: AB_314184

CD123 (6H6), Purified BioLegend Cat# 306002; RRID: AB_314576

CD21 (Bu32), Purified BioLegend Cat# 354902; RRID: AB_11219188

CD192 (K036C2), Purified BioLegend Cat# 357202; RRID: AB_2561851

CD163 (GHI/61), Purified BioLegend Cat# 333602; RRID: AB_1088991

CD36 (5-271), Purified BioLegend Cat# 336202; RRID: AB_1279228

CD86 (IT2.2), Purified BioLegend Cat# 305402; RRID: AB_314522

CD169 (7-239), Purified BioLegend Cat# 346002; RRID: AB_2189031

CD274 (29E.2A3), Purified BioLegend Cat# 329719; RRID: AB_2565429

CD254 (MIH24), Purified BioLegend Cat# 347501; RRID: AB_2044062

CD106 (EPR5047), Purified Abcam Cat# ab134047; RRID: AB_2721053

CD3 (UCHT1), Purified BioLegend Cat# 300402; RRID: AB_314056

CD49a (TS2/7), Purified BioLegend Cat# 328302; RRID: AB_1236385

gp38 (REA446), Purified Miltenyi Biotec Cat# 130-107-017; RRID: AB_2653261

CD80 (2D10), Purified BioLegend Cat# 305202; RRID: AB_314498

CD34 (581), Purified BioLegend Cat# 343502; RRID: AB_1731898

CD1a (HI149), Purified BioLegend Cat# 300102; RRID: AB_314016

CX3CR1 (2A9-1), Purified BioLegend Cat# 341602; RRID: AB_1595422

CD32 (FUN-2), Purified BioLegend Cat# 303202; RRID: AB_314334

CD54 (HA58), Purified BioLegend Cat# 353102; RRID: AB_11204426

CD195 (J418F1), Purified BioLegend Cat# 359102; RRID: AB_2562457

CD206 (15-2), Purified BioLegend Cat# 321102; RRID: AB_571923

S100A9 (A15105J), Purified BioLegend Cat# 600302; RRID: AB_2721747

CD45RA (HI100), Purified BioLegend Cat# 304102; RRID: AB_314406

CD172a (15-414), Purified BioLegend Cat# 372102; RRID: AB_2629807

CD68 (Y1/82A), Purified BioLegend Cat# 333802; RRID: AB_1089058

CD11b (ICRF44), 209Bi Fluidigm Cat# 3209003; RRID: AB_2687654

CD8a (RPA-T8), Purified BioLegend Cat# 301053; RRID: AB_2562810

CD4 (RPA-T4), Purified BioLegend Cat# 300502; RRID: AB_314070

CD25 (BC96), Purified BioLegend Cat# 302602; RRID: AB_314272

CD38 (HIT2), Purified BioLegend Cat# 303502; RRID: AB_314354

CXCR3 (G025H7), Purified BioLegend Cat# 353733; RRID: AB_2563724

FoxP3 (259D/C7), Purified BD Biosciences Cat# 560044; RRID: AB_1645589

CD7 (CD7-6B7), Purified BioLegend Cat# 343111; RRID: AB_2563761

Gata-3 (TWAJ), Purified Thermo Fisher Scientific Cat# 14-9966-82; RRID: AB_1210519

CCR7 (G043H7), Purified BioLegend Cat# 353237; RRID: AB_2563726

CCR6 (G034E3), Purified BioLegend Cat# 353427; RRID: AB_2563725

CD27 (O323), Purified BioLegend Cat# 302802; RRID: AB_314294

CD10 (HI10a), Purified BioLegend Cat# 312223; RRID: AB_2562828
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CD117 (104D2), Purified BioLegend Cat# 105814; RRID: AB_313223

CCR4 (L291H4), Purified BioLegend Cat# 359402; RRID: AB_2562364

CD161 (HP-3G10), Purified BioLegend Cat# 339919; RRID: AB_2562836

CD185 (J252D4), Purified BioLegend Cat# 356902; RRID: AB_2561811

RORgt (AFKJS-9), Purified Thermo Fisher Scientific Cat# 14-6988-82; RRID: AB_1834475

CD294 (BM16), Purified BioLegend Cat# 350102, RRID: AB_10639863

LAG-3 (7H2C65), Purified BioLegend Cat# 369202; RRID: AB_2616877

CTLA-4 (L3D10), Purified BioLegend Cat# 349902; RRID: AB_10642827

PD-1 (EH12.2H7), Purified BioLegend Cat# 329941; RRID: AB_2563734

Tim-3 (F38-2E2), Purified BioLegend Cat# 345019; RRID: AB_2563790

CD127 (A019D5), Purified BioLegend Cat# 351337; RRID: AB_2563715

Bcl-6 (k112-91), Purified BD Biosciences Cat# 561520; RRID: AB_10713172

T-bet (4B10), Purified BioLegend Cat# 644825; RRID: AB_2563788

CD45RO (UCHL1), Purified BioLegend Cat# 304239; RRID: AB_2563752

CD56 (HCD56), Purified BioLegend Cat# 318302; RRID: AB_604092

Ki-67 (Ki-67), Purified BioLegend Cat# 350523; RRID: AB_2562838

CD44 (BJ18), Purified BioLegend Cat# 338802; RRID: AB_1501199

CD45 (HI30), 89Y Fluidigm Cat# 3089003; RRID: AB_2661851

CD326 (9C4), Purified BioLegend Cat# 324229; RRID: AB_2563742

CD19 (HIB19), Purified BioLegend Cat# 302202; RRID: AB_314232

HLA-DR (10.1), Purified BioLegend Cat# 307602; RRID: AB_314680

CD31 (WM59), Purified BioLegend Cat# 303127; RRID: AB_2563740

CD16 (B73.1), Purified BioLegend Cat# 360702; RRID: AB_2562693

CD64 (L243), Purified BioLegend Cat# 305029; RRID: AB_2563759

Chemicals, peptides, and recombinant proteins

EQ Four Element Calibration Beads Fluidigm Cat# 201078

Antibody Stabilizer PBS Candor Bioscience Cat# 131050

Bond-Breaker TCEP Solution Thermo Fisher Scientific Cat# 77720

Cell-ID Intercalator-Ir Fluidigm Cat# 201192B

Cell-ID Cisplatin-198Pt Fluidigm Cat# 201198

Cell Acquisition Solution Fluidigm Cat# 201240

Critical commercial assays

Transcription factor staining buffer set Miltenyi Biotec Cat# 130-122-981

Maxpar� X8 Multimetal Antibody Labeling

Kit

Fluidigm Cat# 201300

Preamp Master Mix Fluidigm Cat# 100-5580

Reverse Transcription Master Mix Fluidigm Cat# 100-6298

TaqMan Universal PCR Master Mix (2X) Life Technologies Cat# PN 4304437

96.96 DNA Binding Dye Sample/Loading

Kit—10 IFCs

Fluidigm Cat# BMK-M10-96.96-EG

Deposited data

CyTOF data Chevrier et al.15 https://doi.org/10.1016/j.xcrm.2020.

100166

scRNaseq sata Wilk et al.25 https://doi.org/10.1038/

s41591-020-0944-y

CyTOF data Schulte-Schrepping et al.21 https://doi.org/10.1016/j.cell.2020.08.001

CyTOF data This paper https://doi.org/10.17632/xg9k72r5rt.1
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CyTOF data This paper https://doi.org/10.17632/c29frc3y6s.1

Clinical data This paper https://doi.org/10.17632/5n8df8jvk4.1

Oligonucleotides

IFIT1: interferon induced protein with

tetratricopeptide repeats 1

TaqMan� Assays, ThermoFisher Scientific Hs03027069_s1

IFNAR1: interferon alpha and beta receptor

subunit 1

TaqMan� Assays, ThermoFisher

ScientificThermoFisher Scientific

Hs01066116_m1

ISG15: ISG15 ubiquitin-like modifier TaqMan� Assays, ThermoFisher

ScientificThermoFisher Scientific

Hs01921425_s1

IFI27: interferon alpha inducible protein 27 TaqMan� Assays, ThermoFisher Scientific Hs01086373_g1

IFI44L: interferon induced protein 44 like TaqMan� Assays, ThermoFisher Scientific Hs00915287_m1

RSAD2: radical S-adenosyl methionine

domain containing 2

TaqMan� Assays, ThermoFisher Scientific Hs00369813_m1

IFNAR2: interferon alpha and beta receptor

subunit 2

TaqMan� Assays, ThermoFisher Scientific Hs01022059_m1

ELF1: E74-like factor 1 (ets domain

transcription factor)

TaqMan� Assays, ThermoFisher Scientific Hs00152844_m1

Software and algorithms

CellCnn, ScaiVision platform Scailyte AG version 0.3.6

R https://cran.r-project.org v3.6.3

Premessa (R package) https://github.com/ParkerICI/premessa premessa 0.2.6

viSNE (Cytobank) Amir et al.61 N/A

FlowSOM (Cytobank) Van Gassen et al.62 N/A

Rstudio https://www.rstudio.com/ v1.2.5033

pheatmap (R package) https://cran.r-project.org/web/packages/

pheatmap/index.html

v1.0.12 (CRAN)

Cytobank Kotecha et al.63 https://www.cytobank.org N/A

Kaluza Beckman Coulter v2.1.00002

Prism (software) https://www.graphpad.com v8
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Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mikael

Roussel (mikael.roussel@chu-rennes.fr)

Materials availability
The study did not generate new unique reagents.

Data and code availability
Additional supplemental items are available at Mendeley Data: http://dx.doi.org/10.17632/xg9k72r5rt.1, http://dx.doi.org/10.17632/

c29frc3y6s.1, and http://dx.doi.org/10.17632/5n8df8jvk4.1.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patients
This study was performed in the infectious diseases department and intensive care unit (ICU) at Rennes University Hospital. The

study design was approved by our ethic committee (CHU Rennes, n�35RC20_9795_HARMONICOV, ClinicalTrials.gov Identifier:

NCT04373200) and informed consent was obtained from patients in accordance with the Declaration of Helsinki. Patients with ma-

lignancy, HIV-infected patients, and patients with preexisting immune disorders or receiving immunosuppressive agents were

excluded. The presence of SARS-CoV-2 in respiratory specimens (nasal and pharyngeal swabs or sputum) was detected by real-

time reverse transcription polymerase chain reaction (RT-PCR) methods (TaqPath COVID-19, ThermoFisher).
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Cohort 1: Peripheral blood was collected in tubes containing lithium heparin from COVID-19negARDSpos, COVID-19posARDSpos,

and COVID-19posARDSneg patients. Peripheral blood samples were drawn at D0 and D7. PBMC were isolated from whole blood

using ficoll before cryopreservation. All patients provided written informed consent. The following data were recorded: gender,

age, preexisting chronic kidney disease and acute kidney failure during the ICU stay,64 preexisting chronic heart failure,65

Body Mass Index (BMI), SAPS II at admission,66 duration of mechanical ventilation, length of hospital stay, and outcome (alive

or dead) on day 7, day 30 and day 90. The occurrence of nosocomial infection, defined following CDC criteria as previously

described,67 was also recorded during hospital stay. For each patient, a clinical score was built to summarize the occurrence

of adverse clinical events frequently encountered during hospitalization.67,68 Each of the following events: thromboembolic

events, nosocomial infection, septic shock, acute renal failure, and death counting as one point, the score varies from 0 (no

adverse events) to 5. Patients’ characteristics for cohort 1 are reported in Tables 1 and S1.

Cohort 2:Same inclusion criteria were applied to cohort 2. Only patients at D0were included. Patients’ characteristics for cohort 1

are reported in Tables S1 and S2.

METHOD DETAILS

Mass cytometry analysis
PBMC from patients were thawed. Briefly, cells were stained 5 minutes in RPMI supplemented with 0.5 mM Cisplatin Cell-ID (Fluid-

igm, San Francisco, CA) in RPMI 1640 before washing with 10% FCS in RPMI 1640. Cell pellets were resuspended in 80ml of 0.5%

BSA in PBS. Then 60 ml of each surface staining cocktail, lymphoid or myeloid, were added to 40ml of resuspended cells. After

staining, cells were washed in 0.5% BSA in PBS before fixation/permeabilization with the transcription factor staining buffer

set (Miltenyi, Bergisch-Gladbach, Germany). Then 60ml of each surface staining cocktail, lymphoid or myeloid, were added to

40ml of resuspended cells in Perm Buffer. The panel of antibodies is listed in Table S3 and in Key resources table. After intracellular

staining, cells were washed twice before staining in DNA intercalator solution (2.5% Paraformaldehyde, 1:3200 Cell-ID Intercala-

tor-Ir (Fluidigm, San Francisco, CA) in PBS). Samples were cryopreserved at �80�C until acquisition on Helios System (Fluidigm,

San Francisco, CA).

Antibodies and reagents
Purified antibodies for mass cytometry were obtained in carrier/protein-free buffer and then coupled to lanthanide metals using the

MaxPar antibody conjugation kit (Fluidigm Inc.) according to manufacturer’s recommendations. Following the protein concentration

determination bymeasurement of absorbance at 280 nm and titration on positive controls, the metal-labeled antibodies were diluted

in Candor PBS Antibody Stabilization solution (Candor Bioscience, Germany) for long-term storage at 4�C. Antibodies used are listed

in Table S3 and Key resources table.

Quantitative real-time polymerase chain reaction
Total RNA was extracted from PAXgene blood RNA kit (QIAGEN, Valencia,CA) using a Hamilton Microlab STARlet Automated

Handler (Atlantic Lab Equipment, Beverly, MA). cDNA was then prepared using Reverse Transcription Master Mix (Fluidigm Sunny-

vale, CA) and gene expression preamplification was performed with Fluidigm Preamp Master Mix and Taqman Assays (Invitrogen,

Thermo Fisher Scientific Inc, Carlsbad, CA, USA). After loading the reaction chambers using the integrated fluid circuit (IFC) HX

controller from Fluidigm, the realtime PCR was performed in a BioMark HD system (Fluidigm Corp., USA) using single probe

(FAM-MGB, reference: ROX) settings and GE 96x96 standard v1 protocol. Data processing took place using the Fluidigm real-

time PCR analysis software (v. 4.1.3). For each sample, the cycle threshold (CT) value for the gene of interest was determined

and normalized to the housekeeping gene ELF1. The relative level of expression of each gene for each patient at D7 compared to

D0 was assessed using the 2-ddCT method. For all D0 samples, the relative level of expression of each gene was assessed by 2-

dCT method Type I IFN response score was determined as Log2 of the mean of the following genes: ISG15, IFI27, IFI44L, RSAD2

and IFIT. IFNAR score was considered as Log2 of the mean of the following genes: IFNAR1 and IFNAR2.

Detection of SARS-CoV-2 neutralizing antibodies
The viral strain (RoBo strain), which was cultured on Vero-E6 cells (ATCC CRL-1586), used for the nAb assay was a clinical isolate

obtained from a nasopharyngeal aspirate of a patient HOS at the University Hospital of Saint-Etienne for severe COVID-19. The strain

was diluted in Dulbecco’s modified Eagle’s medium–2% fetal calf serum in aliquots containing 100–500 tissue culture infectious

doses 50% (TCID50) per ml. Each serum specimen was diluted 1:10 and serial twofold dilutions were mixed with an equal volume

(100 mL each) of virus. After gentle shaking for 30 min at room temperature, 150 mL of the mixture was transferred to 96-well micro-

plates covered with Vero-E6 cells. The plates were then placed at 37�C in a 5%CO2 incubator. Measurements were obtainedmicro-

scopically 5–6 days later when the cytopathic effect of the virus control reached�100 TCID50/150 mL. The serum was considered to

have protected the cells if > 50% of the cell layer was preserved. The neutralizing titer is expressed as the inverse of the higher serum

dilution that protected the cells.
Cell Reports Medicine 2, 100291, June 15, 2021 e4
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Mass cytometry preprocessing
After acquisition, intrafile signal drift was normalized and .fcs files were obtained using CyTOF software. To diminish batch effects, all

files were normalized on EQ Beads (Fluidigm Sciences) using the premessa R package (https://github.com/ParkerICI/premessa).

Files were then uploaded to the Cytobank cloud-based platform (Cytobank, Inc.). Data were first arcsinh-transformed using a

cofactor of 5. For all files, live single cells were selected by applying a gate on DNA1 versus DNA2 followed by a gate on DNA1 versus

Cisplatin, then beads were removed by applying a gate on the beads channel (Ce140Di) versus DNA.1 Normalized, transformed and

gated values were exported as FCS files.

CellCnn analysis
Identification of a Covid-19-specific cell-identity signature was carried out using the CellCnn algorithm,35 implemented in Pytorch in

theScaiVisionplatform (version 0.3.6,ªScailyteAG).Briefly, this is a supervisedmachine learning algorithm that trains aconvolutional

neural network with a single layer to predict sample-level labels using single-cell data as inputs. Data from each CyTOF panel was

analyzed separately, in each case using all measured protein markers to train a series of CellCnn networks with varying hyperpara-

meters. Each samplewas given a label corresponding to theCovid-19 status of the patient fromwhich the samplewas drawn (positive

or negative). To generate input data for training CellCnn, sub-samples of 2000 cells, termed multi-cell inputs (MCIs), were chosen

randomly from each sample independently. For each training epoch, 2000 MCIs from each label class (Covid-19pos or Covid-19neg)

were presented to the network in randomorder. During training, 30%of the sampleswere set aside for validation, chosen in a stratified

manner to maintain the relative proportions of each class. 50 independent networks were generated for each CyTOF panel using hy-

perparameters randomly chosen from the following options: i) number of filters: (2, 3, 5, 7, and 10), ii) top-k pooling percentage: (1, 5,

10, 20, and 30), iii) dropout probability: (0.3, 0.4, and 0.6), iv) learning rate: (0.001, 0.003, and 0.01), and v) weight decay: (0.00001,

0.0001, 0.001, 0.01, and 0.1). Training was performed with a batch size of 50. Adam was used as an optimizer {kingma2015adam},

with a beta1 coefficient of 0.999 and a beta2 coefficient of 0.99. Each network was trained for a maximum of 50 epochs, or until

the validation loss no longer decreased for 10 consecutive epochs. At the end of training, the weights from the epochwith lowest vali-

dation losswere returned.Representative filtersweredeterminedbyclustering the filters fromall networks achievingR90%accuracy

on the validation samples, then choosing the filter in each cluster with theminimum distance to all other filters in that cluster. For both

CyTOF panels, a single representative filter showing the largest positive association with the Covid-19pos label class was used to

calculate cell-level filter response scores. Thresholds were set on the filter response scores to select Covid-19-associated cells by

calculating the relative frequencies of selected cells in each sample at 100 different thresholds for each filter, thenperforming a logistic

regression topredict sample labels. For each threshold, thedatawasfirst split in a stratifiedmanner into a training set, comprising 60%

of samples, and a test set, comprising 40%of samples. The logistic regressionwas performed on the training set, and the accuracy of

resulting predictionswas calculated on the test set. This procedurewasperformed10 times,with randomly chosen training/test splits,

and themean of the resulting accuracies for each thresholdwas calculated. For the lymphoid panel, one threshold (9.63) achieved the

highest accuracy and was set as the final threshold. For the myeloid panel, multiple thresholds achieved the same level of accuracy;

the lowest of these (4.96) was set as the final threshold. The relative frequencies of cells in each sample with filter response scores

greater than or equal to the respective thresholds were calculated and compared using a Wilcoxon rank-sum test.

viSNE, FlowSOM, and hierarchical clustering
We first performed a dimension reduction for both panels (i.e., myeloid and lymphoid) and all cleaned-up 63 files were first analyzed

using viSNE, based upon the Barnes–Hut implementation of t-SNE. Equal downsampling was performed, based on the lowest event

count in all files (lymphoid panel) or on the maximum total events allowed by Cytobank (myeloid panel). For the myeloid panel, the

following parameters were used: perplexity = 45; iterations = 5000; theta = 0.5; all 37 channels selected. For the lymphoid panel the

parameters were as follows: perplexity = 45; iterations = 7500; theta = 0.5; all 36 channels selected.

Then we applied a clustering method using the FlowSOM clustering algorithm. FlowSOM uses Self-Organizing Maps (SOMs) to

partition cells into clusters based on their phenotype, and then builds a Minimal Spanning Tree (MST) to connect the nodes of the

SOM, allowing the identification ofmetaclusters (i.e., group of clusters).We performed the FlowSOMalgorithm on the previous viSNE

results, usingall events andpanel channels, and the followingparameters: clusteringmethod=hierarchical consensus, iterations=10,

number of clusters = 256, number ofmetaclusters = 30. For both panels, eachmetacluster (containing a given number of clusters) was

manually annotated based on hismarker expression phenotype, his projection on the viSNE and his localization in the FlowSOMMST.

We first analyzed the myeloid panel. Out of 30metaclusters defined by the FlowSOM approach, we identified 13metaclusters with

monocyte markers, other metaclusters contained other cell types, low count of cells or remaining doublets or dead cells. We visually

identified 2 (Mo18 and Mo26) out of the 13 metaclusters that were heterogeneous. These 2 metaclusters were manually split into 2

newmetaclusters (identified respectively asMo180,Mo181 andMo214,Mo243) (Figure S1B). Thus, altogether we analyzed 15meta-

clusters of myeloid cells. Regarding the lymphoid compartment, we noticed that FlowSOM defined metaclusters at the lineage level,

thus we retain all the 136 clusters included in 10 metaclusters of interest (i.e., containing lymphoid lineage markers) (Figure S1C). All

metaclusters and clusters phenotypes including their abundances and mean marker intensity were then exported from Cytobank for
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further analyses. Cytometry data was explored with Kaluza Analysis Software (Beckman Coulter). Hierarchical clustering and heat-

maps were generated with R v3.6.3, using Rstudio v1.2.5033 and the pheatmap package.

Statistical analysis
Statistical analyses were performed with Graphpad Prism 8.4.3. P values were defined by a Kruskal-Wallis test followed by a Dunn’s

post-test for multiple group comparisons or by Wilcoxon matched-pairs signed rank tests as appropriate. Correlations were calcu-

lated using Spearman test. * p < 0.05, ** p < 0.01, *** < 0.001, and **** p < 0.0001. Hierarchical clustering of the patients was performed

using euclidean distance and complete clustering. Correspondence analysis was performed using the package factoshiny using as

variable the abundance in cell subsets for each patient.
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