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Abstract

Asgenesoriginateatdifferentevolutionary times, theyharbordistinctivegenomic signaturesofevolutionaryages.Althoughprevious

studies have investigated different gene age-related signatures, what signatures dominantly associate with gene age remains

unresolved. Here we address this question via a combined approach of comprehensive assignment of gene ages, gene family

identification, and multivariate analyses. We first provide a comprehensive and improved gene age assignment by combining

homolog clustering with phylogeny inference and categorize human genes into 26 age classes spanning the whole tree of life.

We then explore the dominant age-related signatures based on a collection of 10 potential signatures (including gene composition,

gene length, selection pressure, expression level, connectivity in protein–protein interaction network and DNA methylation). Our

results show that GC content and connectivity in protein–protein interaction network (PPIN) associate dominantly with gene age.

Furthermore, we investigate the heterogeneity of dominant signatures in duplicates and singletons. We find that GC content is a

consistent primary factor of gene age in duplicates and singletons, whereas PPIN is more strongly associated with gene age in

singletons than in duplicates. Taken together, GC content and PPIN are two dominant signatures in close association with gene age,

exhibiting heterogeneity in duplicates and singletons and presumably reflecting complex differential interplays between natural

selection and mutation.
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Introduction

Birth of new genes is associated with events of gene duplica-

tion (Betran et al. 2002; Long et al. 2003), horizontal gene

transfer (Keeling and Palmer 2008), extant gene fragments

(Gilbert 1978), and de novo creations from noncoding DNA/

RNA (Knowles and McLysaght 2009; Toll-Riera et al. 2009). It

is considered that the birth of new genes is one of several

primary mechanisms underlying the evolution of novel func-

tions in biological systems, and often facilitating adaptive evo-

lution (Kaessmann 2010). Accordingly, genes, that are birthed

and fixed into a species at specific evolutionary time, are left

with distinctive age-related signature (ARS) in the genome.

Therefore, deciphering ARS in molecular sequences holds

great significance in better understanding molecular evolu-

tionary processes and unveiling the underlying mechanisms

that drive young genes to become indispensible integrants

coupled with novel phenotypes and biological diversities

(Long et al. 2013).

To date, attempts have been made to address this issue by

detecting diverse ARS. These studies revealed that young

genes are shorter, have fewer introns (Wolf et al. 2009),

relate closely with the birth of new binding sites (Ni et al.

2012) and harbor more premature termination codon muta-

tions (Yang et al. 2015). Furthermore, young genes possess

fewer interactions with other genes (Zhang et al. 2015) and

tend to play less essential functional roles compared with old

genes (Chen et al. 2012). Additionally, young human genes

are likely to present distinct temporal and spatial expression

patterns (Long et al. 2013; Popadin et al. 2014). It is reported

that young genes evolve more rapidly (Alba and Castresana

2005; Wolf et al. 2009) and experience more variable selec-

tion pressure than old genes (Vishnoi et al. 2010). Moreover, a
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recent study has further shown that young and old duplicates

differ strikingly in their DNA methylation (Keller and Yi 2014).

Although different aged genes differ in multiple ARS as

mentioned earlier, the relative significance of different ARS

is not known and it remains unresolved what signatures dom-

inantly associate with gene age. Additionally, previous studies

on age identification mainly employed similarity search that

have been reported to be error-prone (Alba and Castresana

2007; Tautz and Domazet-Loso 2011; Moyers and Zhang

2015, 2016) and determined gene age based on a rough

evolutionary time-scale (Domazet-Loso and Tautz 2008;

Wolf et al. 2009; Zhang et al. 2010). As a result, discriminating

origins of divergent homologs and capturing important evo-

lutionary events have been difficult. In this study, we provide a

newly generated, comprehensive and improved gene age

identification by combining homolog clustering with phylog-

eny inference. Accordingly, we determine gene age at an ex-

tremely refined evolutionary time-scale and categorize human

genes into 26 evolutionary age classes spanning the whole

tree of life. Using this age identification, we explore dominant

ARS in the human genome based on a collection of 10 po-

tential ARS and further investigate the heterogeneity of dom-

inant ARS in duplicates and singletons.

Results and Discussion

Age Identification of Human Genes

Improving upon previous studies on age identification

(Domazet-Loso and Tautz 2008; Wolf et al. 2009; Zhang

et al. 2010), here we combine homolog clustering with phy-

logeny inference to identify gene ages (see “Methods” sec-

tion) and categorize human genes into 26 age classes ranging

from archaea/bacteria (age class 26) to human (age class 1),

spanning an extremely long evolutionary time-scale of ~4,000

million years (supplementary tables S1 and S2 and fig. S1,

Supplementary Material online). Our classification provides

the most refined evolutionary gene-age classes so far, com-

pared with previous studies where genes were classified into

seven classes in (Wolf et al. 2009), 11 classes in (Cai and Petrov

2010) and 19 classes in (Domazet-Loso and Tautz 2008).

Although our refined age classification, by virtue of increased

number of classes, could misclassify ages of some genes

whose sequence and annotation in the current genome as-

semblies include errors, our results on gene age identification

present three major improvements. First, previous studies

for gene age identification were typically based on homolog

similarity, and thus not well suited to effectively differen-

tiate the origins of paralogs. In comparison, our study, by

utilizing homolog clustering with phylogeny inference, is

able to confidently identify evolutionary ages of paralogous

genes.

Second, we utilize an extremely refined phylogenetic

framework consisting of 26 age classes, encompassing

major evolutionary events from unicellular organisms to

human. Consequently, it is capable to investigate gene

loss events (a gene loss event is determined and counted

when a gene is present at certain evolutionary time, but

absent afterwards) in a more detailed manner based on our

age identification results. For instance, a previous study has

reported that genes are lost after the divergence of human

and rodents (Blomme et al. 2006). Contrastingly, our results

show that those specific genes are heavily lost at the

origination time of primates and scandentia (supplementary

fig. S2, Supplementary Material online), yielding a higher

resolution determination of important evolutionary events.

Meanwhile, among the 26 age classes, primate-specific evo-

lutionary time-scale is well separated into seven different age

classes (namely tarsiiformes, platyrrhini, cercopithecidae, hylo-

batidaee, pongo, gorillae and human), which is of great sig-

nificance for better understanding details of primate

evolutionary processes and innovation of primate-specific

genes. For instance, MYEOV (ENSG0000017292), a gene

that has been reported to de novo arise from noncoding

RNA in human-specific lineage (Xie et al. 2012), actually

arose at age class 4, namely, hominoid-specific lineage, indi-

cating that its transition from noncoding RNA to a coding

gene is, more precisely, occurred at the origin of hominoidea.

Third, our method based on a phylogenetic framework

features effective inference of evolutionary time of gene du-

plication events, allowing confident age assignments of para-

logs. Accordingly, we find that 11% duplication events can be

traced back to the origin of metazoan ~900 million years ago

(Mya) (supplementary fig. S3, Supplementary Material online)

and 16% duplication events are assigned to the origin of ver-

tebrate ~450 Mya (supplementary fig. S3, Supplementary

Material online), indicating that the origins of multicellularity

and vertebrate are fundamental, presumably with key inno-

vations for the emergence of human genes. These results are

in good accordance with the hypothesis that hierarchical com-

plexity increases at the origin of multicellularity (Rainey 2007)

and that duplication events, including whole genome dupli-

cation, are major evolutionary forces underlying vertebrate

genome evolution (Blomme et al. 2006).

Dominant ARS in Human Gene

As mentioned earlier, birth of genes leads to different ARS at

multiple omics levels, including genomics, transcriptomics,

epigenetics, etc. Based on our age identification, here we

incorporate a total of 10 potential ARS, including nucleotide

composition (GC/AG content) of entire CDS (coding se-

quence), sequence length, CUB, expression level, natural

selection inferred from nonsynonymous/synonymous substitu-

tion ratio (Ka/Ks), DNA methylation, and PPIN (supplementary

fig. S4, Supplementary Material online). Since these signatures

are highly interdependent (Kim and Yi 2007; Park et al. 2012),

correlation analysis cannot be used to identify dominant
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signatures associated closely with gene age (supplementary

table S3, Supplementary Material online). Therefore, we per-

form principal component analysis (PCA), a widely used sta-

tistical method that is able to transform a set of possibly

correlated variables into a set of linearly uncorrelated principal

components, to decipher which signatures are highly domi-

nant with gene age. According to the PCA results, the first

four principal components account for 74% of the variance

and the first two principal components are able to ex-

plain ~44.55% of the variance (fig. 1A and supplementary

table S4, Supplementary Material online). Notably, the first

component is mainly dominated by GC content (41.46%)

and the second component is largely determined by PPIN

(22.79%). Our results clearly show that, albeit ARS are evolu-

tionarily confounded and interrelated, GC content and PPIN

are two dominant signatures associating closely with gene

age. Additionally, to avoid bias due to the large number of

genes in the strata of unicellular organisms (supplementary

fig. S5, Supplementary Material online), we re-sample

the same percentage of genes from unicellular organisms

as that of multicellular organisms (supplementary table S5,

Supplementary Material online) and consistently obtain

the similar results that GC content and PPIN are dominant

ARS.

Duplication is a main driving mechanism in the birth of new

genes (Gu et al. 2002; Zhang 2003). It is reported that single-

tons evolve more rapidly (Jordan et al. 2004) and tend to have

more consistent expression profiles than duplicates (Li et al.

2005). Given these observations, we hypothesize that domi-

nant ARS may be different between duplicates and singletons.

Therefore, we further perform PCA separately on singletons

and duplicates. Our results show that in singletons (fig. 2A and

supplementary table S6, Supplementary Material online), con-

sistent with previous results, the first component is deter-

mined mainly by GC content (35.21%) and the second

component is determined mainly by PPIN (26.14%).

Intriguingly, in duplicates (fig. 2B and supplementary table

S7, Supplementary Material online), the first component is

determined mainly by GC content (35.79%) and the second

component is still determined by GC content (30.63%).

Together, GC content consistently dominates as a primary

signature with gene age in duplicates and singletons, whereas

PPIN dominates with gene age more significantly in singletons

than in duplicates. These results indicate that duplicates and

FIG. 1.—Principal component analyses on gene age. The corresponding numerical results were summarized into supplementary table S4, Supplementary

Material online.
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singletons may experience diverse evolutionary forces and

yield different dominant signatures of gene age.

It is well documented that GC content, as one of the most

fundamental gene features, is highly correlated with multiple

factors [including mutation (Fryxell and Moon 2005), selection

for specific synonymous codons for translation efficiency and

accuracy (Plotkin and Kudla 2011), horizontal gene transfer

(Philippe and Douady 2003), methylation modification (Bird

1986; Elango et al. 2008), and gene density (Duret et al.

1995), etc.]. It is notable that even though we separately ex-

amined factors known to associate with GC content, including

gene length, expression, codon usage, selection strength and

methylation, we still observe the dominant significance of GC

content in the evolution. Therefore, our results indicate signif-

icant effects of GC content apart from the aforementioned

factors. For example, replication dynamics correlates with GC

content (Kenigsberg et al. 2016) and GC-biased gene conver-

sion specifically in highly recombining genomic regions affects

the genomes of most bacterial species (Lassalle et al. 2015)

and many eukaryotes (Webster and Hurst 2012), further pro-

viding the possibility that the dominance of GC content helps

shape the genome characterization universally. Consistently

and strikingly, our results demonstrate that regardless of

being duplicates or singletons, GC content is an overwhel-

mingly dominant signature associating closely with gene

age. Conforming to this point, additional evidence has

shown by a recent study that de novo new genes originating

from long noncoding RNAs present heterogeneity in GC con-

tent (Chen et al. 2015).

It has been reported that more than one-third of known

regulatory interactions in yeast (Teichmann and Babu 2004)

and average 27% interaction networks for primate-specific

young genes in human (Zhang et al. 2015) are inherited

from their parental genes after duplication, so that duplication

is a significant contributor of gene interaction network

(Middendorf et al. 2005). In contrast to duplicates that have

inherited PPIN from parental copies, singletons have little in-

teractions at their early evolutionary stage, but, over time, they

are gradually integrated into gene interaction networks to ac-

quire biological functions. As genes evolve and age in the

genome, therefore, singletons may experience more dramatic

variations in PPIN than duplicates. Indeed, singletons do exhibit

a much larger variability in PPIN compared with duplicates

(supplementary fig. S6, Supplementary Material online).

Consequently, even though old genes (including duplicates

and singletons) tend to be highly connected in PPIN (Zhang

et al. 2015), PPIN appears to be a more important signature of

evolutionary age in singletons. Taken together, GC content

and PPIN are two dominant signatures in close association

with gene age, yet exhibiting heterogeneity in duplicates

and singletons and presumably reflecting complex differential

interplays between natural selection and mutation as they age.

FIG. 2.—Principal component analyses on gene age in singletons and duplicates. The corresponding numerical results were summarized into supple-

mentary tables S6 and S7, Supplementary Material online.
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Methods

Age Definition and Identification

For a given human gene, age was defined based on the pres-

ence of its ortholog in a wide range of species. We down-

loaded protein sequences from Ensembl (http://www.

ensembl.org; supplementary table S1, Supplementary

Material online) and obtained a collection of nonredundant

proteins by only keeping longest splicing variants (supplemen-

tary table S1 and fig. S1, Supplementary Material online).

BLAST searches were constructed for all nonredundant pro-

teins (E-value<10� 3). Furthermore, we conducted homolog

clustering using the Markov Cluster algorithm (inflation

value = 1.5) with OrthoMCL (Li et al. 2003) after loading

BLAST results into MySQL database. Consequently, we as-

signed all resulting proteins into 35,948 homolog clusters.

Among them, 12,493 singleton groups and 2,142 duplicate

groups included human homologs. To infer the orthology re-

lationships for duplicate group, multiple sequence alignments

were conducted by MAFFT (Katoh and Standley 2013) and

spurious sequences or poorly aligned regions were removed

by trimAl (Capella-Gutierrez et al. 2009). Furthermore, we

carried out phylogenetic inferences by phyML (Guindon

et al. 2010) with bootstrap resampling tests by 100 times

and utilized RIO (Resampled Inference of Orthologs; reliability

values> 0.6) (Zmasek and Eddy 2002) for automated phylog-

eny inference to estimate the reliability of orthology assign-

ments. As a consequence, we classified all human genes

(including singletons and duplicates) into 25 age classes

from the origin of eukaryotes, spanning ~1,500 Mya (age

class 25) to human. Moreover, we used PANTHER (Mi et al.

2013) to determine orthology relationships between human

genes and archaeal/bacterial genes. A human gene was as-

signed to age class 26 originating from ~4,000 Mya if its

orthologs were detected in at least two archaeal/bacterial or-

ganisms (given the possibility of horizontal gene transfer).

Detailed results of age identification for all human genes

were tabulated in supplementary table S2, Supplementary

Material online. In addition, gene ontology (GO) enrichment

analyses were conducted and the corresponding results were

summarized in supplementary table S8, Supplementary

Material online.

Data Collection

We used homolog relationships between Homo sapiens and

Mus musculus from NCBI HomoloGene database (http://

www.ncbi.nlm.nih.gov/homologene) and obtained gene ex-

pression profiles across human 32 tissues from (Uhlen et al.

2015). We collected methylation data from GSE database

with accession number GSE31848, including eight somatic

cell samples (GSM868007-GSM868014) (Nazor et al. 2012).

We retrieved PPIN data from (Cowley et al. 2012).

Estimation of Selection Pressure, Codon Usage Bias and
Methylation Level

KaKs_Calculator (Zhang et al. 2006) was adopted to calculate

nonsynonymous and synonymous substitution rates for

human–mouse orthologs. Codon Deviation Coefficient

(Zhang et al. 2012) was used to measure CUB for human

genes as well as their orthologs among different species (sup-

plementary fig. S7, Supplementary Material online).

Methylation levels were estimated through an R package

named Illumina Methylation Analyzer (Wang et al. 2012).

For a given gene, DNA methylation level was averaged over

its four regions including gene body region, promoter region,

50- and 30-UTR.

Principal Component Analysis

We used R for principle component analysis (package: pls).

After logarithm transformation of four features including

gene length, expression level, methylation level and PPIN, all

features were scaled and normalized into [0, 1].

Supplementary Material

Supplementary figures S1–S7 and tables S1–S8 are available

at Genome Biology and Evolution online (http://www.gbe.

oxfordjournals.org/).
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