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Abstract

Background and objectives: The diagnosis of subarachnoid hemorrhage (SAH) especially at the subacute stage is still a
challenging issue using the conventional imaging modalities. Here we evaluated the role of double inversion recovery
(DIR) sequence of MRI compared with the conventional gradient-recalled echo (GRE)-T2*-W and susceptibility-
weighted imaging (SWI) sequences in the diagnosis of subacute SAH.
Materials and methods: This prospective study was conducted on 21 patients with SAH, which were diagnosed using CT

scan at the initial step. In the third week after the injury (14-20 days), all patients underwent a brain MRI exam that
included T2*-W, SWI, and DIR imaging sequences. All images were independently read by two radiologists, who were
blinded to the clinical history of the patients. The presence or absence of SAH was reviewed and assessed in 6
anatomical regions.
Results: On the DIR images, 20 patients were found to have at least one subarachnoid signal abnormality, while the

SWI and T2*-W images identified SAH areas on 17 and 15 patients, respectively. The highest rate of inter-observer
consensus by the DIR sequence was found in the interhemispheric fissure and perimesencephalic area (k ¼ 1). Also, a
highest rate of inter-observer consensus using SWI was found in the interhemispheric fissure and posterior fossa cistern
area (k ¼ 1). A weak agreement was found in frontal-parietal convexity using SWI (k ¼ 0.447), and in posterior fossa
cistern by the T2* sequence (k ¼ 0.447).
Conclusion: In conclusion, the DIR sequence was more reliable at identifying signal abnormalities in subacute SAH

patients than the T2*-W and SWI sequence, and is suggested as a promising imaging technique for detecting hemor-
rhagic areas without considering the anatomical distribution of SAH.

Keywords: Subarachnoid hemorrhage, Magnetic resonance imaging, MRI, Double inversion recovery

1. Introduction

I ntracranial haemorrhage (ICH) as a common
stroke subtype, caused by blood leaking into

the brain parenchyma. This critical neurologic
injury is responsible for 10-20% of strokes [1-5].
ICH comprises four different types: epidural and
subdural hematoma, intracerebral haemorrhage,

and subarachnoid haemorrhage (SAH). SAH ari-
ses from different conditions including traumatic
(most common) and non-traumatic brain injury.
Since SAH is a potentially life-threatening con-
dition and may lead to disability, its accurate
diagnosis and early management are of vital
importance [6-10]. Delay or misdiagnosis of SAH
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occurs mostly in patients with headache presen-
tation and even in patients undergoing a
computed tomography (CT) scan. SAH may
eventually lead to re-bleeding, further neurologic
dysfunction, or even death [11-14]. Despite
headache being one of the most important man-
ifestations of this condition, up to 50% of SAH
cases are misdiagnosed with a tension headache
or migraine. This, in turn, is one of the reasons for
delayed diagnosis and treatment, which can
consequently be associated with unfavourable
prognosis [15-17].
Methods for diagnosing SAH include patient pre-

sentation, lumbar puncture, brain imaging, and angi-
ography. CT is highly sensitive at diagnosing SAH,
and is thought of as a favourable imaging modality
since it is relatively low-cost and efficient. The misdi-
agnosis rate for SAH via brain CT (performed within
6 hours of symptom initiation) was reported to be only
1.46/100,000 [18-21]. However, as more time passes
from the onset of bleeding, the sensitivity of CT de-
creases due to loss of the density of haemorrhage on
CT images [22]. As reported by Sames et al., by cate-
gorising SAH patients based on symptom onset time
(less or more than 24 hours), the sensitivity of CT falls
from 93.1% to 83.8% [23-24]. Furthermore, in the cases
of minor bleeding and re-absorption of blood over
time, CT seems unreliable and may provide false
negative results [25-27].
Due to the aforementioned limitations of CT, Mag-

netic Resonance Imaging (MRI) has shown increasing
use in the diagnosis and management of SAH. In
particular, the Fluid-attenuated inversion recovery
(FLAIR) sequence of MRI has shown superiority over
CT in the diagnosis of SAH at both the acute and
subacute phases [28]. Another conventional sequence
of MRI, T2*-W imaging, has enabled one to discrimi-
nate between acute-subacute SAH from late-chronic
bleeding phase by signal changes induced via iron
oxidation [29]. However, in some cases, since MRI is
prone to magnetic susceptibility artifacts, it can be
difficult todetect subtle cases of SAHbyFLAIRor T2*-
W sequences [30]. Post-processing software that pro-
duce susceptibility weighted imaging (SWI) (based off
T2*-W images) can also be used to identify patients
subjected to SAH. As with T2*-W, the SWI sequence
takes advantage of susceptibility differences between
tissues and combines the magnitude and phase im-
ages toproduceenhancedcontrastmagnitude images.

The greater ability of SWI over T2*-W at detecting
parenchymal and subarachnoid haemorrhage has
been confirmed by several studies [31-32].
Another promising pulse sequence for the diag-

nosis of SAH is the double inversion recovery (DIR)
sequence. DIR is an inversion recovery variant
sequence which benefits from double non-selective
180�-inverting pulses and suppresses signal from both
CSF and white matter simultaneously [33]. Since this
sequence leads to clear delineation between sub-
arachnoid spaces and the cerebral cortex, it can be
considered to differentiate cortical lesions from SAH
easily. Further, DIR sequence has been widely used
for detection of multiple sclerosis plaques and cere-
bral cortex lesions because of its sensitivity to mag-
netic field variations [35-36]; however, to our
knowledge, no studies except one, used this
sequence in the detection of haemorrhagic areas in
the brain. Therefore, the purpose of this study was to
compare the DIR sequences compared with the
conventional GRE-T2*-W and SWI sequence in
detecting SAH.

2. Methods

This prospective study was conducted on patients
with the definitive diagnosis of SAH who were
admitted in the ICU department of Sari Imam Kho-
meini hospital. The patients were included in the
study based on the clinical examination, which was
done by a neurosurgeon, and CT scan at the hyper-
acute stage (less than 10 hours after admission), re-
ported by an expert neuroradiologist. Patients with
hydrocephalus or those who had parenchymal hae-
morrhage close to SAH regions were excluded from
the study. Furthermore, patients under 18 years old
and those who had a contraindication to MRI (i.e.
having MR-incompatible implanted devices, cardiac
pacemaker, and claustrophobia) did not enter this
project. Two weeks (14-21 days) after SAH diagnosis,
MRI was performed for all selected patients in the
subacute phase.
From May 2017 to June 2018, 25 patients who had

all inclusion criteria with the diagnosis of SAH via
unenhanced CT entered this study. Patients or their
legal proxy filled out the consent form before
considering in this study. Two patients were dis-
charged before the MRI exam, and two of them were
excluded due to poor MR image quality and motion
artifact. From the 21 selected patients, seven had
spontaneous SAH, 11 had sustained head trauma,
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and 3 had an aneurysm. There were 11 males and 10
females ranging from 20 to 62 years old with the
mean age of 46.14 ± 11.27 years.

2.1. CT scan parameters

Axial CT scans of the brain were performed for all
cases using a GE BrightSpeed 16-row detector
scanner (GE Healthcare, Milwaukee, Wisconsin,
USA): x-ray tube current ¼ 140 mA, kVp ¼ 120 kV,
standard kernel, slice thickness ¼ 5 mm,
FOV ¼ 220 mm.

2.2. MRI parameters

MR images were collected using a 1.5 T Aera,
SIEMENS (Erlangen, Germany) and an 8-channel
head coil with the following sequences: 2D T2*-W,
3D SWI, and 3D DIR. The total scan time was
approximately 15 minutes for each patient. Different
repetition (TR) and inversion (TI) values were tested
in healthy volunteers to optimise the DIR sequence
for the CSF and white matter suppression,
simultaneously.

2.3. Image analysis

MR images were independently reported by two
expert neuroradiologists (20 and 10 years of experi-
ence), who were blinded to the clinical data and CT
scans of patients. Subarachnoid spaces of brain MR
images were divided into six distinct anatomical re-
gions: 1) frontal-parietal, 2) temporal-occipital, and 3)
interhemispheric cisterns, 4) the Sylvian cistern, 5)
perimesencephalic cisterns (both basal and mesen-
cephalic cisterns), and 6) posterior fossa cisterns.
After visually reviewing the images, the neuroradi-
ologists were asked to give zero or one to each sub-
arachnoid region in case of absence or presence of
haemorrhage. To avoid recall bias, reviewers re-
ported each set of images related to each sequence
separately, in a randomised order, one week apart.

Diagnostic imaging criteria to detect SAH areas
were as follows: high-attenuating, formless sub-
stances which filled the subarachnoid spaces
around the brain in the axial non-enhanced CT
images within less than 6 hours after symptom
onset. In the subacute phase, on T2*-W images,
SAH areas were found as low signal intensity in
normally high SI subarachnoid spaces. The most
dominant features in SWI images were the presence
of hypointense SI in the sulci and cistern, which
could be differentiated from veins by evaluating the
smoothness and regularity of their shapes and uni-
formity of signals; such that the haemorrhagic re-
gions were irregular compared with vessels, and
had a rough boundary along with the non-uniform
signal. On DIR images, hyperintense regions
compared with the normal CSF were detected as
SAH. After reviewing all images by the two neuro-
radiologists independently, they discussed their re-
ports and came to an agreement. Then, the number
of patients with at least one SAH location depicted
by each MR sequence was counted based on each
distinct anatomical area.

3. Statistical analysis

At the final stage, all statistical analyses were
performed using SPSS.21 software (IBM Corpora-
tion, Armonk, USA). To find the level of inter-
observer agreement, Cohen's Kappa test was
applied for each anatomical region and each
sequence separately. Kappa values higher than 0.9
showed almost perfect agreement, between 0.9 and
0.8 strong, between 0.8 and 0.6, moderate, between
0.6 and 0.4, weak, between 0.4 and 0.2, minimal,
and less than 0.2 suggested no agreement [37].
Note that the sensitivity and specificity of the se-
quences to depict SAH was not calculated since
there was no standard criterion for subacute SAH
validation. As such, we were not able to determine
whether the additional areas found by each
sequence was correct or not.

Table 1. Number of haemorrhagic areas (SI abnormality) detected in the various regions of subarachnoid space by different MR sequences after
readers’ consensus.

Fronta-parietal Temporal- occipital Interhemispheric

fissure

Sylvian

cistern

Perimesencephalic

cistern

Posterior

fossa cistern

Total

T2*-W only 0 2 1 0 2 0 5

SWI only 2 1 4 0 1 0 8

DIR only 4 2 2 2 3 4 17

T2*-W and SWI 0 2 0 1 0 0 3

T2*-W and DIR 5 3 0 1 0 0 9

SWI and DIR 2 2 0 1 1 1 7

T2*-W, SWI and DIR 3 1 2 1 1 1 9

Total 16 13 9 6 8 6 58
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4. Results

A total number of 58 identified haemorrhagic
areas were found using a combination of various
MR sequences as presented in Table 1. The highest
number of signal abnormalities found by DIR
sequence alone was 29.31%. On the SWI and T2*-
weighted images, 8 and 5 regions were identified,
respectively. A consensus between all sequences
was found in 9 areas (15.51%). Other common SAH
locations found between two modalities were as
follows: T2*-DIR 9, SWI eDIR 7, and T2*- SWI 3. As
shown in Table 1, DIR was very accurate at detect-
ing SAH in the posterior fossa cistern (6 out of 6),
frontal-parietal areas (14 out of 16), and Sylvian
cistern (5 out of 6). Most of the subarachnoid
bleeding in temporal-occipital regions were identi-
fied by the T2*-w sequence (8 out of 13). SWI out-
performed the other sequences in the
interhemispheric fissure, detecting 6 out of 9 SAH
regions. All sequences were almost equally sensitive
at detecting SAH in the perimesencephalic cistern.
The highest rate of inter-observer consensus was

found by the DIR sequence in the interhemispheric
fissure, the perimesencephalic and posterior fossa
cistern, and the frontal-parietal sulci (p-value<0.0001).
Perfect agreement was also found between readers
using SWI sequence in the interhemispheric fissure
and posterior fossa cistern and using T2*-W in the
frontal-parietal areas (p-value<0.0001). Weak agree-
ment was found in temporal-occipital (p-
value ¼ 0.004) and frontal-parietal convexity (p-
value¼ 0.019) using SWI, as well as in Sylvian cistern
(p-value<0.0001) and posterior fossa by the T2*-W
sequence (p-value ¼ 0.018) (Table 2 and Figs. 1e3).
Among 21 patients, the DIR sequence found 20 pa-

tients with at least one subarachnoid signal abnor-
mality, and SWI and T2*-w sequences identified SAH
areas on 17 and 15 patients, respectively (Table 3).

5. Discussion

This study indicated that DIR is highly sensitive
to microhaemorrhage compared with T2*-W and
SWI sequences at the subacute phase of sub-
arachnoid haemorrhage. Additionally, DIR has a

high potential to detect subtle SAH in all sub-
arachnoid spaces compared with T2*-W and SWI.
At the subacute phase, the T2*-W sequence is
more sensitive to small regions of haemorrhage in
subarachnoid spaces because of the paramagnetic
effects of haemoglobin products in this time
course [38]. This effect leads to the loss of signal
intensity and causes SAH areas to appear as dark
regions on these series of images. The pitfall of
this sequence is the presence of magnetic sus-
ceptibility between the skull and brain which leads
to a ‘blooming’ artifact and missing SAH regions
at the skull base [39].
SWI has similar issues as the T2*-W sequence;

however, it is more sensitive to the high concentration
of iron products of haemorrhage in subarachnoid
spaces. The 3D SWI, as a high-resolution sequence,
suffers less from the partial volume effect and can
detect microhaemorrhages especially in the inter-
hemispheric fissure, supracerebellar cistern, and
interventricular areas. On the contrary, a lower
detection rate of SAH was observed in the temporal-
occipital convexity and Sylvian cisternwhichmight be
due to the susceptibility artifact resulting from adja-
cency to air-tissue interface [40-41]Consistentwith the
Verma et al. [23], the results of the present study
revealed that the SWI alone identified the maximum
number of SAH regions in the interhemispheric areas,
while no abnormal area was found in the Sylvian
cistern. Furthermore, none of the SWI and T2*-W se-
quences detected haemorrhage in the posterior fossa,
which can be elucidated by their limitation at finding
SAH in the base of the skull.
Paramagnetic products can cause an aliasing

artifact, which is destructive for MR images. In the
phase image of SWI sequence, Wu et al. found that
most of the SAH areas are along with this artifact,
while veins are not aliased on these series of images.
So, they concluded that the aliasing artifact could be
considered as a distinguishable factor [32]. Howev-
er, several confounding factors can also cause an
aliasing artifact, including air-filled spaces, calcifi-
cation, and fast flow from the middle cerebral artery.
Thus, it is difficult to differentiate hypointense
cortical veins from SAH on SWI images. In line with
Hodel et al. [41] our findings also demonstrated a

Table 2. Inter-observer agreement for all applied MR sequences between 2 neuroradiologists based on various anatomical areas.

T2* -W (95% CI) SWI (95% CI) DIR (95% CI)

Frontal-parietal 1.000 (1-1) 0.447 (0.030 e 0.731) 0.882 (0.733-0.951)

Temporal- Occipital 0.679 (0.360 e 0.856) 0.551 (0.168 -0.790) 0.716 (0.420-0.874)

Interhemispheric fissure 0.716 (0.421 e 0.874) 1.000 (1-1) 1.000 (1-1)

Sylvian cistern 0.542 (0.155 e 0.785) 0.798 (0.566-0.913) 0.816 (0.599-0.921)

Perimesencephalic cistern 0.783 (0.538 e 0.906) 0.783 (0.538 e 0.906) 1.000 (1-1)

Posterior fossa cistern 0.447 (0.030 e 0.732) 1.000 (1-1) 0.882 (0.733-0.951)
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lower number of SAH identified by SWI and T2*-W
compared with the DIR sequence in the periphery
and convexities of the brain. This difference can
arise from the similarity in signal intensity between
the paramagnetic effects of deoxyhaemoglobin in
the cortical veins and methaemoglobin in the sub-
arachnoid haemorrhage regions appearing as
hypointense areas in these series of images. So, this

issue can clarify the lower inter-observer consis-
tency rate in T2*-W and SWI than the DIR
sequence. Furthermore, this sequence could iden-
tify almost all patients with SAH (20 out of 21) and
more than 70% of haemorrhagic regions. In the
present study, applying a three-dimensional DIR
sequence with thin slice thickness improved the
SNR and spatial resolution along with a reduction in

Fig. 2. SAH in temporo-occipital subarachnoid space in a 32-year-old man who done MRI 17 days after traumatic injury. In axial T2* (A) and SWI
(B) images, no signal abnormality is detected because of the destructive susceptibility artifact from air-tissue interfaces in the temporal lobes.
Conversely, distinguished signal intensity in DIR (C, arrow) image is observed.

Fig. 3. Fronto-parietal SAH in a 21-year-old man with traumatic brain injury. Haemorrhagic regions in T2*-W (A, arrow) is less visible than SWI (B,
arrow), whereas DIR (C, arrow) showed SAH as a significant hyper-intense location in the right parietal sulcus.

Fig. 1. Spontaneous subarachnoid haemorrhage in a 44-year-old woman. MR images were performed 18 days after injury. Using T2*-W (A, arrows)
and SWI (B, arrows) images, detection of SAH is a challenging issue due to its adjacency to main veins in the base of the skull and the similarity of
signal intensity between these veins and haemorrhage may lead to misdiagnosis of SAH in this region of brain. In DIR image (C, arrows), SAH is
demonstrated as marked several hyper-intense regions in the left Sylvian cistern. Note that detecting SAH in this area is one the priorities of DIR
sequence to T2* and SWI.
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partial volume effect, thereby enhancing detection
of SAH areas. Further, this sequence is less prone to
susceptibility artifact than the T2*-W and SWI ap-
proaches, making it more authentic for identifying
suspected SAH regions in the posterior cranial fossa
[34]. We postulate that the higher SNR and fewer
confounding artifacts of DIR can give rise to a strong
agreement between readers. In this study, the CT
scan was only performed for patients at the hyper-
acute phase of haemorrhage, so it was not appli-
cable to compare CT findings with other MRI
sequences at the subacute stage. Additionally, in
many studies, it has been shown that the sensitivity
of CT to detect aneurysmal SAH decreases over
time from around 92% in the first 24 hours to less
than 50% after one week [32]. This significant
decline in SAH detection is directly related to the
reduction in haemoglobin concentration, because of
protein reabsorption and CSF circulation which re-
distributes focal SAH [38]. On the other hand, CT is
not capable of finding subtle haemorrhages in the
posterior fossa, due to beam hardening artifacts and
higher partial volume effect [40].
In this study, we had several limitations which

should be resolved for future studies. First, we did
not recruit healthy volunteers to compare their MR
images with SAH patients. Second, there were no
standard criteria to definitely determine the hypo-
or hyper-intense regions found in different se-
quences as SAH. Thus, while the DIR sequence
was able to detect more signal abnormalities than
other sequences, there was no standard reference
to prove the nature of those abnormalities. Per-
forming an additional CT scan for the patient in
the subacute phase is not a routine diagnostic
procedure in our hospital, so based on ethical
considerations and financial issues, we were not
able to compare our results with CT images, as
performed by previous studies. Finally, most of the
qualified patients for this study were hospitalised
in the ICU department, and were not at a reliable
level of consciousness to undergo MR imaging at
the right time, limiting our sample size to a rela-
tively small number of patients.

6. Conclusion

Overall, MRI-based DIR images have a higher
ability to detect and delineate signal abnormalities
than T2* and SWI images in SAH patients who are
in the subacute phase of injury. It was also observed
that the diagnostic values of SWI and T2*-W se-
quences are strongly associated with the anatomical
distribution of SAH. Hence, the DIR sequence is
suggested as a promising imaging technique to find
haemorrhagic areas in all brain regions of patients
several days post-injury.
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