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Abstract

This study focuses on the long-term aerosol and precipitation chemistry measurements from 

colocated monitoring sites in Southern Florida between 2013 and 2018. A positive matrix 

factorization (PMF) model identified six potential emission sources impacting the study area. The 

PMF model solution yielded the following source concentration profiles: (i) combustion; (ii) fresh 
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sea salt; (iii) aged sea salt; (iv) secondary sulfate; (v) shipping emissions; and (vi) dust. Based on 

these results, concentration-weighted trajectory maps were developed to identify sources 

contributing to the PMF factors. Monthly mean precipitation pH values ranged from 4.98 to 5.58, 

being positively related to crustal species and negatively related to SO4
2−. Sea salt dominated wet 

deposition volume-weighted concentrations year-round without much variability in its mass 

fraction in contrast to stronger seasonal changes in PM2.5 composition where fresh sea salt was far 

less influential. The highest mean annual deposition fluxes were attributed to Cl−, NO3
−, SO4

2−, 

and Na+ between April and October. Nitrate is strongly correlated with dust constituents (unlike 

sea salt) in precipitation samples, indicative of efficient partitioning to dust. Interrelationships 

between precipitation chemistry and aerosol species based on long-term surface data provide 

insight into aerosol–cloud–precipitation interactions.
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1. Introduction

Aerosol–cloud interactions (ACI) are complex and not accurately represented by climate 

models [1]. These interactions remain the largest source of uncertainty in anthropogenic 

radiative forcing [2,3]. In contrast to subtropical regions characterized by stratocumulus 

decks such as off the western coasts of the United States (U.S.) [4], Chile [5], and Southern 

Africa (e.g., [6,7]), marine-related ACI studies are more scarce over the Western North 

Atlantic Ocean (WNAO) region [8].

Although few studies focusing on ACI over the WNAO have primarily relied on ship and/or 

aircraft data [8]. Even though these efforts have, in some cases, provided data at high 

temporal and spatial resolution and in the vicinity of clouds, downsides are the high cost, 

challenging logistics, and statistical limitations innate to short-term intensive campaigns. An 

alternative and indirect method to gain inferences about ACI is to use long-term data at 

surface monitoring networks gathering compositional data for precipitation and particulate 

matter. This method has been demonstrated for other regions such as an inland California 

site [9], the Southwestern U.S. [10], and Mexico City [11]. Those works demonstrated that 

colocated measurements of both precipitation and aerosol composition provide insight into 

some combination of the following processes: (i) the composition of particles serving as 

either the cloud condensation nuclei (CCN) or ice nuclei (IN) that eventually fall to the 

surface via wet deposition; (ii) uptake of species into existing droplets in cloud; and (iii) 

subcloud scavenging of different constituents. These three processes represent both aerosol 

effects on cloud (i) and cloud effects on aerosol (ii–iii). There are limitations when relating 

surface aerosol properties to precipitation at the same site, which are circumvented by 

airborne platforms flying around clouds; however, the ground-based approach leverages 

larger statistical datasets with broader temporal coverage that typically provide more 

speciation data.
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For studies relating aerosol and precipitation chemistry, it helps to study locations with 

broad ranges in both aerosol and meteorological conditions. In this regard, coastal areas 

influenced by both natural and anthropogenic emissions are fitting as they are exposed to a 

wide assortment of aerosol types. On the western edge of the WNAO, Southern Florida fits 

into this category as it experiences influence from local and regional sources that are both 

biogenic and anthropogenic in nature [12], in addition to being under the impact of marine 

and shipping emissions [13], and long-range transport of dust [14] and smoke [15,16]. The 

area also experiences a wide range of precipitation, including from actively developing 

shallow cumulus clouds, which are common over the trade regions of most of the tropical 

oceans [17,18]. These clouds are especially important to study due to their radiative effect 

on climate model sensitivity [17]. Thunderstorms are prevalent during the summertime over 

the Gulf Coast and Florida, with the latter registering the highest concentration of 

thunderstorms in the U.S. [19]. Convergence from coastal sea breezes has been proposed as 

the dominant dynamic mechanism leading to thunderstorms during the summer months [20]. 

The combination of warm, moist maritime-tropical air and small-scale wind circulation (i.e., 

sea breeze) from both the Atlantic Ocean and the Gulf of Mexico provides the optimal 

conditions to form thunderstorms in this area.

Additionally, smaller bodies of water (e.g., Lake Okeechobee) can create circulations similar 

to sea breeze leading to conditions to form thunderstorms. Intercomparison of aerosol and 

wet deposition chemical data for Southern Florida can suggest what aerosol types participate 

in CCN/IN activation and what the resultant composition is of the wet deposition derived 

from clouds. Wet deposition flux magnitudes of different species are relevant for 

understanding impacts on surface ecosystems, which was already an active research area 

decades ago in the study region as part of the Florida Atmospheric Mercury Study [21,22].

This work aims to report on long-term aerosol and precipitation chemistry measurements 

from colocated monitoring sites at the Everglades National Park (NP) in Southern Florida. 

The analysis combined field measurement data, transport modeling, and source 

apportionment modeling to characterize the temporal trends and interrelationships between 

aerosol and precipitation chemistry from 2013 to 2018. The results and discussion are 

structured as follows: (i) summary of meteorological profile; (ii) sources of PM2.5; (iii) 

precipitation chemistry profile; and (iv) interrelationships between precipitation and aerosol 

chemistry.

2. Methods

2.1. Site Description

The Everglades NP hosts the precipitation monitoring station (25.390° N 80.680° W, 2 m 

above sea level (m a.s.l.)) managed by the National Atmospheric Deposition Program/

National Trends Network (NADP/NTN) and the Environmental Protection Agency (EPA) 

Interagency Monitoring of Protected Visual Environments (IMPROVE) aerosol monitoring 

station (25.391° N 80.6806° W, 1 m a.s.l.). Both sites are located approximately 25 km from 

the coast. The Everglades NP is a unique ecosystem formed by subtropical wetlands (Figure 

1). Located approximately 90 km southwest of Miami (Miami-Dade County population = 

2,761,581 for 2018) [23], Everglades NP extends 1.5 million acres across Southern Florida. 
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Approximately 50% of the original area has been converted to agricultural land and urban 

development [24,25]. Currently, 397,000 acres around the Everglades NP and the southern 

tip of Lake Okeechobee area are used for commercial sugarcane crops, Florida’s most 

profitable crop [26]. A byproduct of sugarcane production is 7 million tons of dry sugarcane 

leaves that are removed and burnt before harvesting between October and late March [27]. 

This is a common practice in other sugarcane producing areas like Louisiana, U.S. [28], 

Cuba [29], and Brazil [30]. These activities consequently result in substantial biomass 

burning emissions [27,31].

2.2. Precipitation and Aerosol Composition

Established in 1977 by the U.S. State Agricultural Experiment Stations (SAES), the 

NADP/NTN (hereafter referred to as NADP) began monitoring wet deposition across the 

U.S. to measure its effects on the environment. The network continued to expand throughout 

the years and currently has over 260 sites with the Wisconsin State Laboratory of Hygiene at 

the University of Wisconsin-Madison as the NADP Program Office. In 1987, the IMPROVE 

program was set up with 30 monitoring sites located in national parks as part of the visibility 

monitoring network [32], which currently includes over 100 sites. This study’s data were 

retrieved from the NADP and IMPROVE stations located at the Everglades NP between 

January 2013 and December 2018.

The NADP site collected weekly precipitation samples for pH, conductance, and water-

soluble ions concentrations (ammonium (NH4
+), calcium (Ca2+), chloride (Cl−), magnesium 

(Mg2+), nitrate (NO3
−), potassium (K+), sodium (Na+), and sulfate (SO4

2−)). Precipitation-

weighted concentrations were calculated and used in this study [33].

At the IMPROVE site, 24-h filter samples were collected every third day [34]. Relevant to 

this study were the measurements of speciated mass concentrations for particulate matter 

(PM) with a diameter less than or equal to 2.5 μm (PM2.5): water-soluble ions (SO4
2−, 

NO3
−, and Cl−), elements (aluminum (Al), arsenic (As), bromine (Br), calcium (Ca), 

chromium (Cr), cupper (Cu), iron (Fe), lead (Pb), Na, magnesium (Mg), manganese (Mn), 

nickel (Ni), phosphorus (P), potassium (K), rubidium (Rb), selenium (Se), silicon (Si), 

sodium (Na), strontium (Sr), titanium (Ti), vanadium (V), zinc (Zn), and zirconium (Zr)), 

three fractions of elemental carbon (EC1, EC2, and EC3), and four fractions of organic 

carbon (OC1, OC2, OC3, and OC4). This study also used mass concentration data for fine 

soil and PM with diameters less than or equal to 10 μm (PM10). The difference between 

PM10 and PM2.5 is referred to as coarse particulate matter (PMcoarse).

The water-soluble ions in the PM2.5 fraction were measured by ion chromatography, while 

the elemental mass fraction was measured by either X-ray fluorescence or particle-induced 

X-ray emission. The seven carbon fractions mentioned above were measured using the 

IMPROVE’s thermal optical reflectance (TOR) method [35,36]. The OC fractions were 

categorized as volatiles (OC1 volatilizes at 140 °C), semi-volatiles (OC2 at 280 °C), and 

non-volatiles (OC3 at 480 °C and OC4 at 580 °C) [35]. The EC fractions were classified as 

char-EC (EC1 at 580 °C), and soot-EC (740 °C (EC2) and 840 °C (EC3)) [35]. The char 

fraction represents smoldering conditions common during biomass burning and residential 

coal combustion, and EC2 and EC3 are emitted during flaming conditions prevalent during 
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vehicle exhaust and coal combustion [37]. Additional details of the IMPROVE sampling 

protocols can be found in Chow et al. [38] and Solomon et al. [39]. Monthly averages, 

standard deviations, and number of samples for aerosol (IMPROVE) and precipitation 

chemistry (NADP) data are included in the Supplementary Information (SI) file (IMPROVE 

= Table S1 and NADP = Table S2). The method detection limits (MDL) for both datasets are 

included in Tables S3 and S4 for IMPROVE and NADP, respectively.

2.3. Metereological Data

Meteorological data at the Everglades NP site (25.3900° N 80.6800° W) for precipitation 

accumulation and temperature (minimum and maximum) were obtained from the NADP 

site. Wind speed and average temperature were obtained from the EPA air quality system 

(AQS) database [40]. Planetary boundary layer height (PBLH) data were obtained from the 

modern era-retrospective analysis for research and applications (MERRA-2) model with 

0.5° × 0.625° spatial resolution [41]. Monthly area-averaged specific humidity (1° × 1° 

spatial resolution) and soil moisture (0–10 cm with 0.25° × 0.25° spatial resolution) were 

obtained from the global land data assimilation system (GLDAS) [42]. Cloud fraction data 

were retrieved from the moderate resolution imaging spectroradiometer (MODIS) on the 

Aqua platform and downloaded using NASA GIOVANNI [43].

2.4. Calculations

2.4.1. Positive Matrix Factorization—Positive matrix factorization (PMF) modeling 

was carried out using the U.S. EPA PMF version 5A. Positive matrix factorization has been 

widely implemented to conduct source apportionment of PM2.5 [44–46]. The model was 

applied only to the EPA IMPROVE data (ntotal = 658) to determine sources and evaluate 

corresponding contributions impacting the sampling site. The PMF model was not applied to 

the precipitation chemistry data as the NADP dataset had fewer species (NH4
+, Ca2+, Cl−, 

Mg2+, NO3
−, K+, Na+, and SO4

2−), reducing the number of possible sources that can be 

identified; keeping the native precipitation species rather than PMF source factors allows for 

better intercomparison with other studies reporting the same water-soluble ion 

concentrations. Thirty-two species (Al, As, Br, Ca, EC1, EC2, EC3, OC1, OC2, OC3, OC4, 

Cl, Cr, Cu, Fe, Pb, Mg, Mn, Ni, NO3
−, P, K, Rb, Se, Si, Na, Sr, SO4

2−, Ti, V, Zn, and Zr) 

were included in the analysis. Each species was categorized depending on the signal to noise 

ratio (S/N). Species were classified as “Bad” if the S/N ratio was less than 0.5, “Weak” if the 

S/N ratio was greater than 0.5 but less than 1, and “Strong” if the value was greater than 1 

[47]. Species categorized as “Bad” (e.g., EC3, OC1, Rb, Se, and Zr) were excluded from 

further analysis. To minimize the effect of PM2.5 on the model’s results, it was added as a 

“Total Variable” and categorized as a “weak” species [48]. Based on the method of Norris, 

Duvall, Brown, and Bai [47], missing concentration values were replaced with the species-

specific median, samples below the method detection limit (MDL) were substituted by half 

of the MDL, and the uncertainty was 5/6 of the MDL. An additional 10% uncertainty was 

added to account for unconsidered errors for all species. Bootstrapping (BS), displacement 

(DISP), and bootstrapping with displacement (BS-DISP) were employed to assess the 

uncertainty associated with the model. To qualify a run as a successful mapping, the BS used 

100 resamples with a threshold value of 0.6 for the correlation coefficient (r). The BS-DISP 

results further ensured that the solution is most likely a global minimum as the results did 
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not show a significant change in the Q values while running DISP and BS-DISP tests. 

Finally, results were evaluated for the maximum change in the sum-of-squares (dQmax). A 

dQmax value of 4 was chosen as it provides robust model outcomes with the smallest error 

[47].

2.4.2. Weight Concentration Weighted Trajectory—A concentration weighted 

trajectory (CWT) model was used to determine the spatial distribution and transport 

pathways of potential PM2.5 sources (e.g., [49]). This approach assigns a weighted 

concentration to each grid cell obtained by averaging sample concentrations with associated 

trajectories crossing each grid cell. In order to account for uncertainty, a weighing function 

was applied to the CWT, which is referred to as weight concentration weighted trajectory 

(WCWT) [50–52]. Weight concentration weighted trajectory maps were developed using the 

GIS-based software TrajStat [53]. The model used a domain of 160° W to 90° E longitude 

and 6° N to 90° N latitude with grid cell size 0.5° × 0.5° and incorporated back-trajectories 

(96 h) from the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model 

[54,55]. Based on previous CWT and potential source contribution function (PSCF) 

modeling efforts (e.g., [49,52,56,57]), the back trajectories’ ending height was set as 500 m 

above ground level at Everglades NP. Using the “model vertical velocity” method from the 

National Centers for Environmental Prediction/National Center for Atmospheric Research 

(NCEP/NCAR) reanalysis data, trajectories were obtained every 6 h. Seasonal WCWT maps 

from 2013 to 2018 are provided in Figures S1–S6 of the SI.

3. Results and Discussion

3.1. Meteorological Profile

The section aimed to provide an overview of the meteorological conditions at the studied 

region (Figure 2). Florida has a subtropical climate with mild winters and hot summers. The 

summer months extend from June to August (JJA) with little variability in the maximum 

temperature. The average temperature for the period between 2013 and 2018 was 24.0 ± 3.7 

°C with a maximum temperature reported in August of 37.1 ± 2.0 °C (Figure 2a). Minimum 

temperatures during January, February, and March remained at 15.4 ± 4.1 °C (Figure 2a). 

Precipitation occurred throughout the year, but primarily between May and October (Figure 

2b). Maximum precipitation values were recorded in June (223 ± 71 mm), with the 

minimum value registered in March (38 ± 71 mm). Higher cloud fractions followed the same 

trend as the monthly precipitation profile and presented a maximum value in June (0.7 ± 

0.07; Figure 2b). Specific humidity values increased in conjunction with the precipitation, 

with the maximum value recorded in August (17.8 ± 0.48 g kg−1; Figure 2c). Low variability 

was observed in the PBLH profile throughout the year with a peak during April (989 ± 59 

m), a minimum in December (711 ± 63 m), and an annual mean of 823 ± 92 m (Figure 2c). 

Low monthly variability in soil moisture may be related to precipitation occurring 

throughout the year (Figure 2d) and the fact that the site is located over a shallow aquifer 

[58]. The average soil moisture was 30.7 ± 3.67 kg m−2 for the studied period. Wind speed 

exhibited higher values during the months with the lowest precipitation, with a mean annual 

value of 2.95 ± 1.1 m s−1 (Figure 2d). The likelihood of enhanced local dust emissions 

during periods of higher winds is reduced owing to appreciable soil moisture; this contrasts 
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to drier areas like Central California where there are enhanced dust emissions due to the 

combination of low soil moisture and increases in wind speed [9].

3.2. Sources of PM2.5

A PMF model based on the elemental and inorganic ion data was used to identify potential 

emission sources impacting the study area. Several solutions were evaluated to converge on 

the final solution that has six sources, defined as follows based on their chemical 

characteristics: (i) combustion; (ii) fresh sea salt; (iii) aged sea salt; (iv) secondary sulfate; 

(v) shipping emissions; and (vi) dust. The mass concentration of different species and the 

percent of their mass accounted for by a specific source are shown in Figure 3. The optimal 

solution was chosen considering the most meaningful physical results, the lowest Qrobust, the 

Qtrue/Qexpected ratio closest to 1, and DISP swap values equal to zero. The concentration and 

percent of species profiles for the preliminary PMF solutions not used as the final solution 

are shown in Figures S7–S10. The summary of the PMF model solutions and associated 

statistics are shown in Tables S5–S6. A mean annual WCWT map is shown in Figure 4 for 

each of the six factors identified with the PMF model. The results and discussion are 

included in the sections below.

3.2.1. Combustion—The first factor, defined as combustion, was identified as having 

influence from biomass burning, vehicle emissions, industrial activities, and fuel/oil sources. 

Combustion accounts for 17.0% of the total PM2.5. Dominant constituents influenced by this 

source factor include the following, with percent values being the fraction of that constituent 

accounted for by this source: OC3 (69.7%), P (64.4%), EC1 (60.9%), OC4 (60.2%), Cu 

(59.6%), Zn (56.7%), OC2 (50.5%), Br (44.9%), EC2 (43.6%), As (41.8%), Pb (38.7%), 

NO3
− (23.7%), and K (22.5%). There were more minor contributions from this source to Ca 

(15.4%), Cr (12.3%), Sr (7.7%), Mn (7.5%), Ni (4.8%), Fe (4.6%), Cl (3.7%), V (3.1%), Ti 

(3.0%), Al (2.1%), Si (1.4%), and Mg (0.1%).

Biomass burning has been shown in past work to be an especially large contributor to EC1, 

P, OC2, OC3, and OC4 [59], which are prominent in this source factor. Combustion 

associated with either gasoline, diesel, and oil can be traced to concentrations of the OC and 

EC fractions and various other tracer species [60]. For example, high concentrations of OC3 

and OC4 are linked to gasoline emissions as the primary source of combustion, while diesel 

emissions are characterized by high contributions of EC1. Oil combustion is characterized 

by enhanced contributions from V, and Ni [60,61]. Residual oil and pulverized coal 

combustion tracers include As, Cu, and NO3
− [62], while motor oil additives also include Zn 

and Ca [63]. Zinc and Cu are prominent species in the combustion source factor and have 

been shown to be pronounced in vehicular emissions [64]. Incinerating activities located in 

the counties surrounding the sampling site [65] likely contributed to OC1, OC4, EC1, K, Pb, 

Si, and Zn [66].

The combustion factor’s monthly profile (Figure 5a) shows higher concentrations from 

October to May (0.89–1.51 μg m−3). The relative contribution remained relatively stable 

throughout the year with an average value of 0.18 ± 0.06 (Figure 5b). As emissions 

associated with vehicular traffic, industrial activity, and fuel/oil combustion do not 
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necessarily exhibit strong seasonal changes, other factors can explain the monthly profile. 

For example, the period between October and May features reduced precipitation values and 

thus less aerosol removal. In addition, those months coincide with the official sugarcane 

preharvesting burning season (mid-late October to late March) [27] and natural fires during 

the dry season (April and May) [67]. The WCWT map in Figure 4a shows that the major 

sources of combustion were over the Florida panhandle and its coast, with additional 

contributions from fires in the neighboring states [68–70]. Seasonal WCWT maps show 

higher concentrations over the Florida panhandle during SON, DJF, and MAM (Figure S1), 

in accordance with agricultural and natural fires reported during these months. Interestingly, 

the WCWT maps revealed that the influence of long-range transport of combustion 

emissions from fires in areas such as Mexico [15], especially the Yucatan [16], and parts of 

Central America [71] were not influential relative to local and regional sources.

3.2.2. Fresh and Aged Sea Salt—The fresh and aged sea salt factors represent 12.6% 

and 6.6% of the total PM2.5, respectively. The fresh sea salt factor was characterized by the 

high contribution to Cl− (93.5%), Na (43.1%), and Mg (39.3%). The main differentiating 

characteristic between the fresh sea salt and the aged sea salt factor was the replacement of 

Cl− by NO3
− owing to sea salt’s chemical reactivity with acids [72,73]. More specifically, 

the aged sea salt factor contributed 43.5% to Na, 48.8% to Mg, 53.1% to NO3
−, and 0% to 

Cl−. Chloride depletion occurs due to the reaction between sodium chloride (NaCl) and 

acids such as sulfuric and nitric acids (H2SO4 and HNO3) to form sodium nitrate (NaNO3) 

and sodium sulfate (Na2SO4) [74–77], respectively; furthermore, organic acids can 

participate in depletion reactions as well [78–82]. Size-resolved measurements in other 

coastal regions have pointed to the abundance of NO3
– in the supermicrometer size range in 

contrast to SO4
2− [83–85].

The monthly profile (Figure 5a) for fresh sea salt shows higher values between October and 

March (1.26–1.72 μg m−3) with a peak during March revealing a higher contribution (0.30) 

when compared to the rest of the year (Figure 5b). As sea salt is removed efficiently via wet 

scavenging with a sharp vertical gradient decreasing with altitude (e.g., [86,87]), the 

decrease in fresh sea salt expectedly coincides with the enhancement in precipitation 

between April and September as was also seen for the previously discussed combustion 

factor. The fresh sea salt WCWT analysis highlights higher mass concentrations associated 

with trajectories from the east and over the Atlantic Ocean (Figure 4b). The aged sea salt 

monthly profile was relatively more stable throughout the year (0.36 ± 0.06 μg m−3), with 

slightly higher levels between March–May (0.40–0.47 μg m−3). This coincides with the 

months exhibiting the highest cumulative mass concentrations from three PMF source 

factors known to emit acids, including combustion, shipping emissions, and secondary 

SO4
2−. In contrast to the fresh sea salt, aged sea salt concentrations were located closer to 

the coast of Florida and over the Caribbean Sea (Figure 4c), which, as will be shown, was 

similar to maps for shipping emissions and secondary SO4
2−. No apparent seasonal 

difference was observed for the fresh sea salt WCWT maps (Figure S2), while the seasonal 

aged sea salt WCWT maps (Figure S3) show a higher concentration during SON over the 

Atlantic Ocean north off the coast of Florida.
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3.2.3. Secondary Sulfate—The next factor, identified as secondary SO4
2−, was the 

dominant factor accounting for 23.0% of the total PM2.5. This factor contributed the most to 

SO4
2− (43.6%), which is secondarily produced via gas-to-particle conversion processes from 

its main precursor SO2; however, this factor includes other important species that can be 

secondarily produced as well, such as secondary organic aerosol (SOA) represented by OC2 

(14.2%). This factor also included contributions to Br (41.8%), Pb (33.6%), Zn (32.3%), K 

(27.0%), EC1 (17.9%), Cr (14.6%), Mn (10.9%), As (7.7%), OC4 (7.5%), Na (7.1%), Sr 

(6.4%), Mg (4.9%), Al (4.4%), Ca (4.0%), P (3.7%), NO3
− (3.4%), Si (3.3%), Ti (2.9%), Fe 

(2.9%), Ni (2.4%), and Cl (1.0%). As SO4
2− was most pronounced in this factor, it is worth 

noting that it can be secondarily produced from ocean emissions of dimethylsulfide (DMS) 

[88], while also originating from both local/regional sources and long-range transport of 

anthropogenic pollution. The contribution of the various elements to this factor is suggestive 

of their coemissions with SO2. For instance, Pb and Zn are coemitted with SO4
2− precursors 

from municipal solid waste incinerators [89] located 80 km northeast of the sampling site 

[65]. Other sources coemitting elements along with SO4
2− precursors include: emissions 

from gasoline vehicles (e.g., Br, EC1, and OC2) [90,91]; Cr electroplater and anodizer 

facilities (e.g., Cr) [65,92]; and sugarcane preharvest burning (e.g., K, EC1, Zn, and Br) 

[27,56,93].

The monthly profile and fractional contribution of secondary SO4
2− (Figure 5a,b) follow the 

same trend as most other factors discussed already, with higher values between October and 

May (1.24–2.35 μg m−3), coincident with reduced precipitation scavenging. Secondary 

SO4
2− relies on production via aqueous-phase chemistry (e.g., [94]), which benefits in the 

study region from fairly high year-round values of cloud fraction and humidity (Figure 2). 

The WCWT spatial results for secondary SO4
2− show more considerable influence from 

marine regions as compared to the combustion factor (Figure 4d). The same can be observed 

in the seasonal WCWT maps, where the hotspots were concentrated in the area surrounding 

the southern coast of Florida. There was not a notable difference in the seasonal WCWT 

maps for this factor (Figure S4).

3.2.4. Shipping Emissions—The shipping emissions factor represents 20.2% of the 

total PM2.5. The high contributions to V (73.7%), Ni (67.1%), SO4
2− (46.9%), EC2 (46.4%), 

Pb (23.4%), OC2 (21.6%), As (21.3%), EC1 (20.5%), P (18.8%), and OC4 (9.9%) 

confirmed the primary source of this factor as they are commonly found in low-cost residual 

oil used as ship fuel [95–99]. The identity of this source was further confirmed by the 

calculated V:Ni ratio of 3.9, which fits in the range (2.5–5) suggested by Pandolfi et al. [100] 

as a marker for shipping emissions.

The PM2.5 monthly profile and fractional contribution for shipping emissions in Figure 5a,b 

exhibited a bimodal distribution with peaks in April-June (1.35–1.39 μg m−3) and 

September-October (1.20–1.40 μg m−3). Compared to the other five factors, this factor 

showed the least variability among all the aerosol sources. The shipping emissions WCWT 

map (Figure 4e) shows that substantial contributions come expectedly from marine areas, 

especially along the Florida, Cuba, Haiti, and the Dominican Republic coasts. Areas of high 

ship density coincide with high concentrations in the WCWT map. Seasonal WCWT maps 

do not show notable differences (Figure S5).
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3.2.5. Dust—The dust source factor constitutes 20.6% of the total PM2.5. The high 

contribution of this source factor to crustal elements like Si (90.5%), Ti (86.9%), Al 

(85.5%), Fe (83.9%), Mn (75.9%), Cr (67.3%), Sr (47.5%), Ca (42.4%), and K (31.0%) 

clearly defined this factor as dust [14,32,101,102]. Additional support for this source being 

linked to dust was the high concentrations and fractional contribution observed during JJA, 

ranging from 2.98 to 3.76 μg m−3 and 0.51 to 0.65, respectively (Figure 5a,b), which is when 

long-range transport of dust commonly occurs from Africa towards the Caribbean region 

(e.g., [101,103,104]) and Miami [105–107]. It should be noted that these values are lower 

compared to the long-term means reported in previous studies [108], owing largely to their 

inclusion of particles with diameters above 2.5 μm [109,110]. The influence of local dust is 

likely low as the highest dust concentrations coincided with the months with the highest 

precipitation and soil moisture (Figure 2b,d).

The summer dust WCWT map (Figure 4f) confirmed long-range transport of dust from 

Northern Africa with the highest concentration observed during this season (Figure S6), 

consistent with previous studies [14,105,108,111–113]. The seasonal WCWT map (Figure 

S6) shows a clear seasonal difference both in the trajectory paths and in absolute dust 

concentrations. The summertime (JJA) results show the highest concentrations approaching 

from the east (Northern Africa).

3.3. Precipiation Chemistry Profile

3.3.1. Monthly Profile—The monthly averaged profiles for speciated precipitation data 

(concentration, deposition flux, and mass fraction) are shown in Figure 6. Wet deposition pH 

is of great importance in terms of the negative impacts of acid rain. A threshold value of 5.6 

is often used to distinguish acid rain (pH < 5.6), symbolic of deionized water in equilibrium 

with CO2 (e.g., [114]). However, wet deposition samples contain influence from the original 

CCN/IN and other gases and aerosols that were scavenged and thus were never pure water. 

The mean annual pH was 5.32 ± 0.51. Monthly averaged pH values ranged from as low as 

4.98 ± 0.31 during March to as high as 5.58 ± 0.46 in May. For contrast, the mean pH was 

5.05 at Everglades NP between September 1992 and October 1993 [115]. Documented 

values for other regions include the following with the caveat that time periods of analysis 

varied: 5.33–5.51 in Central California [9], 4.20–7.39 in India [116], 4.22–5.68 in 

Southeastern Brazil [117], 3.52–6.28 in South China [118], 5.71–7.11 in the Southeast 

Tibetan Plateau [119], and 3.8–6.8 in Eastern France [120]. Regions with the highest 

reported pH values typically were characterized by having high dust influence and thus 

carbonate bases such as CaCO3 ([10]), including in Southwestern Iran (up to 7.38) [121] and 

Northwestern Iran (up to 8.6) [122], and the Central Himalayas (up to 6.50) [123]. In this 

work, the wet deposition pH did not exhibit a pH peak during the months with most dust 

influence in the summer. This was an intriguing result suggestive of transported dust not 

being a factor in promoting higher pH values in the region’s rainfall.

The total concentration sum of the eight speciated ions was elevated between October and 

April (Figure 6a), coinciding with the months experiencing the least rain and highest 

concentrations of most PMF aerosol source factors except shipping emissions and dust. 

Summer months (JJA) associated with high levels of dust did not show high concentrations 
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of crustal species like Ca2+ and Mg2+, as observed in the IMPROVE data. This again 

highlights that the summertime dust season does not play a major role in impacting wet 

deposition chemistry on a volume-weighted basis. In contrast to their relatively low 

influence in PM2.5, sea salt constituents (i.e., Cl− and Na+) exhibited the highest 

concentrations of all ions studied. Sea salt particles are an important source of CCN due to 

their large size and hygroscopicity, which allows for easier droplet activation as compared to 

other aerosol types [9,124–126]. Higher concentrations of Cl−, SO4
2−, and Na+ in 

precipitation as compared to PM2.5 may be partly explained by how the wet deposition data 

include influence from particles of any size participating in cloud processes or subcloud 

scavenging. In contrast, the aerosol data were limited to ≤2.5 μm. Sea salt typically ranges 

from 0.01 and 10 μm [127], with the majority of the mass accounted for by those particles 

with diameters above 2.5 μm.

An interesting result was the unusually high October levels of Cl− and Na+ since sea salt is 

not expected to show such an increase in a particular month. We also examined the available 

data back to 1980 and did not observe unusual concentrations as the ones observed during 

this period. Further analysis of the dataset (2013–2018) showed elevated Cl− and Na+ in 

mid-October 2015 and 2016 (Cl−: 4.3–16.1 mg L−1 vs. 0.6–2.2 mg L−1 for other periods; Na
+: 2.5–9.3 mg L−1 vs. 0.4–1.3 mg L−1 for other periods; Table S7). Even though the 

concentrations were significantly higher during these few samples (5 out of 14 total for 

October), the Cl−:Na+ ratio for these samples (1.70–1.97) was still close to that of pure 

seawater (Table S7). While a few periods of stronger sea salt emissions may have been 

likely, another possibility is inspired by previous studies have reported that biomass burning 

could be an important source of Na+ and Cl− (e.g., [128–132]). This has been discussed 

already to be an important contributor to the regional aerosol pollution between October and 

March. To probe deeper, images from the Navy Aerosol Analysis and Prediction System 

(NAAPS; description in Section S1 of SI) were used to detect the possible presence of 

smoke during the days with high Na+ and Cl− concentrations (Figures S10–S16). The 

NAAPS images did show evidence of smoke for the five week-long periods corresponding to 

the high Cl− and Na+ data points; however, aerosol concentrations of the biomass burning 

marker K and PMF combustion factor did not show any remarkable enhancement during the 

time of the five NADP samples of interest (Table S7). Future research can investigate as to 

whether emissions of Cl− and Na+ from regional combustion sources reside in sizes 

exceeding 2.5 μm, especially during smoke periods, which can help reconcile the difference 

between the aerosol and wet deposition results for October.

In comparison to the precipitation ion concentrations, the opposite monthly trend was 

observed for the average monthly deposition fluxes, where higher values were observed 

during the high precipitation months (April–October; Figure 6b). The highest deposition 

flux value (1.05 ± 0.26 kg ha−1 month−1) was observed during June when precipitation 

reached its maximum value. The highest mean annual deposition fluxes were attributed to Cl
− (0.53 kg ha−1 month−1), NO3

− (0.32 kg ha−1 month−1), SO4
2− (0.32 kg ha−1 month−1), and 

Na+ (0.30 kg ha−1 month−1). On the other hand, Ca2+, K+, and Mg2+ showed lower 

deposition fluxes, each being less than 0.1 kg ha−1 month−1. However, deposition fluxes for 

all three of those ions showed an increase during the summer months compared to other 

times of the year due most likely to dust influence.
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While there were seasonal differences in the concentrations and deposition fluxes of the 

eight ions, their relative amounts are of significance to gain insight about the relative 

influence of various sources rather than absolute amounts of constituents. The monthly mass 

fraction profile was dominated by Cl− (0.27–0.43) and followed by Na+ (0.15–0.24), NO3
− 

(0.08–0.23), and SO4
2− (0.14–0.22; Figure 6c). As observed for other coastal sites, the 

proximity of the sampling station to the coast explains the high relative contribution of sea 

salt species like Cl− and Na+ (e.g., [133,134]). Grimshaw and Dolske [115] reported decades 

earlier for the same study region that, based on calculations involving Na ratios, 34% of 

cations and 65% of anions in wet deposition were of oceanic origin. Sea salt constituents 

peaked in their mass fractions between October and February.

Chloride-to-sodium ratios are commonly used as a marker for the presence of sea salt and 

possible Cl− depletion [135,136]. Marine aerosols over the ocean have a Cl−:Na+ mass 

concentration ratio for seawater of 1.8 [136,137]. The ratio values for precipitation samples 

should be carefully interpreted, as uncertainties may arise from this calculation (e.g., 

[138,139]). For instance, HCl produced after Cl− depletion of sea salt has a longer 

atmospheric lifetime versus deposition in contrast to its parent aerosol [140]. Little 

variability was observed between the monthly mass concentration ratios of Cl−:Na+, with 

values ranging from 1.74 to 1.84. These results were supportive of a lack of significant sea 

salt reactivity with inorganic and organic acids [82], which would reduce the ratio. This 

result was consistent with the PMF analysis showing that fresh sea salt was nearly twice as 

abundant as aged sea salt. Furthermore, the ratios did not significantly exceed 1.8, pointing 

to reduced influence from non-salt sources of Cl−, such as from coal fired generating 

facilities and waste incineration, in contrast to wet deposition data from New York [141]. 

Strong deviations below a ratio of 1.8 could be linked to non-salt sources of Na+, such as 

soil, but that was not the case in this study, consistent with a general lack of influence from 

crustal species compared to sea salt. Junge and Werby [142] reported on the variability of Cl
−:Na+ mass concentration ratios between the coast and inland U.S. between 1955 and 1956. 

Ratio values along the coast were lower than those for seawater, ranging from 1.06 to 1.75. 

However, Cl−:Na+ ratios drastically dropped farther inland as an indication of enhanced Na+ 

from contributions of non-salt sources (mineral dust). Therefore, it is an important result that 

the sea salt impacting precipitation was relatively pristine when considering the various 

other sources impacting the area.

High mass fractions for SO4
2− and NO3

− are suggestive of contributions from anthropogenic 

emissions and combustion of oil products (e.g., shipping traffic) [143] due to the proximity 

of urban areas and marine ports (e.g., Miami and Port Everglades). Interestingly, SO4
2− 

mass fractions were highest between March-April and September (0.20–0.22), whereas 

NO3
− fractions were highest in June–July (0.21–0.23). Additional contributions to the SO4

2− 

mass fraction may be attributed to sea salt and secondary production from DMS emissions 

over the ocean. Additionally, another species commonly linked to SO4
2− and NO3

− anions 

owing to secondary salt formation is NH4
+. Ammonium showed a monthly profile (range = 

0.03–0.08) more accordant with SO4
2−, suggestive of potential secondary salt formation 

between those two species (e.g., ammonium sulfate/bisulfate). Mass size distributions of 

NO3
− commonly indicate significant contributions to the coarse aerosol fraction. Thus, its 
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different monthly profile may be linked to a summertime association with coarse dust, 

unlike secondarily produced salts.

The least abundant species (Ca2+, Mg2+, and K+) had mass fractions ranging from 0.01 to 

0.06 throughout the year. All three species peaked at different times of the year, pointing to 

different influential sources. For instance, Ca2+ peaks in July-August (0.05) and is thus 

temporally coincident with the dust season, whereas Mg2+ peaks between October and 

February (0.03), which overlaps with when the sea salt constituent mass fractions peak. 

Lastly, K+ peaked in August and September (0.05–0.06), which was likely linked to dust.

3.3.2. Interrelationships—Another way to examine the precipitation chemistry data is 

to understand the relationship between the species present in precipitation. Table 1 reports 

on the interrelationships between the NADP species in the form of a correlation matrix 

showing values of the Pearson’s correlation coefficient (r) significant at the 95% confidence 

level (i.e., p-value < 0.05). The strength of the relationship can be categorized as follows for 

the absolute r value: r = 0–0.2: weak; r = 0.21–0.4: moderately weak; r = 0.41–0.6: 

moderate; r = 0.61–0.8: moderately strong; and r ≥ 0.81: strongly correlated [144]. 

Interestingly, all the species concentrations in Table 1 exhibited statistically significant 

correlations between each other (i.e., p-value < 0.05), but a few were notable. Species that 

were positively correlated with pH included Ca2+ (r = 0.31; moderately weak), NO3
− (r = 

0.07; weak), NH4
+ (r = 0.51; moderate), and K+ (r = 0.45; moderate). The three cations were 

commonly associated with dust and smoke. Precipitation pH showed a moderate weak 

negative correlation with the acidic species SO4
2− (r = −0.29), consistent with past work in 

the study region [145]. The lowest precipitation pH value coincided with the highest SO4
2− 

concentration, reported in March. Even though high concentrations of SO4
2− were recorded 

throughout the year, it is possible that these do not have a larger impact on the precipitation 

pH due to the neutralizing effect of NH4
+ [115,146] and Ca2+ [147].

The strongest correlation among all of the species was between Cl− and both Na+ (r = 1.00) 

and Mg2+ (r = 0.99), which is expected from a near-coastal location influenced by sea salt 

[10,83,148]. The strongest relationship for the crustal tracer Ca2+ was with NO3
− (r = 0.89), 

which suggests partitioning of NO3
− to dust, as shown in previous studies [149–151]. A 

moderate correlation between Ca2+ and SO4
2− (r = 0.41) suggests that NO3

− preferentially 

participates in reactions with coarse particles that serve as CCN/IN, supported by the 

monthly profile of mass fractions in the NADP data mentioned earlier. However, there could 

be potentially enhanced uptake of nitric acid (HNO3) in existing droplets enriched with Ca2+ 

[10,85,152]. In contrast, NO3
− was weakly correlated with sea salt constituents (Na+ and Cl

−; r = 0.15–0.16), which was surprising as many studies associate NO3
− with sea salt 

aerosols [83–85,148]. Since fresh sea salt was more abundant in the study region than aged 

sea salt, it is possible that there simply was less NO3
− available to those salt particles 

seeding the regional clouds. Certainly, more size-resolved measurements of particles in the 

region can help solidify some of the speculated conclusions reached here regarding 

relationships between NO3
− with both sea salt and dust particles.
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3.4. Precipitation and Aerosol Interrelationships

Concentrations of the precipitation species are related to the PMF source factor and aerosol 

species concentrations. The PMF and aerosol chemistry concentrations were averaged to the 

time resolution of NADP data to allow for a direct comparison in the form of a correlation 

matrix (Table 2). Notable results are as follows with the caveat that speculated relationships 

require more detailed measurements in future research as this analysis relies on surface 

measurements.

First, the major sea salt constituents in wet deposition (Na+, Mg2+, and Cl−) were similarly 

related to the same species in the aerosol samples and the PMF fresh sea salt factor. These 

results suggest how a directly emitted marine aerosol type similarly impacts both PM2.5 and 

wet deposition at a coastal site and show that the technique used to relate the aerosol and 

precipitation data offers promise to build on in future studies. Sulfate from NADP samples 

showed a weak positive correlation with Na+ (r = 0.20) and Cl− (r = 0.17) in the aerosol 

dataset (but not Mg2+), which was not surprising as it is an important constituent in natural 

sea salt. The same sea salt constituents in wet deposition samples interestingly exhibit a 

weak negative relationship with fine soil in the aerosol dataset. This relationship can likely 

be related to the seasonal variation of these species. Sodium, Mg2+, and Cl− in the 

precipitation data peak during the fall months (SON), while aerosol fine soil levels peak 

during the summer months (JJA). The lack of any relationship between the sea salt 

constituents in the NADP datasets with the aged sea salt factor from PMF analysis implied 

that the region’s precipitation was more representative of natural sea salt rather than sea salt 

that had undergone chemical reactions.

Similar to how sea salt components showed a statistically significant correlation (p-value < 

0.05) between the two datasets, the same applies to SO4
2− owing to how the secondary 

SO4
2− source factor exhibited a moderately weak correlation with precipitation SO4

2− (r = 

0.23). Precipitation SO4
2− also exhibited moderately weak (r = 0.30) and weak (r = 0.14) 

correlations with fresh sea salt and combustion PMF factors, respectively. The weak to 

moderately weak positive correlations for precipitation SO4
2− can be explained by how 

SO4
2− was present in sea salt, and it was also produced from secondary formation from both 

biogenic [149,153] and anthropogenic [154,155] precursor emissions. Precipitation NH4
+ 

exhibited a weak positive correlation with only the secondary SO4
2− PMF factor (r = 0.15), 

consistent with ammonium sulfate formation. Since precipitation NO3
− did not exhibit any 

correlation with the same species in the IMPROVE dataset, this suggests that its involvement 

with wet deposition was based on processes unrelated to surface NO3
− formation in PM2.5, 

including its association with CCN/IN larger than 2.5 μm [84,85] and also HNO3 

partitioning to cloud and precipitation drops aloft, as has been documented in other works 

[10,85,152].

There was a weak positive correlation between precipitation Ca2+ and both aerosol NO3
− (r 

= 0.17) and PMcoarse (r = 0.18). It was already suggested by Table 1 that NO3
− preferentially 

partitions to coarse dust particles (rather than sea salt), and these results support that notion. 

The lack of a correlation between precipitation Ca2+ and either fine soil or the dust PMF 

factor could be due to the latter two IMPROVE parameters being limited to the PM2.5 

fraction, whereas the dust particles involved with precipitation processes are larger. An 
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interesting hypothesis motivated by Table 2 warranting future research was that the 

combustion PMF factor was correlated with both precipitation Ca2+ and NO3
− partly 

because soil dust can be entrained in biomass combustion plumes (e.g., [84,156]).

The lack of other relationships in Table 2 between wet deposition species and pH with 

aerosol constituents points to the complexities of comparing the datasets and in the 

processes leading to wet deposition. This was further emphasized by how the correlation 

coefficients in Table 2 do not exceed a value of 0.36. A major difference is that the 

IMPROVE speciated data are based on PM2.5. In contrast, larger particles (mainly sea salt) 

have been shown here to be especially influential in the collected wet deposition samples. 

Therefore, any species associated with the coarse sea salt that served as the CCN/IN and any 

species taken up by existing drops (e.g., HNO3) would not have been similarly observed at 

the surface IMPROVE monitoring site. As Table 1 showed, sea salt constituents were 

positively correlated with all the other species in the NADP dataset. Thus, if they were all 

linked to the coarse sea salt CCN/IN, this would complicate and reduce the correlations 

reported in Table 2. Although this highlights an important limitation of comparing the two 

datasets, it importantly highlights the significance of sea salt and the prominence of its 

associated constituents in the region’s rainfall. Regarding aerosol–cloud interactions, sea salt 

was shown here to be an important CCN/IN year-round.

4. Conclusions

The analysis of long-term precipitation chemistry and aerosol data from a coastal site in the 

Southeast U.S. was used to gain insight into emissions sources impacting both PM2.5 and 

wet deposition. The two datasets were intercompared to gain insights into aerosol–

precipitation relationships. The points below summarize the findings of this study:

• The Southern Florida coastal site was impacted by a diverse source of pollutants. 

The following six sources were identified in decreasing contribution to total 

PM2.5 (percentage contributions): (i) secondary sulfate (23.0%); (ii) dust 

(20.6%); (iii) shipping emissions (20.2%); (iv) combustion (17.0%); (v) fresh sea 

salt (12.6%); and (vi) aged sea salt (6.6%).

• Monthly mean precipitation pH ranges from 4.98 ± 0.31 (March) to 5.58 ± 0.51 

(May). Values of pH were negatively related to the acidic anion SO4
2−, whereas 

they were positively related to dust presence as based on the crustal tracer 

species Ca2+.

• The highest mean annual wet deposition fluxes were attributed to Cl−, NO3
−, 

SO4
2−, and Na+ between April and October, coinciding with months 

experiencing the most precipitation. Although lower in magnitude, enhanced 

fluxes of Ca2+, K+, and Mg2+ in summertime coincided with the main dust 

season.

• Fresh sea salt was the dominant component in the region’s precipitation, unlike 

surface PM2.5 owing partly to how the sea salt particles seeding precipitation 

drops likely exceed 2.5 μm. Aged sea salt was shown to be far less influential in 

the region’s precipitation.
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• Even though dust plays a large role in PM2.5, it was much less influential in 

volume-weighted wet deposition concentrations and mass fractions as compared 

to sea salt.

• A weak positive association between precipitation Ca2+ and both aerosol NO3
− 

and PMcoarse was linked to NO3
− preferentially partitioning to coarse dust.

• Statistically significant correlations (p-value < 0.05) between related parameters 

indicative of dust, sea salt, and SO4
2− in the NADP and IMPROVE datasets 

demonstrated that the combined use of these long-term datasets could be useful 

for other regions to indirectly examine aerosol-precipitation interactions.
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Figure 1. 
Map showing the location of Everglades National Park Interagency Monitoring of Protected 

Visual Environments (IMPROVE) and National Atmospheric Deposition Program (NADP) 

stations (red marker) in relation to Miami (yellow marker). Image source: Google Earth.
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Figure 2. 
Monthly profiles of (a) maximum/minimum temperature (NADP) and average temperature 

(Environmental Protection Agency (EPA) air quality system (AQS)), (b) precipitation 

(NADP; bars) and cloud fraction (moderate resolution imaging spectroradiometer (MODIS)-

Aqua; curve), (c) planetary boundary layer height (planetary boundary layer height (PBLH)-

modern era-retrospective analysis for research and applications (MERRA-2); bars) and 

specific humidity (global land data assimilation system (GLDAS); curve), and (d) soil 

moisture 0–10 cm (GLDAS; bars) and wind speed (EPA AQS; curve).
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Figure 3. 
Positive matrix factorization (PMF) analysis using EPA IMPROVE data from Everglades 

National Park (NP). Blue bars represent species concentrations; error bars show the 

maximum and minimum values and black markers represent the average displacement 

(DISP) values. Red markers show the percent contribution from a particular source factor to 

each species’ overall concentration.
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Figure 4. 
Annual mean weight concentration weighted trajectory (WCWT) maps of the six PMF 

source factors: (a) Combustion (b) Fresh Sea Salt (c) Aged Sea Salt (d) Secondary Sulfate 

(e) Shipping Emissions (f) Dust. Seasonal maps for each source factor are shown in Figures 

S1–S6.
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Figure 5. 
(a) Monthly mean aerosol concentrations and (b) fractional contribution for each of the six 

PMF source factors.
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Figure 6. 
Monthly averaged (a) precipitation-weighted ion concentrations and pH, (b) wet deposition 

fluxes, and (c) mass fractions.
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Table 1.

Correlation coefficient (r) matrix between concentrations of different species in wet deposition samples 

(NADP). Values shown are statistically significant at the 95% confidence level.

Species pH Ca2+ Mg2+ K+ Na+ NH4
+ NO3

− Cl− SO4
2−

pH 1

Ca2+ 0.31 1

Mg2+ 0.33 1

K+ 0.45 0.16 0.35 1

Na+ 0.31 0.99 0.26 1

NH4
+ 0.51 0.48 0.22 0.42 0.18 1

NO3
− 0.07 0.89 0.18 0.09 0.16 0.47 1

Cl− 0.29 0.99 0.26 1.00 0.17 0.15 1

SO4
2− −0.29 0.41 0.66 0.20 0.66 0.40 0.40 0.64 1
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Table 2.

Correlation coefficient (r) matrix between precipitation (NADP) and aerosol (IMPROVE) composition data. 

Values shown are statistically significant at the 95% confidence level. The first six aerosol parameters are 

concentrations of PMF source factors, while the final six at the bottom are selected IMPROVE parameters 

relevant to the discussion in Section 3.4. Coarse particulate matter (PMcoarse) is calculated as particulate 

matter with a diameter less than or equal to 10 μm (PM10)-particulate matter with a diameter less than or equal 

to 2.5 μm (PM2.5).

Aerosol Parameters
Wet Deposition

Ca2+ Mg2+ K+ Na+ NH4
+ NO3

− Cl− SO4
2−

Combustion 0.15 0.16 0.14

Fresh Sea Salt 0.32 0.33 0.33 0.30

Aged Sea Salt

Secondary Sulfate −0.14 0.15 0.23

Shipping Emissions −0.17 −0.17 −0.17

Dust −0.16 −0.18

Mg 0.23 0.24 0.24

Na 0.32 0.33 0.33 0.20

NO3
− 0.17

Cl− 0.35 0.36 0.35 0.17

PMcoarse 0.18

Fine Soil −0.18 −0.19 −0.16 −0.19 −0.21
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