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Background: Chronic obstructive pulmonary disease (COPD) and asthma have heteroge-
neous inflammation with inhaled corticosteroids (ICS) as a mainstay of treatment. There is 
increased prevalence of non-typeable Haemophilus influenzae (NTHi) persistence in airways 
of patients with neutrophilic airway inflammation, potentially due to suppressed host defence 
after corticosteroid treatment. Antimicrobial peptides (AMPs) have antimicrobial activity 
against pathogens and immunomodulatory effects. We investigated whether AMPs associate 
with NTHi presence in COPD and asthma, and whether ICS alter this.
Methods: Secretory leukocyte protease inhibitor (SLPI), osteopontin, elafin and beta defen-
sin-1 were measured in sputum supernatants from healthy donors (n=9), asthmatics (n=21) 
and patients with COPD (n=14). Elafin and beta defensin-1 were measured in a primary 
human bronchial epithelial cells (HBECs) from healthy and COPD donors infected with 
NTHi and pre-treated with fluticasone propionate (FP) and budesonide (BUD). Internalised 
NTHi was quantified by qPCR.
Results: Sputum SLPI was negatively correlated with FEV1 (p<0.001, r=−0.610), FEV1% 
predicted (p<0.001, r=−0.583) and FEV1/FVC (p=0.001, r=−0.528). Sputum beta defensin-1 
was negatively associated with FEV1 (p<0.001***r=−0.594). SLPI and beta defensin-1 
levels in sputum were higher in the healthy controls and COPD group compared to the 
asthma group (p=0.001 and p=0.014) and (p<0.001 and p=0.007, respectively). ICS use was 
associated with higher sputum osteopontin compared to those with no ICS use. NTHi 
infection of COPD HBECs produced higher levels of beta defensin-1 compared to healthy 
donors (mean (SD) release: 45.1pg/mL (7.3) vs 21.2pg/mL (7.3) respectively, p=0.014). 
Elafin release from HBECs from COPD donors did not change following NTHi infection; 
however, elafin from healthy donors was significantly reduced (%mean reduction: 23.7%, 
95% confidence intervals (CI) of reduction: 5.3–38.4%, p<0.01).
Conclusion: Sputum SLPI and beta defensin-1 may be markers to identify those patients 
with declining lung function. ICS use was associated with higher sputum osteopontin 
compared to those with no ICS use.
Keywords: antimicrobial peptide, non-typeable haemophilus influenzae, chronic obstructive 
pulmonary disease

Background
The airway epithelium is the first line of defence against inhaled particles. Disease 
characteristic epithelial traits are maintained in in vitro culture, as seen by abnormal 
junction formation1,2 and delayed wound repair3,4 in both asthma and chronic 
obstructive pulmonary disease (COPD). Part of the host response includes the 
release of antimicrobial peptides (AMPs) from the airway epithelium. AMPs 
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(including secretory leukocyte protease inhibitor (SLPI), 
elafin and beta defensin-1) are one line of defence to limit 
microbial infection of the human mucosae. Through elec-
trostatic forces, AMPs are able to destroy bacteria by 
disrupting the bacterial membranes.5 Reduced AMP level 
and function can weaken this defence and may allow 
colonisation of the host. Osteopontin is a protein known 
to co-localise with AMPs and has been shown to disrupt 
AMP antimicrobial action by reducing lysozyme-induced 
bacterial killing.6 Beta defensin-1 production has pre-
viously been shown to be upregulated in epithelial cells 
in COPD.7

It is known that inflammation in COPD and asthma is 
heterogeneous.8,9 Airway inflammatory phenotypes of air-
way disease (neutrophilic, eosinophilic, mixed granulocy-
tic and pauci-inflammatory)10,11 can lend to differential 
treatment options.12–14 Non-typeable Haemophilus influ-
enzae (NTHi) is the most commonly found bacteria in 
the airways of COPD and asthmatic patients at stable 
state15–17 and is associated with a pro-inflammatory neu-
trophilic response.8 Levels of SLPI and elafin have pre-
viously shown inverse correlation with bacterial load.18,19 

Inhaled corticosteroids (ICS) are often used in the treat-
ment of asthma and COPD,2 but have been shown to 
correlate with airway bacterial load,15 particularly after 
rhinovirus infection in murine models20 and act to impair 
the cathelicidin response in COPD.21

The effect of acquisition of a new pathogenic bacteria 
strain on levels of AMPs lysozyme, lactoferrin, cathelici-
din and SLPI in the airways of patients with COPD have 
been investigated. Lysozyme levels are lower during colo-
nisation with NTHi and M. catarrhalis, whilst SLPI levels 
are lower during exacerbation22 due to NTHi.23 In murine 
models, ICS pre-treatment prior to infection with 
rhinovirus20 can affect AMP production, as shown for 
SLPI and pentraxin-3.

Despite knowledge of the effect of chronic bacterial 
infection in the airway, the effect of AMPs with neutro-
philic airway inflammation in patients with airways dis-
ease, especially COPD, has not been studied. Furthermore, 
whether the increased risk of microbial infection in speci-
fic inflammatory airways disease phenotypes and ICS use 
renders a defect in the host-response to microbial infection 
has yet to be confirmed.

In this study, we investigate in-vitro and ex-vivo host- 
response in neutrophil-high compared to neutrophil-low 
phenotypes of COPD, compared to asthma and healthy 
controls. We hypothesise the neutrophilic airway disease 

phenotype has a deficiency of AMPs, and that NTHi alters 
the host AMP response to facilitate pathogen survival in 
COPD patients.

Methods
Participants
Participants with clinical diagnoses of COPD or asthma 
according to British Thoracic Society/European 
Respiratory Society guidelines24 and healthy controls 
were recruited from the Churchill Hospital, part of the 
Oxford University Hospitals NHS Foundation Trust. 
Participants provided induced sputum to standard 
procedures.25 Participants performed spirometry (peak 
flow and/or forced expiratory volume in one second 
(FEV1)) according to American Thoracic Society/ 
European Respiratory Society’s guidelines.26 All partici-
pants provided informed written consent and the study had 
national ethical approval (08/H0406/189). This study was 
conducted in accordance with the Declaration of Helsinki.

Bronchial Epithelial Cell Culture
Human bronchial epithelial cells (HBECs) from three non- 
smoking healthy donors and three COPD donors (Lonza, 
Basel, Switzerland) were cultured in Airway Epithelial 
Cell Medium (Promocell, Heidelberg, Germany) as pre-
viously described.27 Further detail is included in the sup-
plement. Characteristics of HBEC donors are detailed in 
Table E1.

Treatment of Bronchial Epithelial Cells
HBECs were treated with differing concentrations of bude-
sonide (BUD) and fluticasone propionate (FP) at high, 
medium or low concentrations (16nM, 1.6nM and 
0.16nM, and 10nM, 1nM and 0.1nM, respectively), or 
with dimethyl sulfoxide (DMSO) as vehicle control. 
Different ICS doses reflect potency equivalence. Cells 
were incubated for two hours before being infected with 
1×106 colony forming units NTHi (strain 398, from patient 
with COPD) and incubated for a further two hours. 
Supernatants were collected from cells and stored at 
−80°C prior to measurement of AMP release. Cells were 
assessed visually by light microscopy to ensure no mor-
phological changes had occurred. Cells were then treated 
with 200µg/mL gentamycin (Sigma-Aldrich, St Louis, 
USA) in media for one hour to remove external bacteria. 
Cells were lysed with 0.025% saponin (Sigma-Aldrich) for 
ten minutes, and bacterial DNA was extracted from the 
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solution for qPCR analysis. Experimental conditions were 
run in duplicate for each test. Experiments were conducted 
with three repeats per cell donor.

Microbial Quantification
Ten-fold dilutions of sputum cell-suspensions were plated 
onto blood agar and chocolate agar and incubated at 37°c for 
twenty-four hours. Colonies were counted and the colony 
forming units (CFU) calculated and added to give the total 
CFU. Bacterial DNA was isolated from sputum plugs and 
NTHi- treated HBECs with DNeasy Blood and Tissue kit 
(Qiagen, Venlo, Netherlands). Primers and probe for detec-
tion of the NTHi Omp P6 gene are: Forward primer: 
CCAGCTGCTAAAGTATTAGTAGAAG, Reverse primer: 
TTCACCGTAAGATACTGTGCC, Probe: aca[+A]cg[+T] 
cg[+T]gc[+A]gatgc. Levels of NTHi were quantified against 
standard plasmid concentrations.

Peptide Measures
Levels were measured by Enzyme Linked Immunosorbent 
Assay (ELISA): beta-defensin-1 (Peprotech, Cranbury, 
New Jersey, USA), elafin (DuoSet R&D Systems, 
Minneapolis, Minnesota, USA), SLPI and osteopontin 
(Quantikine R&D Systems) (Lower limit of detection: 
0.0004, 0.0313, 0.0625 and 0.011ng/mL, respectively). 
ELISAs were carried out as per the manufacturer’s instruc-
tions. All measures were conducted in PBS sputum super-
natants, while beta defensin-1 and elafin were measured in 
HBEC supernatant.

Statistical Analyses
Statistical analysis was completed with Prism (Version 
7.03, GraphPad Software Inc., La Jolla, CA). Data is 
reported as mean (SD) for normally distributed data tested 
by students t test, and geometric mean (95% confidence 
interval (CI)) for log normalised data. Comparisons 
between basal and treated release are calculated as 
a mean percentage of basal release (95% CI). One-way 
analysis of variance was used to test differences between 
sputum measures in the three disease groups. T-tests were 
used to test difference between basal and stimulated cell 
AMP release. Associations were assessed using 
Spearman’s rank correlation analysis on non-log normal-
ised data. Independence of categorical variables was tested 
by chi squared test. Differences were considered statisti-
cally different at p<0.05. Percentage NTHi internalisation 
was calculated from the amount of NTHi quantified in 

DNA extracted from HBECs and the total amount of 
NTHi added.

Results
Fourteen patients with COPD, twenty-one asthmatics and 
nine healthy individuals were sampled with sputum induc-
tion. Participant characteristics are shown in Table 1. 
COPD participants were older, had worse lung function 
and more likely to be current or ex-smokers. No correla-
tion of sputum AMP measures were seen with gender, 
pack-year history, or smoking status (Table 2). SLPI was 
negatively correlated with FEV1 (p<0.001, r=−0.610), 
FEV1% predicted (p<0.001, r=−0.583) and FEV1/FVC 
(p=0.001, r=−0.528). Beta defensin-1 level correlated 
positively with age (p=0.024, r=0.341), and negatively 
with FEV1 (p<0.001, r=−0.594).

Sputum AMP Levels from Health and 
Disease
Sputum SLPI was negatively correlated with FEV1 
(p<0.001, r=−0.610), FEV1% predicted (p<0.001, r= 
−0.583) and FEV1/FVC (p=0.001, r=−0.528). Sputum beta 
defensin-1 was negatively associated with FEV1 
(p<0.001***r=−0.594). SLPI and beta defensin-1 levels in 
sputum were higher in the healthy controls and COPD group 
compared to the asthma group (p=0.001 and p=0.014) and 
(p<0.001 and p=0.007, respectively) (Figure 1). Osteopontin 
and elafin levels were not different between COPD, asthma 
and healthy controls. ICS use compared to no ICS in COPD 
and asthma patients was associated with increased osteopon-
tin release (Difference of geometric means: 233.3pg/mL, 
p=0.024, Figure E1). Never smokers had lower levels of 
sputum SLPI compared to current smokers (p=0.022) and 
ex-smokers (p=0.038) (Figure E2).

Sputum AMP Levels and NTHi Presence
There was a non-significant negative correlation of SLPI 
and osteopontin and to NTHi (p=0.222, r=−0.349 and 
p=0.249, r=−0.380, respectively); and a non-significant 
positive correlation between NTHi and beta defensin-1 
(p=0.265, r=0.320) and elafin (p=0.520, r=0.332) (Figure 
3). Sputum SLPI showed positive correlation with neutro-
phil count (p=0.046, r=0.345). No differences were seen in 
any AMP measured in sputum when stratified by neutro-
philic inflammation, with a cut off of 70% sputum neu-
trophils (Figure 2, Table E2).
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Table 1 Patient Characteristics of Participants with Available Sputum

Healthy Asthma COPD p-value

Number of participants 9 21 14

Age (years) ‡ 36 (23–66) 55 (34–74) 65 (50–82) 0.001***

Sex (% male) 33.3 33.3 42.9 0.378

FEV1 (L) † 2.92 (0.84) 2.69 (0.84) 1.80 (0.88) 0.001***

FEV1% Predicted† 90.4 (11.4) 86.9 (19.30) 56.7 (19.1) <0.0001****

FEV1/FVC ratio† 0.80 (0.07) 0.69 (0.10) 0.53 (0.15) <0.0001****

Smoker (% Current/Ex/Non) 0/14/86 10/33/57 36/64/0 <0.001***

Pack years (years) ‡ 1.4 (0–13) 4.6 (0–33.75) 52.8 (9.75–200) <0.0001****

Proportion on ICS (%) 0 85.6 71.5 <0.0001****

Total sputum cell count (x106/g) § 0.33 (0.19–0.83) 0.76 (0.45–1.30) 0.94 (0.50–1.75) 0. 137

Sputum neutrophils %§ 28.92 (12.56–66.58) 52.97 (32.48–86.37) 69.11 (59.93–79.71) 0.079

Proportion with neutrophilic inflammation (defined >70%, %) 14.3 42.9 35.7 0.323

Sputum eosinophils %§ 0.2 (0.2–0.75) 0.2 (0–1.2) 1 (0.7–10.5) 0.051

Proportion with eosinophilic inflammation (defined >3%, %) 14.3 14.3 28.6 0.325

Total CFU (x106) § 1.17 (0.82–1.68) 1.18 (0.82–1.68) 0.64 (0.30–1.36) 0.169

NTHi (log gene copies/g sputum plug) † 4.968 (2.125) 4.228 (3.123) 4.832 (5.288) 0.854

Sputum SLPI (ng/mL) § 728.8 (449.4–1182) 231.8 (153.9–349.2) 1076.0 (813.4–1423) <0.001****

Sputum Osteopontin (pg/mL) § 278.2 (125.6–1066) 166.1 (101.1–272.9) 260.5 (5.8–704.3) 0.707

Sputum Beta defensin-1 (ng/mL) § 17.31 (11.38–26.32) 4.86 (2.79–8.45) 15.69 (10.29–23.59) 0.008**

Sputum Elafin (ng/mL) § 21.65 (11.93–39.27) 19.9 (13.72–28.95) 19.26 (15.49–25.15) 0.897

Notes: Data are presented as †= Mean (SD), ‡= Mean (Range), §=Geometric mean (95% CI). Significant difference between the three groups where **p<0.01, ***p<0.001, 
****p<0.0001. 
Abbreviations: FEV1, forced expiratory volume in 1 second; FVC, forced vital capacity; ICS, inhaled corticosteroids; CFU, colony forming units; NTHi, non typeable 
Haemophilus influenzae; SLPI, secretory leucocyte protease inhibitor.

Table 2 Correlation Analysis of Participant Characteristics and Sputum AMP Concentrations in All Participants. Significant 
Correlation Where *p<0.5, **p<0.01, ***p<0.001

SLPI Osteopontin Elafin Beta Defensin-1

Age (years) p=0.060, r=0.286 p=0.940, r=−0.012 p=0.764, r=−0.048 p=0.024*, r=0.341

FEV1 (L) P<0.001***, r=−0.610 p=0.408, r=−0.144 p=0.454, r=0.137 p<0.001***, r=−0.594

FEV1% Predicted P<0.001***, r=−0.583 p=0.560, r=−0.105 p=0.341, r=0.180 p=0.159, r=−0.221

FEV1/FVC ratio p=0.001**, r=−0.528 p=0.369, r=−0.157 p=0.276, r=0.199 p=0.369, r=−0.157

Pack years (years) p=0.082, r=0.269 p=0.382, r=0.137 p=0.501, r=−0.110 p=0.382, r=0.137
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Effect of NTHi Infection on AMP Release 
from Bronchial Epithelial Cells
Elafin release from healthy donor epithelial cells was 
reduced by NTHi infection (mean reduction: 23.7%, 95% 
CI of reduction: 5.3–38.4%, p<0.01) (Figure 4). No sig-
nificant difference in elafin release was seen upon infec-
tion of epithelial cells from patients with COPD. NTHi 
induction of protein changes in the conditions used was 
confirmed by measures of IL-8 in healthy HBEC donors, 
by increasing IL-8 release from untreated (174.9 to 
509.2pg/mL, p=0.037) (Figure E5).

Comparison of AMP Release from 
Epithelial Cells from Health and COPD
Neither beta defensin-1 or elafin basal release differed 
between health and COPD (Figure 4). Upon infection 
with NTHi, epithelial cells from COPD patients 

released more beta defensin-1 than NTHi infected 
healthy donors (healthy donor release mean (SD): 
21.2pg/mL (7.26), COPD donor release: 45.1pg/mL 
(12.9), p=0.014).

Effect of Steroids on AMP Release from 
Bronchial Epithelial Cells
Upon treatment with BUD only, beta defensin-1 release 
from HBECs from healthy donors showed a non- 
significant trend to increase from basal level by 
69.7% (95% CI: 2.1–137.3%) (Figure 5A). BUD treat-
ment caused no changes in COPD donor epithelial cell 
release of beta defensin-1. No change in elafin release 
was observed (Figure 5B). Combined steroid and NTHi 
treatment of HBECs is discussed in the supplementary 
material (Figure E3). NTHi internalisation into HBECs 
was not affected by steroid treatment (Figure E4).

Figure 1 Comparison of peptide levels in sputum from healthy donors (n=9), asthmatics (n=21) and patients with COPD (n=14) tested in duplicate. (A) SLPI, (B) 
osteopontin, (C) elafin and (D) beta defensin-1. Data shown as geometric mean and 95% confidence intervals. Significant differences represented as *p<0.05, **p<0.01, 
****p<0.0001.
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Discussion
In this study, we have examined AMPs in the sputum of 
patients with COPD, asthma and compared these to 
healthy individuals ex-vivo. We have also looked at the 
effect of ICS and NTHi on epithelial cells in-vitro.

We found a negative correlation between sputum SLPI 
and beta defensin-1 and FEV1. Recently, cathelicidin has 
also been found to negatively correlate with FEV1 in 
stable COPD patients,28 highlighting the potential for 
these AMPs to identify patients at greater risk of lung 
function decline.

Our results show that SLPI and beta defensin-1 levels 
are low in sputum from asthmatics compared to health and 
COPD, while no difference in osteopontin and elafin were 
seen between disease groups. The AMPs selected in this 
study have been investigated previously. Contradicting our 
results, studies have demonstrated that beta defensin-1, 
elafin and osteopontin are elevated in COPD patient 

sputum compared to healthy controls.6,7,19 These differ-
ences in findings may be explained by our low number of 
healthy controls included in the study, and groups not 
being age matched.

We found that elafin and beta defensin-1 showed a non- 
significant trend to positive correlation with NTHi presence 
in the airways as measured by sputum plug NTHi, while 
SLPI and osteopontin showed a non-significant negative cor-
relation with NTHi presence. This indicates that patients with 
NTHi infection may not be lacking in release of the AMPs 
tested in our study. Levels of SLPI and elafin have previously 
shown inverse correlation with bacterial load.18,19 While this 
reflects our observation of SLPI, the different finding with 
elafin may be accounted for by only measuring NTHi levels 
in this study. It is conceivable that different bacteria affect 
AMP levels in the airways. Interestingly, SLPI has been 
shown to be present in lower levels in COPD patient sputum 
supernatants during exacerbation associated with NTHi 

Figure 2 Peptide levels in sputum from asthmatics and COPD patients grouped into sputum neutrophil high and low groups are similar. (A) SLPI, (B) osteopontin, (C) elafin 
and (D) beta defensin-1. Graph showing asthmatic patients (n=21) (o) and COPD patients (n=14) (●), tested in duplicate. Data shown as geometric mean and 95% 
confidence intervals.
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compared to baseline.23 As 40–50% of COPD exacerbations 
are associated with bacteria,29 this again identifies SLPI as an 
AMP modifiable by bacterial presence.

As patients with high neutrophils and low eosinophils 
more frequently experience persistent airway infection of 

NTHi than other inflammatory groups, we hypothesised 
that this may be due to an impairment in AMP defence. 
Our results however suggest that there is no AMP defi-
ciency in patients with low neutrophils compared to those 
with higher sputum neutrophils. No difference in beta 

Figure 3 Correlation of NTHi presence in the airway and peptide levels in healthy donors (n=7, white dots), patients with COPD (n=9, grey dots) and asthma (n=2, black 
dots), tested in duplicate. (A) SLPI, (B) osteopontin, (C) elafin and (D) beta defensin-1.

Figure 4 (A) Beta defensin-1 release from HBECs when untreated and infected with NTHi. (B) Elafin release from HBECs when untreated and infected with NTHi. Results 
are shown as a mean percentage change from untreated cell release. Tests were run in duplicate per experiment, from three separate experiments for each donor. Donors: 
health (n=3, white bars) and COPD (n=3, grey bars). Significant changes form basal release shown as * p<0.05 and ** p<0.01.
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defensin-1 presence in the airways between inflammatory 
groups has been observed previously.7

In vitro Model of Bronchial Epithelial 
NTHi Infection
Firstly, we found that HBECs from patients with COPD 
produce higher levels of beta defensin-1 than epithelial 
cells from healthy donors when infected in vitro with 
NTHi. This suggests that bronchial epithelium in COPD 
has a heightened reaction to the bacteria compared to the 
epithelium of healthy. This also indicates that this host 
response is not impaired in COPD. Beta defensin-1 pro-
duction has previously been shown to be upregulated in 
epithelial cells in COPD.7 The differences in response of 
epithelial cells from healthy individuals and patients with 
COPD have also been noted, with cigarette smoke produ-
cing a decrease in beta defensin-1 release from healthy 
donor cells, while triggering increased production from 
COPD patient cells.7

Secondly, we found that NTHi infection of HBECs 
downregulates their production of elafin in health but not 
disease. Thirdly, we show that pre-treatment of epithelial 
cells with the steroids budesonide and fluticasone propio-
nate caused no difference in beta defensin-1 or elafin 
release, other than high concentrations of steroids reducing 
the amount of elafin released compared to basal release 
from healthy donors. Corticosteroids act to reduce airway 
inflammation by binding to glucocorticoid receptors and 
regulating gene expression.30 Steroids have previously 
been shown to not affect epithelial cell release of 
elafin,31 and here we specifically show that this is true 
for the inhaled corticosteroids tested in this study.

Our measures of internalised NTHi within epithelial 
cells have shown no significant increase in internalisation 
after corticosteroid treatment. NTHi internalisation is 
thought to occur through attachment and penetration.32 

Corticosteroid treatment has previously been seen to 
improve epithelial barrier function in vitro to a greater 
extent in health compared to COPD.33 Therefore, our 
result was expected as barrier integrity is not weakened 
by corticosteroid treatment.

There is a disparity between our ex vivo sputum analysis 
which indicates that NTHi levels are not associated with 
decreased levels of either AMP, compared with our in vitro 
work. This can be attributed to the contributions by immune 
cells to the in vivo environment, as immune cells such as 
neutrophils also release elafin,34,35 while monocytes and den-
dritic cells36 produce beta defensin-1 peptide.

Our study has some limitations. Firstly, we did not have 
information regarding the inflammatory phenotypes of the 
HBEC donors to determine whether differences in AMP 
release are seen between donors with different inflammatory 
states. Secondly, there are many strains of NTHi, differing in 
their outer membrane protein expression.37 Our study was 
carried out with just one strain of NTHi, and we cannot be 
certain that other strains would provide the same results. 
Furthermore, acquisition of different bacterial strains is asso-
ciated with exacerbation and immune response generation,38 

and we do not have information about the epithelial cell donors 
to confirm whether they had previously encountered the NTHi 
strain used. We have investigated one bacterial species; how-
ever, other bacterial species are present and may be causing an 
effect on AMPs. We also acknowledge the small sample size 
included in the study and variability of HBEC responses 
between donors may affect the validity of our results. 

Figure 5 (A) Beta defensin-1 release from HBECs treated with high steroid concentrations. (B) Elafin release from HBECs treated with high steroid concentrations. Results 
are shown as a mean percentage change from untreated cell release. Tests were run in duplicate per experiment, from three separate experiments for each donor. High 
Budesonide (Bud): 16nM, High Fluticasone propionate (FP): 10nM. Donors: health (n=3, white bars), COPD (n=3, grey bars).
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Further, our in vitro model would be more physiologically 
relevant if cells were cultures to air-liquid interface. 
Measures of an AMP known to be induced by NTHi would 
have provided a further control to ensure previous findings 
were replicable in our study alongside our new findings. 
Measures of all AMPs investigated in the study for HBEC 
response experiments would have provided a more complete 
representation of the epithelial response to NTHi and ICS 
treatment.

Conclusions
We hypothesised acquisition of NTHi may cause down- 
regulation of AMP release, resulting in the bacteria facil-
itating its ability to infect the host. We found sputum SLPI 
and beta defensin-1 to negatively correlate with FEV1, 
indicating their potential as markers of lung health. Our 
work suggests that NTHi does impact the bronchial epithe-
lium’s contribution to AMP presence in the airways; how-
ever, this was not reflected in sputum measures. Future 
studies should aim to further understand interactions of 
AMPs with each other and surrounding molecules to get 
a better picture of their action in the airways.
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