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Abstract: The ionization degree, charge density, and conformation of weak polyelectrolytes can be
adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of
reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interac-
tions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with
precise structures, compositions, and responses to stimuli. The purpose of this review article is to
discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes
as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and
capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors
from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing
significance of block copolymers with weak polyion blocks is discussed with respect to the design of
nanovectors by micellization and film/membrane nanopatterning via phase separation.

Keywords: polymer materials; polyelectrolyte films; electrodeposition; block copolymer; self-assembly;
LbL; nanostructured materials; pharmaceutical vectors

1. Context

Functional materials with precisely controlled compositions and (nano)structures and
predictable responses to stimuli are prime candidates to address a number of challenges in
fields including biomaterials, vectorization, and energy storage and conversion [1]. The de-
velopment of such “smart” materials relies largely on designing functional systems through
the assembly of well-controlled nanoscale units. In this context, the paradigm of “nanoar-
chitectonics” was proposed by Aono in the early 2000s [2] and subsequently developed by
Ariga to enable materials that benefit from (i) the emergence of system-scale functions from
the collective integration of nano-units (nanosystem functionality), (ii) robust function de-
spite nano-unit/assembly defects (unreliability-tolerant reliability), and (iii) the emergence
of unexpected new functions from large combinatorial systems (quantity changes qual-
ity). Thus, implementing this concept by combining tools from research fields including
nanotechnology, (bio)material science, and organic and polymer chemistry has ensured
that considerable advances have been made in the elaboration of dynamic materials and
systems relying on reversible non-covalent interactions [3]. Typically, the reversible nature
of interactions with and within functional nano-units provides materials with self-assembly
synthesis routes, structural control, encapsulation abilities, and responses to stimuli [4]. In
this context, polyelectrolytes occupy a central position in many nanoarchitectured systems
owing to their multipotent properties, enabling them to act as reticulation/bridging agents,
stabilizers, structure directors, and matrix components in functional coatings, gels, and
colloidal systems [4,5].

Molecules 2022, 27, 3263. https://doi.org/10.3390/molecules27103263 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27103263
https://doi.org/10.3390/molecules27103263
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://orcid.org/0000-0003-1614-4773
https://orcid.org/0000-0001-8416-3891
https://orcid.org/0000-0002-2901-3441
https://doi.org/10.3390/molecules27103263
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27103263?type=check_update&version=1


Molecules 2022, 27, 3263 2 of 32

Polyelectrolytes whose charge does not change over the entire pH range (1–14) are
considered “strong“, while the density of charge on “weak” polyelectrolytes depends on the
pH. In such a case, weak polyanions (resp. polycations) bear weak acid (resp. basic) moi-
eties and their pKa value corresponds to the pH at which half of their repeating monomer
units are charged. Consequently, the ionization degree of weak polyelectrolytes is intrinsi-
cally pH-responsive, with consequences for their conformation (such as extended chains
being favored at high ionization degrees), H-bonding (being favored at low ionization de-
grees), and electrostatic complexation capabilities with other charged species (Scheme 1). In
addition, the apparent charge density of weak polyelectrolytes can be modulated through
ion screening by changing the concentration of monovalent salts in solutions. This phe-
nomenon, which represents a second type of response to stimuli, disfavors the electrostatic
complexation of polyelectrolytes at high ionic strengths and changes their conformation,
with swollen loops being favored at high ionic strengths [6]. Finally, when the valency
of counter-ions is changed from monovalent to multivalent, intramolecular electrostatic
crosslinking leads to further conformational transitions (Scheme 1) [7,8]. It is thus not
surprising that a wide range of synthetic and natural weak polyelectrolytes have been
developed (Table 1), while their properties as reversible polyacids/bases [9,10], complexing
agents [11,12], and self-assembling units in functional systems [13–16] have been very
actively investigated. It is worth noting that the apparent pKa of weak polyelectrolytes,
measured by pH titration, conductimetry, and infrared spectroscopy, varies notably depend-
ing on experimental parameters such as their molecular weight, conformation, confinement,
and complexation [17–20].
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Scheme 1. Responses of weak polyelectrolytes to stimuli. Schematic depiction of the molecular
and conformational responses of weak polyelectrolytes bearing either weak acid (AH) or basic (B)
moieties with respect to pH and salt stimuli.

Table 1. Most common weak polyelectrolytes and their pKa/pKaH. * When available, the apparent
pKa/pKaH of the polyelectrolyte is mentioned in parentheses. Note that these values may vary with
the polyelectrolyte’s molecular weight and environment [17].

Type Polyelectrolyte First pKa/pKaH
of Monomer

pKa/pKaH
of Polymer * Reference

Synthetic polyanions Poly(acrylic acid) (PAA)
Poly(methacrylic acid) (PMAA)

4.2
4.7

4.5–6.6
up to 6.8

[21,22]
[21]

Natural polyanions
Poly(glutamic acid) (PGA)
Hyaluronic acid (HA)
Alginic acid (ALG)

2.1
≈3.0

3.5–4.6
6.1

[21]
[23]
[24]

Synthetic polycations

Poly(allylamine hydrochloride) (PAH)
Poly(aniline) (PANI)
Poly(ethyleneimine) (PEI)
Poly(2-vinylpyridine) (P2VP)
Poly(2-(dimethylamino)ethyl
methacrylate) (PDMAEMA)
Poly(L-lysine) (PLL)

9.7
4.6
8.0

5–5.6
8.4

10.5

8.6
5.5

8.2–9.9
3.5–4.5
≈7.5

10–10.5

[25]
[26]
[27]

[28,29]
[20,30]
[31,32]

Natural polycations Chitosan (CHI) 7.5 ~6.5 [33]
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Based on these backgrounds, weak polyelectrolytes offer a range of non-covalent
interactions, including electrostatic, H-bonding, and hydrophobic interactions. On the
one hand, these properties can not only ensure the cohesion of polymeric matrices, films,
and colloids but also direct their structuration at the nano and micron levels (Figure 1).
On the other hand, they offer routes to tailor the functions—including sorption, swelling,
and mechanical responses—of systems whose cohesion relies on covalent bonds. The
objective of this review article is to present recent examples of stimuli-responsive systems
with triggerable interactions at the molecular and supramolecular levels by modulating
the charge density on weak polyelectrolytes through salt and pH stimuli. The examples
described cannot cover all aspects but rather focus on the most recent developments,
generally reported less than 5 years ago. Accordingly, this review is organized into four
sections, each dealing with a different nature of weak polyelectrolyte systems:

- In the initial part, organic and hybrid thin films obtained from weak polyelectrolyte
brushes and electrodeposited coatings are described, including those based on natural
polyelectrolytes (e.g., chitosan, alginate, hyaluronic acid). The cohesion of such
systems relies on covalent, hydrophobic and H-bonding interactions, most often
leading to coatings containing one weak polyelectrolyte at a time. Basic synthesis
approaches for these films are discussed as well as their applications, with an emphasis
on their response to post-assembly pH changes in terms of swelling, adhesion, and
cargo encapsulation and release.

- The next two sections describe systems based on polyelectrolyte complexes, in-
cluding those formed from the electrostatic complexation of weak polyanions and
polycations [34]. Their assembly in aqueous media, without aggressive chemicals,
allows for the use of more environmentally friendly routes to obtain surface coatings
(films and layer-by-layer capsules), vectors, and functional gels. The resulting systems
usually include several polyelectrolytes at the same time, and their cohesion is based
on reversible interactions. The fundamentals of these films, gels, and colloids are
discussed with respect to their response to pH and salt stimuli both during and after
assembly. Emphasis is placed on recently proposed processing strategies to transform
electrostatic complexes into gels and membranes. The applications of these systems
are reviewed with a focus on nanovectors, and a subsection is devoted to systems that
have been identified as relevant to pharmaceutical needs.

- The final part addresses the growing significance of block copolymers (BCP) containing
weak polyelectrolyte blocks for nanostructuring surfaces, colloids, and membranes.
Accordingly, their directed self-assembly into microphase-separated films and their
micellization behavior are discussed as a function of complexation, pH, and salt
stimuli. Emerging applications, including sensors, nanolithography, and vectorization,
are discussed.
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2. Weak Polyelectrolytes Layers for Stimuli-Responsive Surfaces

Coatings based on weak polyelectrolytes provide researchers with a convenient way
to tune the properties of surfaces, ultimately adjusting their interactions through their
environment and enabling the design of stimuli-responsive systems. This section aims
to review brushes and electrodeposited coatings, most often composed of only one weak
polyelectrolyte, as well as their applications with respect to their response to pH changes
during and after assembly.

2.1. Brushes of Weak Polyelectrolytes

Polymer brushes are obtained through the chemical grafting of surfaces with a layer of
polymers. The resulting coatings are considered more stable than those obtained from cast-
ing owing to their capability to withstand immersion in good solvent without dissolution.
Polymer brushes are extensively used as colloidal stabilizers, lubricating layers, and drug
delivery systems [35]. In that respect, elaborating brushes based on weak polyelectrolytes is
generally aimed at developing stimuli-responsive systems, and was reviewed recently [15].
Grafting-from approaches, where polyelectrolyte chains grow in situ from their surface
anchoring points, typically offering higher grafting densities than approaches where
pre-synthesized polyelectrolyte chains are used [36,37], have therefore been developed
by using several radical polymerization technics [35]. Accordingly, both polyanion [38]
and polycation [39] brushes have been synthesized by using nitroxide-mediated polymer-
ization (NMP). A larger variety of systems were made accessible using atom-transfer-
radical-polymerization (ATRP) at the cost of using a metal catalyst, yielding routinely
weak polycationic brushes such as PDMAEMA [40]. However, the growth of carboxylate-
containing polyanions (PAA, PMAA) brushes is more complicated owing to interactions
with the catalyst, leading researchers to polymerize their respective ester derivatives, fol-
lowed by a deprotection step [41]. Finally, reversible addition-fragmentation chain transfer
(RAFT), a catalyst-free polymerization method, was used for developing weak polyca-
tionic brushes [42,43] with the trade-off of using quite expensive chain transfer agents.
However, this approach has so far been neglected with regard to the synthesis of weak
polyanion brushes.

The pH response of weak polyelectrolyte brushes leads to conformational changes in
polymer chains, resulting in thickness variations in the brush: when the ionization degree
of the polyelectrolyte decreases (resp. increases), the brush tends to collapse (resp. swell).
This effect is largely modulated by the concentration [44], type [45], and valency [7] of
counter-ions and salt in the system. Changes in pH and ionic strength parameters can also
be induced electrochemically, yielding a reversible swelling of brushes [46]. Yet, when
designing such pH-responsive systems, one must keep in mind that the apparent pKa (or
pKaH) of weak polyelectrolytes in brushes greatly varies with the intrinsic parameters,
such as their grafting density [47] and ionic strength [48]. These responses have been
exploited to design a range of functional systems, as described in Table 2. Among the
most studied applications of polyelectrolyte brushes, both their lubricating and adhesion
functions can be efficiently switched on and off by using weak polyelectrolytes [7,49].
Lubrication is ensured by the swollen hydrated state of polyelectrolyte brushes. Although
polyzwitterionic brushes have been determined to perform better, brushes composed
of weak polyelectrolytes offer an opportunity to modulate lubrication through pH and
ionic (concentration, valency) stimuli [7]. Adhesion in water dependent on pH has also
been demonstrated between a range of weak polyelectrolyte brushes, including PAA with
poly(N,N-dimethylacrylamide) and PMAA with PDMAEMA. The adhesion mechanism
is, however, different with H-bonding, ensuring the cohesion of the first polyelectrolyte
couple (pH values smaller than 2) [50], while electrostatic interactions dominate for the
PMAA/PDMAEMA couple (adhesion for pH values close to 7) [51]. The combination of
electrostatic, H-bonding, and hydrophobic interactions in weak polyelectrolyte brushes
enable cargo (e.g., proteins) immobilization with a large binding capacity, reversible nature,
and structure-preserving ability [52,53]. However, in a recent example, Ferrand-Drake
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del Castillo et al. suggested that the dominant force for protein loading and release when
using weak polyelectrolyte brushes was not electrostatic, owing to the large changes in
their apparent pKa [48].

Table 2. Typical brushes based on weak polyelectrolytes and emerging applications.

Target Application Brushes Type Reference

Reversible adhesion
PDMAEMA/PMAA [51]

poly(N,N-dimethylacrylamide)/PAA [50]

Bio-adhesion
PMAA [54]

PAA [55]

Cargo immobilization/release
PAA/PMAA [48]
PDMAEMA [56]

PDMAEMA/PAA [52]

Antifouling P4VP [57]
PMAA [58]

2.2. Electrodeposited Weak Polyelectrolytes Films

Electrochemically induced film deposition strategies have recently attracted a great
deal of attention, as the localized nature of the electrochemical trigger enables spatially
resolved film assembly in a conformal manner, including on substrates with complex
topologies. Applications of such films are anticipated in many fields, as testified by pio-
neering work in biomaterials, energy storage and conversion, mass transport, and analytic
tools [59]. Several electrochemical approaches to weak polyelectrolyte films have thus
been developed by using electrochemically induced precipitation, electropolymerization,
and electrochemically induced coupling reactions (Figure 2). In this section, these dif-
ferent strategies will be described, with a focus on experimental synthesis parameters
and applications.
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Figure 2. Film electrodeposition. Main approaches for electrochemically induced film formation
include electropolymerization, electrochemically induced precipitation, and coupling. The resulting
surface coatings containing weak polyelectrolytes combine pH responsiveness (A) with eventual
self-organization (B) and combination with inorganic units (C). Figures (A) [60], (B) [61], and (C) [62]
are reproduced with permission from the original articles.
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The electrochemically induced precipitation of weak polyelectrolyte films is typically
achieved by locally changing the solubility of weak polyelectrolytes near the electrode,
favoring their self-association and precipitation. This process can be triggered, among
the most popular strategies, by changing the local pH through water electrolysis (i) or
by enabling the complexation of the polyelectrolytes with multivalent ions (ii). In this
context, electrodeposited weak polyelectrolytes films have mainly been developed from
pure and composite assemblies of CHI, ALG, PAH, and gelatin on a large range of electrodes
(including patterned electrodes) with spatial and temporal control [63].

(i) Water electrolysis allows increasing the local pH value at the cathode, favoring
the deposition of films based on weak polycations, such as CHI, through decreasing
their ionization degree [63]. Here, again, the ionic strength of the solution during the film
deposition directly influences the thickness and mechanical properties of the polyelectrolyte
assembly, with thicker and softer films obtained at higher salt concentrations [64]. At the
anode, the proton gradient generated during water electrolysis promotes film assembly
from weak polyanions such as HA, ALG, and silk fibroin through protonation and self-
association (Table 3). In contrast, a few examples have reported electrodeposition strategies
where an increase in the charge density of weak polyelectrolytes was sought. In that case,
proton and hydroxide ion gradients generated by electrolysis in aqueous solutions induce
higher ionization degrees and/or acid deprotection of the weak polyelectrolytes, enabling
their complexation and film precipitation with oppositely charged polymers [65–67] and
multivalent MoO4

2− ions [68].
(ii) The complexation of weak polyelectrolytes with multivalent ions leading to their

film precipitation is another prominent electrodeposition strategy. The generation of the
crosslinking ions is achieved either by the dissolution of oxide precursors [69] or by direct
oxidation to the relevant cations [70]. Anodic electrolysis has been used to dissolve CaCO3
(respectively, Cu2(OH)2CO3), yielding Ca2+ and Cu2+ ions near the electrode and allowing
the assembly of ALG films by complexation [69,71]. Allowing work to be carried out at
milder oxidation potentials, the electrochemical generation of multivalent cations has been
developed with Cu2+, Fe3+, and Ru2+ cations, allowing complexation and film deposition
with ALG, Chitin, CHI, and PAA modified with terpyridine groups [71–73].

In situ polymerization on electrodes by electrochemical reaction (electropolymeriza-
tion) is another popular strategy that can ensure the elaboration of functional films. Aniline,
dopamine, carbazole, and vinylpyridine monomers and their derivatives have been ex-
tensively studied for use in the electropolymerization of weak polyelectrolyte films under
oxidative potentials (Table 3). The resulting films can combine electron conductivity with
weak polybase characteristics, conferring them with doping, complexation, and molecular
imprinting abilities. A large number of recent studies have used these appealing properties
to design sensors, energy devices, light-emitting devices, and electrochromic and “smart”
electrodes, as described in recent reviews [72–76]. The presence of aromatic cycles in such
polymers also confers them with a hydrophobic character and self-assembling properties
that enable them not only to act as weak polyelectrolytes but also as structure directing
nano-units (Figure 2B). For instance, PANI self-organization has been exploited to design
nanostructured colloids [77] and coatings [61,78], which are optimized as catalytic supports
and energy storage platforms, respectively. Accordingly, several self-organized structured
polyvinylpyrridine sensors have been reported [79]. In the case of polydopamine, the
presence of functional groups such as catechol, amine, and imine in its molecular struc-
ture makes it a prime candidate for use in biomedical applications [80] with the ability to
self-organize into microstructured films [81].

Contrary to electropolymerization, electro-coupling relies on non-propagative co-
valent couplings induced electrochemically between functional nano-units bearing ade-
quate moieties. To date, the alkyne-azide “click” cycloaddition (i) and the dimerization of
9-alkylcarbazoles (ii) are the most studied systems enabling the electrosynthesis of polymer
and hybrid films [70,82].
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(i) The alkyne-azide “click” cycloaddition, specifically leading to covalent triazole
bonds under mild and aqueous conditions, is typically catalyzed by Cu(I) ions. The genera-
tion of these ions, which are unstable in water, by the electrochemical reduction of Cu(II)
ions (using −0.3 V vs. Ag/AgCl), induces and confines the “click” coupling reaction in
the vicinity of electrodes [70]. This film assembling strategy has been carried out with
various weak polyelectrolytes (PAA, PAH) grafted with alkyne/azide groups, yielding
covalently reticulated single-polyelectrolyte coatings that reversibly swell in response to
post-assembly pH changes [70]. Accordingly, the covalent incorporation of fluorescent
bis-pyrene moieties in such coatings composed of PAA evidenced the buffer behavior of
the film, which maintained its internal pH at a value close to 3.5, while the environmental
pH was changed from pH 4 to 7 [60]. In most recent examples, this click electrosynthesis
approach has been combined with the electropolymerization of PANI [78] and adapted to
hybrid nano-units, leading to pH-responsive nanostructured coatings with cargo encapsu-
lation/release abilities (Figure 2C) [62].

(ii) Various organic and inorganic nano-units have been substituted in the 9- position
of 9-alkylcarbazoles, enabling their covalent coupling by the electrochemical dimerization
of carbazole moieties in acetonitrile [59]. This unique behavior was attributed to the
selective activation of 3- and 6- positions of carbazoles and exhibited sensitivity to the
potential applied: +1.0 V (vs. Ag/AgCl) favored more dimerization while +1.2 V also led to
oligomerization [83]. The obtained organic or hybrid films benefited from internal layered
structures and unlocking optical limiting applications [84,85]. Following this concept,
recent efforts to potentialize other electrochemical dimerization reactions for functional
films have been reported, opening promising perspectives for multifunctional systems [86].

Table 3. Typical electrodeposited systems based on weak polyelectrolytes and emerging applications.

Electrodeposition Principle Polyelectrolyte Type and
Typical Conditions (vs. Ag/AgCl) Applications Reference

Electrocoupling by click
reaction

P AA or PAH grafted with alkyne and azide
(−0.3 V, 0.6 mM CuSO4, H2O)

pH sensors, triggered
release [60,70]

Controlled dimerization Dimerization of alkylcarbazoles
(+1.0 V/+1.2 V, acetonitrile) Photovoltaics [87]

Electropolymerization

PANI (1.0 M HNO3 aqueous, 2 mA cm−2)
PANI (0.5 M H2SO4 aqueous, CV −0.6 V/+1.5 V)
Polycarbazoles (+1.3 V, aqueous or acetonitrile)
Polydopamine (0.1 M phosphate buffer saline,

CV −0.5 V/+0.5 V)

Capacitors,
Capacitor sensors,

Opto-electronic and
electrochemical

Sensors, biocoatings

[61,78]

[76]

[88]

Electrochemically induced
precipitation

Chitin (+1.2 V with Fe2+ ions)
CHI (+1.5 V with Cu(s))

CHI (+1 to +3 V)
Collagen (pH 3.5; 0.1 M H2O2, 8 mA/cm2)

ALG (oxidation of oxides, 1.7–4.4 mA/cm2)
PAH (+0.6 V, with MoO4

2−)

Drug release
Sensor

Drug delivery, biocoatings
Biomaterials and actuators

Wound treatment
Implant coating

[89]
[63]
[90]
[91]

[69,71]
[68]

Electrochemical co-deposition HA + Polydopamine (+1 V in PBS buffer) Antifouling [92]

Complexation by pH-induced
shift of PAH protonation

PAH/PAA (−0.5 V, 0.12 M H2O2)
PAA/protected PAH and polyampholytes

(H+ generation with 90 µA rate)
None reported [65–67]

3. Layer-by-Layer Films and Vectors from Weak Polyelectrolytes

Over the past few decades, the Layer-by-Layer (LbL) strategy has enabled adsorbed
polyelectrolyte films with unprecedented functional versatility. This approach, pioneered
by Iler in 1966 and developed by Decher from 1991 [16], relies on the sequential adsorption
of complementary chemical species (including polyelectrolytes), yielding coatings with
controllable thickness whose growth can be driven by a range of interactions, including
electrostatics, H-bonding, molecular recognition, and coordination (Figure 3) [93]. LbL
films have thus attracted attention relating to their use in Nanoarchitectonics, owing to



Molecules 2022, 27, 3263 8 of 32

their potential for assembling functional nano-units on a large variety of substrates and
topologies [94]. In this context, weak polyelectrolytes are mostly positioned as building
blocks granting reversible interaction abilities to multilayers.
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3.1. Layer by Layer Films

Weak polyelectrolytes of both synthetic and natural origin have been incorporated
in LbL films, influencing their structure and composition [96], as well as their response to
stimuli. Such films have thus been readily employed as biointerfaces and platforms with
tunable mass transport properties [93] (as described in Table 4). Accordingly, adjusting the
charge density and conformation of weak polyelectrolytes via pH and ionic parameters
during (i) and after (ii) assembling multilayer films has been exploited:

(i) Decreasing the charge density of weak polyelectrolytes, either by decreasing their
ionization degree of by increasing charge screening by salts, typically favors coiled con-
formations (Scheme 1). In the case of LbL film buildups relying on electrostatically driven
interactions, assembly conditions with smaller polyelectrolyte charge densities result in
less crosslinks and more loops between the layers, leading to larger thickness increments
at each adsorption step of weak polyelectrolytes compared to conditions where an ex-
tended conformation of the polyelectrolyte is favored (corresponding to higher charge
density). Accordingly, the growth mechanism of a polydiallyldimethylammonium chloride
(PDADMAC)/ALG multilayer changed from linear to exponential behavior when the
assembly pH value was changed from pH 10 (where both polyelectrolytes are ionized) to
pH 3 (where ALG is protonated) [97]. It follows that the multilayer thickness, chemical
composition, mechanical properties, permeability, and adhesion are largely determined
by pH and ionic parameters during the LbL deposition process. Therefore, the swelling of
PAH/PAA and PLL/HA multilayers in aqueous media increases when the charge density
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of their weak polyelectrolytes decreases, a behavior attributed to the reduced ionic crosslink
density and to loopy chain conformations [98,99]. The same phenomenon controls the
hardness and elastic modulus of PAH/PAA multilayers [100], leading to lower values
being obtained for PAH(pH 7.5)/PAA(pH 3.5) when both polyelectrolytes have a smaller
charge density than for PAH(pH 6.5)/PAA(pH 6.5). Consequently, the assembly pH has
been demonstrated to influence the drug transport mechanism in PAH/PAA multilayer
films (Figure 3) [95]. In contrast, when the LbL film buildup relies on H-bonding, increasing
the ionization rate of weak polyelectrolytes follows the opposite trend: for instance, the
buildup of PAA/poly(vinylpyrrolidone) multilayers was hindered at pH values where
PAA had a high charge density [93,101].

(ii) Post-assembly changes in pH and ionic parameters have been extensively studied
as external stimuli to weak polyelectrolyte multilayers with respect to their response in
thickness, porous structure, and encapsulation/release changes [93,102]. For LbL films
relying on electrostatic interactions, decreasing the charge density of weak polyelectrolytes,
either by post-assembly pH changes or by increasing the solution ionic strength, resulted
in the swelling of the films [103] and eventually their dissolution. Accordingly, swelling
coefficients of, respectively, up to 5-fold and 8-fold were found for PLL/HA multilayers sub-
jected to ionic strength [104] and pH [105] stimuli. The swelling process was accompanied
by structural changes in multilayer films, such as the emergence of holes in PLL/HA films
when the NaCl concentration was changed from 0.15 M to 0.48 M [105] and the growth of
pores in (PEI/PAH)/PAA films after the post-assembly pH was decreased to pH 2 [106].
The potential of such porous coatings was tested for designing slippery liquid-infused
porous surfaces [106,107]. Concurrently, the modulation of the mass transport properties
of weak polyelectrolyte multilayer films by post-assembly treatment has attracted much
attention [108], leading to systems with tailored functions (Table 4), including ionic current
rectification [109], enhanced Li+ conductivity [110], and filtration [111]. Conversely, not
only the ionic strength but also the nature and valence of the salt used as the post-assembly
stimulus were found to modulate the properties of weak polyelectrolyte multilayers: expos-
ing a PAH/PAA multilayer film to various concentrations and type of metal ions enabled
changing their pore sizes from 54 nm to 1.63 µm. This behavior was ascribed to phase
separation in the film induced by metal-ion coordination with PAH [112], and was used to
trap silver ions in the film to selectively detect methylmercaptan gas concentrations as low
as 20 ppb [113].

Table 4. Typical LbL multilayer films based on weak polyelectrolytes and emerging applications.

Target Application Multilayer Type References

Cargo encapsulation and release
PAH/PAA [95]
PEI/PAA

CHI/HA and PLL/PGA
[114]
[115]

Tunable bio-interface PAH/PAA
CHI/PGA

[116]
[117]

Slippery liquid-infused porous surface (PEI/PAH)/PAA
PEI/Nafion

[106]
[107]

Methylmercaptan gas sensor
Urea sensor

(PAH-Ag+)/PAA [113]
PEI/Urease/reduced graphene oxide [118]

Ionic conductivity
Ionic current rectification

Ion selective ultrafiltration
Micropollutant filtration

Solvent resistant nanofiltration membrane

PDADMA/PAA
PLL/PAA and PEI/PAA

[110]
[109]

CHI/Chondroitin sulfate
PAH/PAA
PAH/PAA

[111]
[119]
[120]
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3.2. Colloidal Systems Based on LbL Multilayers of Weak Polyelectrolytes

The LbL film deposition process has been adapted to colloidal substrates, provid-
ing an alternative to polymer self-assembly for designing nanocarriers, including hollow
capsules (Figure 4) [121]. This method requires a sacrificial template (such as melamine
formaldehyde, polystyrene, poly(methacrylic acid), silica, calcium carbonates, hydrogel
microspheres), which needs to be removed by calcination or etching, and can be used to
develop biocompatible systems with encapsulated drugs. Nevertheless, such nanocarri-
ers remain very efficient when applied to catalysis [122] and energy storage [123] or as
antioxidants [124]. Recent development has gradually evolved from prominently using
synthetic strong polyelectrolytes to weaker ones, including using PAH, PEI, PLL, and
poly(N-isopropylacrylamide) (PNIPAM) as polycations, as well as PMAA and PAA as
polyanions. The corresponding colloidal systems benefited from the better control and
fine tuning of intermolecular forces by pH modulation [125], ionic strength [126], and
temperature [127]. Biosourced charged species such as dextran [128], CHI [129], bovine
serum albumin [130], and DNA have also been used as functional units to encapsulate and
deliver genetic cargo [128] and even co-deliver a drug [131].
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With their high degree of functionality as well as their versatility, weak polyelectrolytes
have been widely used to develop new tools for precision medicine in order to simultane-
ously address precision diagnosis and precision therapy. In this context, the use of polymer
nanocarriers offers three topological regions which can allow functionalization: the inner
cavity, the surrounding shell, and the external surface exposed to the microenvironment
(Figure 4). Polyelectrolytes have consequently led to the development of nanocarriers for
applications in imaging and for therapeutic purposes (Table 5). The on-demand release of
cargo can be achieved by external or endogenous stimuli and provide a variety of ways to
control the dosage, time, and location of release [132]. Temperature stands as a prominent
stimulus, allowing changes in the hydration degree or layer organization which can be ex-
ploited for permeability changes and the release of the carrier [126]. Thermal responses can
also be achieved by the use of inorganic nanoparticles such as gold [133], silver [134], and
nanodiamond [135]. Under light irradiation, the local heating of nanoparticles can induce
the rupture of the polymer shell or the modification of its permeability. This has been par-
ticularly demonstrated with polyelectrolytes such as PAH and poly(styrenesulfonate)(PSS)
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embedded with gold nanoparticles. This study demonstrated that, upon local heating
by the gold nanoparticle, cargos retain their biological activities, although their diffusion
within the cell is slightly decreased [136]. Ultrasounds can also be exploited as external
stimuli to control the rupture of polyelectrolyte capsules. Ultrasounds are commonly used
in imaging and ablative therapy. In the latter case, the mechanical deformation induced
causes the bursting of the capsules, thus releasing their payload [137]. Magnetic fields have
also been used to trigger the release of polymer capsules [132]. With the combination of
magnetic nanoparticles such as iron oxide and electromagnetic fields of various frequency
and power, different mechanisms can be induced. At low frequencies, a non-heating
process can preferably be used to preserve tissues as well as a bioactive payload such as
enzymes or DNA [138]. Meanwhile, with higher-frequency magnetic fields, a high increase
in the local temperature induces the destruction of cellular and subcellular structures [139].

Table 5. Recently reported weak polyelectrolytes used in the development of multilayered nanocarriers
and emerging applications.

Applications Weak Polyelectrolyte Used Chemical Structures References

PAH
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Processing weak polyelectrolyte into gels and vectors has been a very active research
field for the past few decades. A range of approaches yielding prominently biosourced
single-polyelectrolyte gels have been proposed based on precipitation/coagulation through
H-bonding, hydrophobic interactions, and crosslinking through reactions with either ionic
or covalent crosslinkers [152,153]. Although this research will not be covered in this review,
recently published works are highlighted for further reading on this topic [154–156]. In con-
trast, processing polyelectrolyte complexes formed from the spontaneous entropy-driven
complexation of polyanions and polycations [34] into gels and membranes is a method that
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has only been developed recently [13,157]. This section will therefore address the existing
approaches for processing weak polyelectrolyte complexes into gels and membranes before
describing selected systems that are relevant for pharmaceutical vectorization.

4.1. Gels Based on Weak Polyelectrolyte Complexes

Polyelectrolyte complexation by the electrostatic association of oppositely charged
polymers results in phase separation from the solution through the formation of either
solid precipitates or liquid complex coacervates. Although fundamental studies to eluci-
date the exact nature and behavior of these different complexes are still ongoing [9,11,12],
many recent studies have focused on using polyelectrolyte complexes for applied materials,
including vectors (described in Section 4.2) and gels. Adjusting the density of electrostatic
crosslinks in polyelectrolyte complexes is critical to ensure their material processability.
In that context, processable gels made of PDADMAC/PMAA complexes have been de-
veloped by screening polyelectrolytes’ charge densities with high-ionic-strength solutions
(e.g., 2.5 M NaCl) followed by compaction through ultracentrifugation [14]. The obtained
gels are named “saloplastics” or “compacted complexes of polyelectrolytes (COPEC)” and
correspond to the blending of polyelectrolyte chains at the molecular level, where charges
are reversibly compensated either intrinsically between polyelectrolytes or extrinsically
with counterions (Figure 5). This gel elaboration approach has been successfully applied
to several other weak polyelectrolytes, including PAA, ALG, PAH, and CHI, yielding
self-healing gels with applications as biomaterials and catalyst supports (Table 6). The com-
paction process by ultracentrifugation initially represented a bottleneck for the larger-scale
production of COPECs, triggering the development of alternative synthesis approaches
based on simple centrifugation [158], injection [159], and sedimentation [160]. The prop-
erties of the resulting saloplastics vary greatly with the charge density and balance of
their polyelectrolyte components both during and after synthesis, typically adjusted by
pH and ionic force parameters. It follows that COPECs containing weak polyelectrolytes
are dynamic stimuli-responsive materials that enable adjusting a large range of proper-
ties, including mechanical properties, composition, porosity, and sorption/release ability
(Figure 5). Conversely, we reported on a dramatic increase in the porosity of PAH/PMAA
COPECS following Na+ to Cu2+ cation exchange by complexation in the gel, enabling the
in situ synthesis of catalytic nanoparticles [8]. The incorporation of biocompatible weak
polyelectrolytes (e.g., CHI, ALG) and their cyclodextrin-grafted derivatives has attracted a
great deal of attention in the field of biomaterial design [161–163].
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Table 6. Recently reported weak polyelectrolytes complexes processed into gels and emerging applications.

Polyelectrolyte Complex Processing Target Applications References

PAH/PAA Compacted by
ultracentrifugation Catalysis support [164]

CHI/ALG
Compacted by

ultracentrifugation
Biomaterials and

biomedical applications

[162]

β-Cyclodextrin-CHI/ALG [163]

poly[triethyl(4-vinylbenzyl)ammonium/ALG [161]

PAH/PMAA Compacted by
centrifugation

Sorption of transition metal ions
Catalysis support

[158]
[8]

Poly(vinyl alcohol)/PAA Injection Adhesives [159]

CHI/ALG Sedimentation Tissue engineering [160]

PEI/PSS

Aqueous phase Separation Filtration membranes

[165]

PDADMAC/PAA [13]

PAH/PSS [166]

Polyelectrolyte complexes have also been processed into functional membranes by
aqueous phase separation [13]. Briefly, polyelectrolytes are first blended at the molecular
level in an aqueous solution where the pH or ionic strength values do not allow their com-
plexation, and the subsequent change in that parameter enables the precipitation of poly-
electrolyte complex membranes [13]. This approach provides control over membrane pore
size and structure in ways analogous to traditional non-solvent-induced phase separation.
The synthesis pathway based on pH stimulus was developed with mixtures of weak and
strong polyelectrolytes, yielding membranes made from PEI/poly(styrenesulfonate)(PSS),
PAH/PSS, and PDADMAC/PAA systems for use in nanofiltration and micropollutant
removal [13,165,166].

4.2. Weak Polyelectrolyte Complexes for Pharmaceutical Vectorization

The emergence of new diseases and strains of micro-organisms requires constant
evolution and research in the field of drug delivery and nanomedicine. The most straight-
forward strategy adopted by the pharmaceutical industry has been the synthesis of new
drugs capable of combating these pathologies. This, in turn, triggers the demand for
appropriate drug carriers that can be effectively loaded with these drugs and protect them
until they are administered and delivered. Although great progress has been made in
the development of new drug carriers, including weak polyelectrolyte complex systems,
in recent years [167–169], there are still systems such as water-insoluble drugs that these
strategies fail to encapsulate efficiently [170].

Polyelectrolytes used for pharmaceutical research must meet the requirements of
biocompatible polymer systems and be suitable for use as carriers of active substances. In
this sense, the use of weak biosourced polyelectrolytes such as chitosan or charged chitosan
derivatives such as glycol-chitosan or N-dodecylated chitosan as polycations and natural
polysaccharides such as alginate, pectin, or carrageenan as polyanions has received much
attention in the design of polyelectrolyte complexes for drug delivery due to their excellent
bioavailability and biodegradability [171–173]. In addition to the difficulty of efficiently
encapsulating actives with poor water solubility, other challenges in drug delivery include
(i) the development of drug delivery systems that provide the sustained release of the drug
within a desired therapeutic window to ensure efficacy; (ii) non-specificity, toxicity, and
lack of localized administration strategies for certain treatments such as chemotherapeutics;
(iii) scalability; and (iv) the development of harmonized regulatory guidelines for the man-
ufacture of nanotechnology products that require contact with the human body (Figure 6).
All the challenges cited above make the design of drug delivery systems much more com-
plex than that of non-biological material release. As a result, the construction of efficient
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drug delivery carriers is usually achieved by assembling several components, each with
its own role in the unified delivery function. An interesting way to achieve this is to use
nanoarchitectonics approaches to develop biocompatible weak polyelectrolyte complexes
formed in water with stimuli-responsive properties. The charges on weak polyelectrolytes
are dynamic, causing polymer chains to adopt different equilibrium conformations even
with relatively small changes to the surrounding environment [174] (Schemes 1 and 2).
For instance, phosphonium polymer has been demonstrated to be able to control the
physical and biological properties of sodium hyaluronate/phosphonium polyelectrolyte
complexes [175]. The network swelling and therefore drug release rates of these systems
can be controlled by varying the concentration of salt in the medium. Thus, while more
hydrophilic molecules such as adenosine-5′-triphosphate can be released over 1–2 days,
the sustained release of fluorescein and diclofenac over 60 days can be achieved, which is
much longer than that previously reported for polyelectrolyte complexes [176–178]. On the
other hand, only phosphonium polymers, including phenyl substituents, have shown a low
cytotoxicity. Another example of improved control of drug release is in chitosan/alginate
biocompatible pH-responsive polyelectrolyte complexes, which were developed as less
invasive delivery systems for oral insulin administration [179]. This association of poly-
electrolytes allows the delivery system to withstand prolonged contact with acidic gastric
media and enzymes in the gastrointestinal tract, enhancing bioavailability by controlling
insulin release in the intestinal tract. Furthermore, the examined polyelectrolyte complexes
exhibit non-cytotoxicity against Caco2 cells.
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Nanoarchitectonics approaches to develop drug reservoirs with collective nanosys-
tem functionality have been used to address the clinical limitations of premature drug
release and tumor non-specificity. For instance, a novel superparamagnetic chitosan-based
nanometer-sized colloidal polyelectrolyte complex integrating the water-soluble polymeric
prodrug poly(L-glutamic acid)-SN-38 (PGA-SN-38) was designed using a one-shot man-
ufacturing process to efficiently deliver SN-38 [180]. The combination of these systems
enhanced drug solubility and tumor-targeting accumulation, thereby improving the ther-
apeutic efficacy against colorectal cancer in vivo (tumor suppression rates of up to 81%).
Interestingly, although the prepared material exhibited controlled release at pH 7.4, a
burst release of the drug was observed during the first 12 h, which was attributed to the
dissociation of the PGA-SN-38 prodrug from the nanopolyelectrolyte complexes due to
the partial instability of the chitosan-based nanocomplexes in phosphate-buffered saline
medium. The standardization and scale-up of polyelectrolyte complexes obtained through
bottom-up methodologies is still a great challenge and necessitates carrying out arduous
experimentation, since it depends on multiple intrinsic and extrinsic variables [181]. A
means to improve the main problems generated during polyelectrolytic complexation, such
as obtaining large particle sizes and highly polydisperse systems, is to employ top-down
methods instead [182]. However, top-down methods such as high- or ultra-high-pressure
homogenization also have some disadvantages, such as the chemical degradation of the
material by excessive energy applied during the disaggregation process [183]. Never-
theless, the great benefit of these techniques is that the conditions implemented can be
easily reproduced and scaled-up to industrial level. Thus, the polyelectrolyte complexes
developed under these methodologies are suitable for easy technology transfer. Finally,
the opportunities offered by nanotechnology in the health sector are also accompanied
by challenges in the regulation of these products. One example of these concerns is the
modification of the physicochemical properties of nanomaterials, which can lead to altered
toxicity, solubility, and bioavailability profiles [184–186]. In addition, evidence regarding
the potential safety issues of synthetic polymers appears to be the main driver of research
on the use of natural polysaccharides in the application of more recent responsive polyelec-
trolyte complexes as drug delivery systems. Furthermore, the existence of strong regional
differences in the regulation of nanomedicines confirms the need for the harmonization of
information requirements for nanospecific properties. Current efforts are directed towards
gaining sufficient knowledge on the quality, safety, and efficacy of nanomaterials to support
regulatory decisions and enable a smooth transition to clinical applications (Table 7).

Table 7. Recently reported weak polyelectrolytes used in the design of polyelectrolyte complexes for
drug delivery and biomedical research applications.

Polyelectrolyte Chemical Structure Applications References

CHI
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Table 7. Cont.
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5. Block Copolymer Systems Based on Weak Polyelectrolytes

Block copolymers (BCPs) based on weak polyelectrolytes combine a stimuli-responsive
nature with native self-assembling properties, positioning them as an interesting class of
polymeric nano-units for use in structured materials. The incorporation of weak polyion
blocks in BCP facilitates copolymer synthesis and characterization while leading to weak
bonding interactions (i) that facilitate the reversible conformation of the self-assembled
nanostructures with reversible complexation abilities (ii) towards drugs, metallic ions, and
other types of cargo. Since the charge density on weak polyelectrolyte is pH-dependent, it
also enables the dissolution of hydrophobic/ionic BCPs in polar organic solvents [204,205].
Emerging applications include agents that can be used to stabilize and/or deliver dugs,
peptides, and small molecules; lubricants; colloids; the patterning of nanostructures; the
synthesis of stimuli-responsive capsules; and filtration membranes [206–209]. Chemically,
BCPs are formed by the covalent linkage of two or more distinct monomer units grouped
in discrete blocks along the polymeric chain [210]. Due to the rapid progress made in
polymer synthetic strategies and techniques such as controlled polymerization along with
facile post-polymerization functionalization, BCPs with well-defined molecular weights
and macromolecular architectures can be synthesized [211]. The exceptional compositional
and molecular structural versatility of BCPs has facilitated the tremendous growth and
application of new synthetic routes, enabling high levels of architectural complexity to be
achieved. Examples of weak PE-based BCPs are given in Table 8. This section will highlight
the scope of BCP-based PEs and their applications.
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5.1. Directed Self-Assembly of BCPs for Nanopatterning

BCP self-assembly is a versatile process where the incompatible behavior of the con-
stituent blocks leads to the formation of microstructures with a plethora of potential
applications [211–213]. In this context, the directed self-assembly of BCPs has revolu-
tionized the modern nanoelectronics industry. It has facilitated long-ordered structures,
the transfer of patterns, and the design of low-resolution high-density nanostructures for
high-level computing applications (Figure 7). There are some major drawbacks of current
nanofabrication techniques, such as photolithography (limited in feature size), electron-
beam lithography (low throughput), and EUV lithography (high development costs) [210].
Owing to these challenges, a large volume of research is dedicated to the development of
cost-effective nanofabrication technology. In this case, the BCP soft lithography method
offers a very simple, scalable, cost-effective platform for use in nanoscale fabrication, where
feature sizes and geometries can be tuned via the chain length and volume fraction of
BCPs. BCPs can self-assemble into varied different nanostructures through microphase
separation, which is driven by the enthalpy of the demixing of the constituent compo-
nents of the BCPs, while the process is constrained by the chemical connectivity of the
blocks [214]. BCPs can be tuned to self-assemble into desired nanostructured morpholo-
gies such as spheres, cylinders, lamellae, and gyroids by adjusting the volume fraction
(f ) of the constituent blocks [212,214]. In addition, chemical heterogeneity between the
BCP blocks allows the selective complexation of guest species (e.g., metal ions), thereby
creating patterned etch masks that can be transferred into functional materials and surfaces
(Figure 7) [213,215]. Accordingly, systems based on BCP containing weak polyelectrolyte
blocks such as poly(styrene-b-4vinylpyridene) (PS-b-P4VP) [216] and PS-b-P2VP [217] can
be used to produce well-defined nanostructures with long-range ordered morphologies.
Upon the infiltration of weak polyion block domains with metal ions (Ni+, Al3+ and Cr2+),
well-defined metal-oxide nanodots and/or nanowires were obtained and used to define
etch masks for pattern transfer [217]. For instance, we recently reported the use of a
high-contrast etch mask for pattern transfer into silicon substrates through ICP/RIE etch-
ing for the development of vertically coupled plasmonic arrays for use in surface enhanced
Raman scattering [213], anti-reflective surfaces, and photocatalysts [218].
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5.2. Colloidal Systems from Weak Polyelectrolytes BCP for Drug Delivery

BCP-containing polyelectrolytes blocks have been used to design nanometer- to
micrometer-sized vectors for use in drug delivery and encapsulation applications through
manipulating the physicochemical properties of shells to adjust their permeability (Figure 8) [220].
Stimuli such as pH and ionic strength changes create the opportunity to easily control
drug-loaded vectors in open and closed states [221–223].
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Figure 8. Self-assembled colloids from BCP. Schematic representation of nanostructured colloids
enabled by BCP for use in drug delivery applications. Reproduced with permission from the
original article [224].

Weak polyelectrolyte-based BCPs with constituent blocks such as carboxylic acids,
phosphoric acid, and amines show different ionization degrees depending on the pH
of the surrounding environment [225]. This leads to conformational changes due to
different interactions among polymeric chains and also to the formation of hydrogen
bonds. The solubility conditions and relative size of the blocks determine whether
they will self-assemble into micelles, vesicles, or a combination of both [226]. When
BCPs combine weak polyion blocks with hydrophobic blocks (e.g., PS-b-P2VP and
poly(styrene-b-acrylic acid) (PS-b-PAA)), they form core-shell micelles in water with
a hydrophobic core and polyelectrolyte corona [224]. Such systems enable solubilization
of hydrophobic molecules into their core, while the external corona serves stabilizes
vectors in aqueous media and helps binding to oppositely charged molecules, e.g., pro-
teins. Conversely, changing the surface charge density of such micelles by pH-induced
protonation of weak polyelectrolyte blocks controlled the stability or aggregation behav-
ior of PS-b-P2VP-b-PEO [227], PB-b-P2VP-b-PMAA [228], and PCL-b-PEO-b-P2VP)[229]
micelles. In contrast, when BCPs combine weak polyion blocks with hydrophobic blocks,
they can micellize on complexation of their polyelectrolyte block with oppositely charged
partners (polycations, drugs, multivalent cations) as reported for poly(ethylene glycol-b-2-
(dimethylamino)ethylmethacrylate) (PEG-b-PDMAEMA), poly(acrylic acid-b-ethylene oxide)
(PAA-b-PEO) and PNIPAM-b-PAA [230,231]. Such micelles recently found applications as
drug vectors and sol-gel structure directing agents with pH-triggered stability [232].
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5.3. Membranes from Weak Polyelectrolytes BCP for Filtration

Global population growth, climate change and human activities have degraded the
quality of fresh water to critical levels through the discharge of chemicals into ground
and surface waters. For filtration BCP based membrane technology has gained great
significance utilizing nanoscale features as the pores of the membrane granting hydraulic
permeability and separation selectivity. The self-assembled nanostructure of BCPs in the
equilibrium state offer their (1) utility in the fabrication of high-performance separation
membranes, (2) limitless chemical compositions, and (3) scalable nanomanufacturing
processes. Manipulation of the nanostructure of BCP membranes provides wide range
of limits of size-selection, ability to tailor the surface chemistry of BCP membranes for
different water reuse. BCP membranes rely on the swelling of blocks of copolymer to
narrow the pore size into the nanofiltration regime. In that context, the response of weak
polyelectrolyte blocks (e.g., PAA, P2VP) to salt and pH stimuli via conformational changes
that changes the pore geometry is critical (Scheme 1 and Figure 9) [207].

Molecules 2022, 27, x FOR PEER REVIEW 19 of 32 
 

 

solubility conditions and relative size of the blocks determine whether they will self-as-

semble into micelles, vesicles, or a combination of both [226]. When BCPs combine weak 

polyion blocks with hydrophobic blocks (e.g., PS-b-P2VP and poly(styrene-b-acrylic acid) 

(PS-b-PAA)), they form core-shell micelles in water with a hydrophobic core and polyelec-

trolyte corona [224]. Such systems enable solubilization of hydrophobic molecules into 

their core, while the external corona serves stabilizes vectors in aqueous media and helps 

binding to oppositely charged molecules, e.g., proteins. Conversely, changing the surface 

charge density of such micelles by pH-induced protonation of weak polyelectrolyte blocks 

controlled the stability or aggregation behavior of PS-b-P2VP-b-PEO [227], PB-b-P2VP-b-

PMAA [228], and PCL-b-PEO-b-P2VP)[229] micelles. In contrast, when BCPs combine 

weak polyion blocks with hydrophobic blocks, they can micellize on complexation of their 

polyelectrolyte block with oppositely charged partners (polycations, drugs, multivalent 

cations) as reported for poly(ethylene glycol-b-2-(dimethylamino)ethylmethacrylate) 

(PEG-b-PDMAEMA), poly(acrylic acid-b-ethylene oxide) (PAA-b-PEO) and PNIPAM-b-

PAA [230,231]. Such micelles recently found applications as drug vectors and sol-gel 

structure directing agents with pH-triggered stability [232]. 

5.3. Membranes from Weak Polyelectrolytes BCP for Filtration 

Global population growth, climate change and human activities have degraded the 

quality of fresh water to critical levels through the discharge of chemicals into ground and 

surface waters. For filtration BCP based membrane technology has gained great signifi-

cance utilizing nanoscale features as the pores of the membrane granting hydraulic per-

meability and separation selectivity. The self-assembled nanostructure of BCPs in the 

equilibrium state offer their (1) utility in the fabrication of high-performance separation 

membranes, (2) limitless chemical compositions, and (3) scalable nanomanufacturing pro-

cesses. Manipulation of the nanostructure of BCP membranes provides wide range of lim-

its of size-selection, ability to tailor the surface chemistry of BCP membranes for different 

water reuse. BCP membranes rely on the swelling of blocks of copolymer to narrow the 

pore size into the nanofiltration regime. In that context, the response of weak polyelectro-

lyte blocks (e.g., PAA, P2VP) to salt and pH stimuli via conformational changes that 

changes the pore geometry is critical (Scheme 1 and Figure 9) [207]. 

 

Figure 9. Self-assembled membranes from BCP. Schematic representation of nanostructured mem-

branes enabled by BCP and their stimuli-responsive adaptation for filtration membranes. Mi-

crophase separation of PS-b-P4VP yields pores of P4VP that can be post-functionalized by 1,4-diio-

dobutane (DIB) and methyl iodide (MeI), controlling their hydrophilicity. Reproduced with permis-

sion from the original article [207]. 

BCP membranes in the nanofiltration regime have also been obtained through the 

blending of different BCPs such A-B/A-C type blocks. For example, the combination of 

PS-P4VP and PS-PAA BCPs allows the formation of smaller pore sizes due to the hydro-

gen bonding occurring between PAA and P4VP blocks of the two blends. These complexes 

Figure 9. Self-assembled membranes from BCP. Schematic representation of nanostructured mem-
branes enabled by BCP and their stimuli-responsive adaptation for filtration membranes. Microphase
separation of PS-b-P4VP yields pores of P4VP that can be post-functionalized by 1,4-diiodobutane
(DIB) and methyl iodide (MeI), controlling their hydrophilicity. Reproduced with permission from
the original article [207].

BCP membranes in the nanofiltration regime have also been obtained through the
blending of different BCPs such A-B/A-C type blocks. For example, the combination of
PS-P4VP and PS-PAA BCPs allows the formation of smaller pore sizes due to the hydrogen
bonding occurring between PAA and P4VP blocks of the two blends. These complexes
drive the morphological shift towards densely packed spherical nanostructures that form
pores with smaller dimensions [233]. Another relatively easy process used to fabricate
membranes is non-solvent-induced phase separation (NIPS) [234], where a concentrated
BCP solution is casted on a polished surface and subsequently immersed in a non-solvent,
leading to phase separation. In the case of BCPs, this process results in solvent evaporation
and microphase separation, yielding unsymmetrical membrane where a mesoporous skin
layer is supported by a macroporous bulk structure. NIPS has been employed in membrane
preparation from PS-b-P4VP [235] and polystyrene-block-poly(N,N-dimethylaminoethyl
methacrylate) (PS-b-PDMAEMA) BCPs [236]. In the latter example, the PDMAEMA block
in the membrane is pH- and temperature-responsive, modulating the pore size in the range
of 20–80 nm because of swelling/de-swelling. In PS-b-P4VP-based membranes, the P4VP
segment is deprotonated at higher pH values and collapsed onto the pore walls, yielding a
higher water permeability and larger pore sizes. Moreover, in PS-b-P4VP, the complexation
of the P4VP segment with metal ions in the casting solution provides control over the
pore formation [237].
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Table 8. Recently reported BCPs containing a weak polyelectrolyte block and their applications.

BCP Polyelectrolyte Chemical Structure Applications References

Poly(styrene)-b-poly(4-vinylpyridine)
PS-b-P4VP
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Table 8. Cont.

BCP Polyelectrolyte Chemical Structure Applications References
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6. Closing Remarks

From surface platforms to colloids and gels, weak polyelectrolytes have enabled the
development of a wide range of functional materials owing to their intrinsic response to
stimuli, including solvents, temperature, pH, and salt. This review paper is focused on the
latter two stimuli, as these simple parameters are able to induce several responses in weak
polyelectrolyte chains at the molecular level, including changes in their ionization rate,
charge density, H-bonding ability, and conformation. In turn, these changes are transmitted
to the supra-molecular level, enabling nano-systems to respond in precisely predetermined
manners, including by changing their stability, their structure, and their physical properties
(adhesion, solubility, physisorption, mechanical properties, etc.). Furthermore, the chemical
variety of weak polyelectrolytes, encompassing natural and synthetic polymers with a
range of available chemical functions and ionization constants (pKa and pKaH), enables the
creation of varied biocompatible materials and vectors that hold promise for use in future
biomedicine and pharmaceutical applications. Given this background and considering that
weak polyelectrolytes can rely on external stimuli as both assembly and post-assembly
triggers, it is not surprising that they stand as promising tools for the nanoarchitectonics of
organic and hybrid systems. This dual role enables weak polyelectrolytes to act not only as
functional nano-units conferring “smart” stimuli-responsiveness to materials but also as
structure-directing agents. In this respect, prominent future developments can be antici-
pated in at least two research directions. First, pharmaceutically relevant systems based on
biocompatible weak polyelectrolytes will gain improved precision and (multi)functionality
for target drug delivery. Concurrently, nanostructured systems, including those based on
BCP, will enable the confinement of weak polyacid/polybase nanodomains and pores to
support the emergence of next-generation membranes and electrodes for use in energy and
environment sustainability devices.
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Abbreviations

ALG Alginic acid
ATRP Atom-Transfer-Radical-Polymerization
BCP Block copolymers
CHI Chitosan
COPEC Compacted complexes of Polyelectrolytes
DNA Deoxyribonucleic acid
DIB 1,4-diiodobutane
HA Hyaluronic acid
LbL Layer-by-Layer
MeI Methyl iodide
NMP Nitroxide-Mediated Polymerization
NIPS Non-solvent-induced phase separation
P2VP Poly(2-vinylpyridine)
P4VP Poly(4-vinylpyridine)
PAA Poly(acrylic acid)
PAH Poly(allylamine hydrochloride)
PANI Poly(aniline)
PBS Phosphate Buffer Saline
PDADMAC Poly(diallyldimethylammonium chloride)
PDMA Poly(N,N-dimethylacrylamide)
PDMAEMA Poly(2-(dimethylamino)ethyl methacrylate)
PEG Poly(ethylene glycol)
PEG-b-PDMAEMA Poly(ethylene glycol)-b-poly(2-(dimethylamino)ethyl methacrylate)
PEI Poly(ethyleneimine)
PEO Poly(ethylene oxide)
PEO-b-P2VP Poly(ethylene oxide)-b-poly(2-vinylpyridine)
PEO-b-PAA Poly(ethylene oxide)-b-poly(acrylic acid)
PEO-b-PAA-b-PS Poly(ethylene oxide)-b-poly(acrylic acid)-b-poly(styrene)
PGA Poly(glutamic acid)
PLL Poly(L-lysine)
PMAA Poly(methacrylic acid)
PnBA Poly(n-butyl acrylate)
PnBA-b-PAA Poly(n-butyl acrylate)-b-poly(acrylic acid)
PNIPAM Poly(N-isopropylacrylamide)
PNIPAM-b-PAA Poly(N-isopropylacrylamide)-b- poly(acrylic acid)
PS-b-P2VP Poly(styrene)-b-poly(2-vinylpyridine)
PS-b-P4VP Poly(styrene)-b-poly(4-vinylpyridine)
PS-b-PAA Poly(styrene)-b-poly(acrylic acid)
PS-b-PLL Poly(styrene)-b-poly(L-lysine)
PS-b-PMAA Poly(styrene)-b-poly(methacrylic acid)
PSS Poly(sodium 4-styrenesulfonate)
RAFT Reversible Addition-Fragmentation Chain Transfer
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225. Adamczyk, Z.; Bratek, A.; Szeląg, E.; Bastrzyk, A.; Michna, A.; Barbasz, J. Colloid Particle Deposition on Heterogeneous Surfaces

Produced by Polyelectrolyte Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2009, 343, 111–117. [CrossRef]
226. Deane, O.J.; Jennings, J.; Neal, T.J.; Musa, O.M.; Fernyhough, A.; Armes, S.P. Synthesis and Aqueous Solution Properties of

Shape-Shifting Stimulus-Responsive Diblock Copolymer Nano-Objects. Chem. Mater. 2021, 33, 7767–7779. [CrossRef]
227. Willet, N.; Gohy, J.-F.; Auvray, L.; Varshney, S.; Jérôme, R.; Leyh, B. Core−Shell−Corona Micelles by PS-b-P2VP-b-PEO

Copolymers: Focus on the Water-Induced Micellization Process. Langmuir 2008, 24, 3009–3015. [CrossRef]
228. Gröschel, A.H.; Müller, A.H.E. Self-Assembly Concepts for Multicompartment Nanostructures. Nanoscale 2015, 7, 11841–11876.

[CrossRef]
229. Van Butsele, K.; Cajot, S.; Van Vlierberghe, S.; Dubruel, P.; Passirani, C.; Benoit, J.-P.; Jérôme, R.; Jérôme, C. PH-Responsive

Flower-Type Micelles Formed by a Biotinylated Poly(2-Vinylpyridine)-Block-Poly(Ethylene Oxide)-Block-Poly(ε-Caprolactone)
Triblock Copolymer. Adv. Funct. Mater. 2009, 19, 1416–1425. [CrossRef]

230. Phimphachanh, A.; Chamieh, J.; Leclercq, L.; Harrisson, S.; Destarac, M.; Lacroix-Desmazes, P.; Gérardin, C.; In, M.; Cottet, H.
Characterization of Diblock Copolymers by Capillary Electrophoresis: From Electrophoretic Mobility Distribution to Distribution
of Composition. Macromolecules 2020, 53, 334–345. [CrossRef]

231. Molina, E.; Warnant, J.; Mathonnat, M.; Bathfield, M.; In, M.; Laurencin, D.; Jérôme, C.; Lacroix-Desmazes, P.; Marcotte, N.;
Gérardin, C. Drug–Polymer Electrostatic Complexes as New Structuring Agents for the Formation of Drug-Loaded Ordered
Mesoporous Silica. Langmuir 2015, 31, 12839–12844. [CrossRef]

232. Molina, E.; Mathonnat, M.; Richard, J.; Lacroix-Desmazes, P.; In, M.; Dieudonné, P.; Cacciaguerra, T.; Gérardin, C.; Marcotte,
N. PH-Mediated Control over the Mesostructure of Ordered Mesoporous Materials Templated by Polyion Complex Micelles.
Beilstein J. Nanotechnol. 2019, 10, 144–156. [CrossRef]

233. Yu, H.; Qiu, X.; Moreno, N.; Ma, Z.; Calo, V.M.; Nunes, S.P.; Peinemann, K.-V. Self-Assembled Asymmetric Block Copolymer
Membranes: Bridging the Gap from Ultra- to Nanofiltration. Angew. Chem. Int. Ed. 2015, 54, 13937–13941. [CrossRef] [PubMed]

234. Zhang, Y.; Sargent, J.L.; Boudouris, B.W.; Phillip, W.A. Nanoporous Membranes Generated from Self-Assembled Block Polymer
Precursors: Quo Vadis? J. Appl. Polym. Sci. 2015, 132. [CrossRef]

235. Gu, Y.; Wiesner, U. Tailoring Pore Size of Graded Mesoporous Block Copolymer Membranes: Moving from Ultrafiltration toward
Nanofiltration. Macromolecules 2015, 48, 6153–6159. [CrossRef]

236. Schacher, F.; Rudolph, T.; Wieberger, F.; Ulbricht, M.; Müller, A.H.E. Double Stimuli-Responsive Ultrafiltration Membranes
from Polystyrene-Block-Poly(N,N-Dimethylaminoethyl Methacrylate) Diblock Copolymers. ACS Appl. Mater. Interfaces 2009,
1, 1492–1503. [CrossRef]

237. Kaner, P.; Bengani-Lutz, P.; Sadeghi, I.; Asatekin, A. Responsive Filtration Membranes by Polymer Self-Assembly. Technology 2016,
04, 217–228. [CrossRef]

238. Nghiem, T.-L.; Löbling, T.I.; Gröschel, A.H. Supracolloidal Chains of Patchy Micelles in Water. Polym. Chem. 2018, 9, 1583–1592.
[CrossRef]

239. Guennouni, Z.; Cousin, F.; Fauré, M.-C.; Perrin, P.; Limagne, D.; Konovalov, O.; Goldmann, M. Self-Organization of
Polystyrene-b-Polyacrylic Acid (PS-b-PAA) Monolayer at the Air/Water Interface: A Process Driven by the Release of the Solvent
Spreading. Langmuir 2016, 32, 1971–1980. [CrossRef]
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