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Risk Stratification and Biomarkers

Cardiovascular diseases (CVDs) still represent the most common cause of 
morbidity and mortality worldwide, despite the impressive improvements 
in patient prognosis achieved in the last decades through several 
innovations in the diagnosis and management of a broad spectrum of 
CVDs.1–7 Nonetheless, the growing prevalence of cardiovascular risk 
factors and the better prognosis of patients with CVDs has resulted in an 
increase in the global CVD burden.8,9 This evolving epidemiologic pattern 
raises important socioeconomic issues.

Indeed, preventive measures are pivotal in limiting the risk of onset and 
progression of CVDs, but their safe and effective implementation largely 
relies on the precise identification of the patients at risk. In addition, the 
significant costs and potential side-effects of new drugs and devices, 
which have been shown to improve patients’ prognosis, require careful 
consideration of the possible benefits that any patients could derive from 
their use. Bearing this in mind, the need for accurate prediction models in 
the cardiovascular field is more relevant than ever.

The most used approach in this field is still based on regression models, 
which help to predict the occurrence of adverse events and elucidate the 
relationship between specific variables and disease course.10 The use of 
regression techniques, thanks also to their optimisation (e.g. forward or 

backward stepwise selection of variables), has been pivotal in identifying 
and characterising the impact of demographic features, comorbidities 
and biomarkers in the pathogenesis and progression of CVDs, as well as 
in the development of the risk models widely used as prediction tools.11–13

Nonetheless, regression techniques, such as logistic or Cox regression 
models, are based on assumptions that could limit their use or reliability 
in specific settings, such as the assumed linear and homogeneous 
relationship between variables and outcomes and the need for the pre-
selection of variables on the basis of prior hypotheses.14,15 Notably, these 
premises could hinder the use of regression techniques in the case of 
complex diseases, which are commonly characterised by a tangled 
interplay between potential predictors and clinical outcome. In this 
context, the use of algorithms based on artificial intelligence (AI) is 
gradually spreading in the field of cardiovascular research. Under the 
umbrella represented by the term ‘AI’ lie several different algorithms 
characterised by specific properties, which in turn influence their 
applicability according to the study population, the available variables, 
and the outcome of interest. Despite the rapid expansion of their use in 
cardiovascular research (Figure 1) and in daily patient care, the questions 
of how AI algorithms work and how they are built and validated remain 
unclear or blurred to the vast majority of clinicians. The aim of the present 

Artificial Intelligence and Cardiovascular Risk 
Prediction: All That Glitters is not Gold

Mauro Chiarito ,1,2 Luca Luceri ,3 Angelo Oliva ,1,4 Giulio Stefanini 1,4 and Gianluigi Condorelli 1,4

1. Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; 2. Center for Interventional Cardiovascular 
Research and Clinical Trials, The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, 

US; 3. Institute of Information Systems and Networking, University of Applied Sciences and Arts of Southern Switzerland, Lugano, Switzerland; 
4. Cardio Center, Humanitas Research Hospital IRCCS, Rozzano, Milan, Italy

Abstract
Artificial intelligence (AI) is a broad term referring to any automated systems that need ‘intelligence’ to carry out specific tasks. During the last 
decade, AI-based techniques have been gaining popularity in a vast range of biomedical fields, including the cardiovascular setting. Indeed, 
the dissemination of cardiovascular risk factors and the better prognosis of patients experiencing cardiovascular events resulted in an increase 
in the prevalence of cardiovascular disease (CVD), eliciting the need for precise identification of patients at increased risk for development and 
progression of CVD. AI-based predictive models may overcome some of the limitations that hinder the performance of classic regression models. 
Nonetheless, the successful application of AI in this field requires knowledge of the potential pitfalls of the AI techniques, to guarantee their safe 
and effective use in daily clinical practice. The aim of the present review is to summarise the pros and cons of different AI methods and their 
potential application in the cardiovascular field, with a focus on the development of predictive models and risk assessment tools.

Keywords
Artificial intelligence, machine learning, cardiovascular disease, risk prediction

Disclosure: GS reports grants from Boston Scientific and consulting fees from Abbott Vascular, Boston Scientific and Pfizer/BMS. All other authors have no conflicts of 
interest to declare.
Received: 1 March 2022 Accepted: 30 June 2022 Citation: European Cardiology Review 2022;17:e29. DOI: https://doi.org/10.15420/ecr.2022.11
Correspondence: Gianluigi Condorelli, Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini, 4, 20090 Pieve Emanuele, Milan, Italy. 
E: gianluigi.condorelli@hunimed.eu

Open Access: This work is open access under the CC-BY-NC 4.0 License which allows users to copy, redistribute and make derivative works for non-commercial 
purposes, provided the original work is cited correctly.



Artificial Intelligence for Cardiovascular Risk prediction

EUROPEAN CARDIOLOGY REVIEW
www.ECRjournal.com

review is to provide an introduction to the most common AI algorithms, 
the benefits that could be derived from their use in place of the classic 
regression methods, and their potential pitfalls, with a specific focus on 
the use of AI for risk prediction in CVD.

Limitations of Regression Techniques
Biomedical research, including the cardiovascular field, has used classic 
statistical methods for decades. Regression techniques remain the 
mainstay in the search for predictive variables able to explain the 
occurrence of cardiovascular events, such as MI or HF hospitalisation, 
with the final aim of identifying patients at the highest risk of a specific 
outcome based on the presence of such variables. Similarly, some of the 
most widespread risk scores for the prediction of cardiovascular adverse 
events have been developed using logistic or Cox regression analysis. 
However, the reliability of regression models might be reduced by some 
of the assumptions they are based on.

These models usually include a limited number of easily available 
variables associated with the occurrence of the event. The first step in the 
development of a predictive model of dichotomous outcomes based on 
regression techniques is the selection of candidate variables to be 
included in the model. This selection is based on prior hypotheses and, in 
part, on the availability and cost of candidate variables. The regression 
model determines the parameters (or weights) of the candidate variables 
(independent variables), the combination of which enables the prediction 
of the outcome (dependent variable). After the predictors of the adverse 
event are derived by multivariate logistic or Cox regression analysis, a 

weighted risk score might be derived, commonly by summing the integer 
assigned to each variable based on a coefficient derived from the model. 
The strength of the association between risk factors and adverse events 
is then reported in a clinically interpretable way (e.g. odds ratio, relative 
risk or hazard ratio).

In the case of continuous outcomes, linear regression models assume 
that the relationship between a risk factor and an outcome is linear. The 
assumption of linearity is plausible for many risk factors and cardiovascular 
events, such as glycated haemoglobin or smoking pack years. 
Nonetheless, it is an oversimplification in the case of many other risk 
factors, such as in the case of the J-like relationship between blood 
pressure and cardiovascular and all-cause mortality.16,17

Another potential limitation of regression models is related to the common 
occurrence of interactions between variables in complex scenarios, which 
arises when the relationship between the risk factor and the outcome is 
modified by the presence (or the value) of other variables. In fact, 
regression models could only partially account for the heterogeneity of 
effect of a risk factor related to its interaction with other features. Last, the 
choice of candidate variables may represent another critical challenge in 
the development of a regression model. Appropriate selection not only 
requires statistical knowledge, but it also relies on clinical, biological and 
epidemiological evaluation. Moreover, the inclusion of many predictors, 
especially in the case of rare events, could lead to the overfitting problem, 
which refers to the scenario in which the model fits well on a training 
dataset but does not generalise to unseen data, thus leading to poor 
predictions in the validation dataset. A rule of thumb, commonly referred 
to as the ‘one in ten rule’, is widely used to suggest how many predictor 
variables can be included in hazard models in survival analysis and logistic 
regression, in order to limit the risk of overfitting.

In contrast, AI algorithms could potentially overcome some of these 
limitations. For instance, when the aim of a study is to predict the 
occurrence of MI, without any focus on the strength of the association 
between potential risk factors and the event, a machine learning algorithm 
can better model complex non-linear relationships between predictors 
and the outcome than classic regression models. AI methods allow for a 
hypothesis-free and data-driven approach, suitable when the final aim is 
to discover common features or differences in metabolomic patterns, 
patient risk profile, or to guide a tailored approach in terms of drug or 
device and, in turn, improve healthcare delivery taking into account cost-
effectiveness issues.

Artificial Intelligence, Machine and Deep Learning
AI is the general term referring to automated systems capable of carrying 
out tasks that need ‘intelligence’. Machine learning is instead a more 
specific definition used to describe the process of developing systems 
with the ability to process and learn from data to extract meaningful 
patterns (unsupervised machine learning) and/or produce an output 
(supervised machine learning). The output can generally take the form of 
a continuous variable (i.e. regression task) or a class label (i.e. classification 
task), depending on the specific machine learning method and predictive 
task (Figure 1). Examples of output are predictive models that categorise 
different images in risk classes or infer the occurrence of a disease (Table 
1). In many cases (see below), the development of a predictive model 
requires that the dataset includes the output (or target variable), which is 
the outcome that the model is learning to predict. For instance, in the 
case of a model with the aim of predicting the occurrence of MI, the label 
is the occurrence of the event (positive class) or the absence of the event 

Figure 1: Main Features Defining Machine 
Learning Algorithms and Issues That Could 
Influence Their Predictive Performance.
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(negative class).18 The input variables, such as demographic characteristics, 
comorbidities in a population, or specific components of an image, are 
referred to as features or attributes. Irrespective of the specific method 
applied, the development of a predictive model through machine learning 
requires a development dataset and a validation dataset. The development 
dataset is used for training the model and to adjust model parameters, 
which are the internal values of the model derived by the algorithm in the 
training phase, such as the weights assigned to the coefficients in a 

regression model, in order to best match the model output with the 
reference represented by the label (e.g. the occurrence of MI). 
Hyperparameters are instead parameters established a priori, before the 
model is trained, that are tied with the model mechanics, for example the 
topology of a neural network, and can influence the learning process as 
well as the accuracy of the model. The adjustment of hyperparameters to 
achieve an optimal configuration, and thus the best predictive accuracy, is 
defined as hyperparameter tuning and is performed by iteratively testing 

Table 1. Overview of Machine Learning Algorithms Applied in Cardiovascular Disease

ML 
Algorithm Description Example 

Study Year PMID Study objective Sample size Results

Supervised 
ML methods LASSO

Penalised logistic 
regression that adds 
a penalty to the 
coefficient equal to 
the absolute value of 
its magnitude

Eggers et al.22 2021 33831096

To identify sex-specific 
circulating biomarkers 
and evaluate subsequent 
association with adverse 
events and mortality in 
patients with MI

175 circulating 
biomarkers in 856 men 
and 243 women 
admitted for MI

34 biomarkers involved in 
the progression of 
coronary atherosclerosis, 
plaque rupture and acute 
MI identified to be 
discriminative with respect 
to sex (c-statistic, 0.972)

CART

Decision-tree-based 
algorithm that 
generates a 
predictive binary tree 
for classification or 
regression in which 
splitting rules are 
used to predict the 
outcome

Reddy et al.24 2018 29792299

To develop and validate 
a diagnostic score 
combining clinical and 
echocardiographic data 
to estimate the likelihood 
of HFpEF diagnosis in 
patients with dyspnoea.

414 patients (267 with 
HFpEF and 147 controls) 
in the derivation cohort; 
100 patients (61 with 
HFpEF) in the validation 
cohort

CART model was more 
predictive than the logistic 
regression derived H2FPEF 
score, with a significantly 
increased AUC of 0.883 
(p=0.002)

Random 
forest

Bagging algorithm 
that operates by 
constructing a 
multitude of weak 
decision trees in 
parallel and makes 
predictions based on 
majority vote

Marcinkiewicz-
Siemion et al.29 2020 31924803

To identify a novel 
diagnostic panel of 
untargeted serum 
metabolites for the 
detection of HF

Serum samples 
fingerprinted by liquid 
chromatography-mass 
spectrometry from 67 
patients with HFrEF 
and 39 controls

A panel of 8 metabolites 
were identified, 
demonstrating a predictive 
value in HFrEF comparable 
to BNP (0.85 versus 0.82)

LogitBoost

Boosting algorithm 
that derives a single 
strong classifier by 
iteratively adding 
and adjusting weak 
classifiers and 
correcting the 
residual prediction 
errors of previous 
models

Motwani et al.19 2017 27252451

To predict 5-year 
all-cause mortality in 
patients with suspect 
coronary artery disease 
undergoing CCTA

25 clinical and 44 CCTA 
parameters in 10,030 
patients

LogitBoost model had a 
higher AUC (0.79) than the 
Framingham risk score or 
CCTA severity scores for 
predicting 5-year all-cause 
mortality (p<0.001)

Unsupervised 
ML methods K-means

Clustering algorithm 
that allocates data 
points from the study 
population in the 
cluster of the nearest 
centroid

Garcia-Canadilla 
et al.41 2021 35063339

To identify subgroups of 
patients with paediatric 
dilated cardiomyopathy 
associated with different 
risks of death or 
heart-transplant, 
combining clinical and 
echocardiographic data

47 patients with 
paediatric dilated 
cardiomyopathy and 
25 healthy children

5 clusters identified with 
different clinical and 
echocardiographic 
characteristics and 
different proportions of 
death or heart-transplant

Hierarchical 
clustering

Hierarchical clustering 
algorithm that 
sequentially merges 
similar clusters of 
data considering 
measures of distance

He at al.42 2021 33881206

To identify different 
urinary peptide profiles 
in patients with HFrEF, 
HFmrEF and HFpEF 

3,332 urinary peptides 
in 773 patients with HF 
and 773 controls 

577 urinary peptides were 
significantly associated 
with HF. Two clusters were 
identified, with most of the 
patients with HF (65%) 
allocated to cluster 2, 
while 83% of non-HF 
controls were allocated to 
cluster 1

AUC = area under the curve; CART = classification and regression tree; CCTA = coronary CT angiography; HFpEF = heart failure with preserved ejection fraction; HFmrEF = heart failure with mildly 
reduced ejection fraction; HFrEF = Heart failure with reduced ejection fraction; LASSO = least absolute shrinkage and selection operator; ML = machine learning; PMID = PubMed identifier. 
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different hyperparameter configurations. It should be noted that a 
different dataset than the training one – or a subset of the training dataset 
– should be used for tuning the model hyperparameters.

Within the wide spectrum of machine learning approaches, deep learning 
represents one of the most promising techniques. Inspired by biological 
nervous systems, deep learning and, more specifically, deep neural 
networks are a subtype of machine learning methods that use several 
layers of non-linear functions to extract complex relationships embedded 
in the input data to estimate a given output.

The accuracy of predictive models derived by deep and machine learning 
algorithms may be assessed using common and intuitive descriptive 
metrics, such as sensitivity, specificity, positive predictive values and 
negative predictive values, and reported in the form of a receiver 
operating characteristic curve, as well as being expressed with the 
Harrel’s c-statistic. The c-statistic measures how the model discriminates 
between true positive and negative cases, mathematically representing 
the proportion of cases and non-cases discriminated by the model. In 
other words, a high c-statistic is observed only if patients with observed 
events have a higher risk than patients without events. This implies that 
the c-statistic provides less accurate information about the discriminative 
ability of the models for patients who are not at high risk, prompting the 
need for the use of complementary methods to describe the discriminative 
ability of a model in the case of a population that includes a large 
proportion of low-risk patients.

As it is common for the classic regression models, the calibration of the 
model may be presented visually (e.g. with histograms) to report the 
actual observed event rate with the predicted probability of the event.13 
Another option is the Brier score, which expresses the difference between 
events predicted by the model and the actual number of events.19

In the next section, we present some examples of studies evaluating 
machine learning-based prediction models focused on cardiovascular 
events, and describe the main characteristics of some of the most 
common machine learning algorithms, before discussing the pros and 
cons of the use of these potentially breakthrough methods in the CVD 
field.

Artificial Intelligence and Cardiovascular Disease
Machine learning techniques are gaining popularity in a broad range of 
medical domains, including the cardiovascular field. Many experts 
advocate for the use of machine learning techniques for prediction 
models in the CVD setting, given that CVD represents a classic example of 
complex disease requiring accurate prediction models that could benefit 
from the use of pattern recognition methods, especially in the subset of 
cardiovascular imaging. In light of the epidemiologic relevance of 
ischemic cardiovascular events, mainly MI, HF onset and its related 
hospitalisation, and cardiovascular mortality, a large number of machine 
learning-based prediction models have been developed to predict their 
occurrence. Thus, there has been an increasing interest in AI with regard 
to diagnostic modalities, outcome prediction, and management of these 
patients during the last decade.20,21 Based on the required learning task 
and availability of the target variable (e.g. labels), and of the required 
learning task, machine learning algorithms are mainly categorised into 
two main classes, supervised and unsupervised learning algorithms 
(Figure 2), which we detail in the next sections, along with some scenarios 
of applications in the cardiovascular domain.

Supervised Learning
Supervised machine learning uses labelled data to develop models to 
determine a relationship between the input data and their associated 
label, with the final goal of constructing an algorithm that is able, for 
instance, to predict the occurrence of an outcome or to classify images 
according to a reference. Examples of supervised learning are listed in 
Table 1. These algorithms could be based on traditional regression 
techniques. Indeed, stepwise (forwards or backwards) selection is an 
example of simple supervised learning, which iteratively looks for the best 
subset of variables to be included in the regression model and is extremely 
helpful when the volume of potential predictors is large.

Other examples of supervised learning are represented by the so-called 
regularisation methods, such as the least absolute shrinkage and 
selection operator (LASSO) and ridge regression. Regularisation helps to 
avoid overfitting, by adding a penalty to the sum of the coefficients in 
order to limit the influence of predictor variables over the outcome, based 
on shrinkage of the regression coefficients towards a central point. 
Notably, this shrinkage results in altered regression estimates, which 
must not be used to infer the association of the predictors with the 
outcome. This disadvantage is counterbalanced by the possibility of 
obtaining a more stable model with improved predictive ability, especially 
when validated using external datasets. The difference between LASSO 
and ridge regression is related to the way shrinkage is performed. Ridge 
regression shrinks the regression coefficients by a similar amount, 
whereas LASSO regression adds a penalty to the coefficient equal to the 
absolute value of its magnitude. The larger the penalty, the greater the 
number of coefficients that could become zero and be eliminated from 
the model. In this case, tuning consists of a type of variable selection and 
specifically the amount of shrinkage, reported as λ: if λ is equal to 0, no 
parameters are eliminated and the coefficient is essentially equal to the 
one found with logistic regression; conversely, as λ increases, more 
coefficients will reach zero and will be eliminated, resulting in a model 
with increased bias and reduced variance. In other words, in the case of 
regularisation techniques tuning consists of the choice of the optimal 
penalty.

As a practical example of this approach, Eggers et al. evaluated potential 
sex differences in the concentrations of a large panel of biomarkers and 
their impact on subsequent adverse events and mortality in patients 
admitted for MI and enrolled in the SWEDEHEART registry. LASSO 
regression was used to select the biomarkers that discriminated both 
sexes, with a high c-statistic (0.972), and aided in the identification of sex-
specific biomarkers involved in the progression of coronary 
atherosclerosis, plaque rupture and acute MI.22 LASSO regression was 
also used by Kang et al. to select the risk factors for coronary microvascular 
dysfunction in a small prospective study of patients presenting with MI 
and undergoing percutaneous coronary intervention (n=116). LASSO 
regression enabled the selection of 5 out of 46 variables that were 
associated with the occurrence of coronary microvascular dysfunction, 
with high discrimination (c-statistic = 0.809).23

Other examples of supervised machine learning include classification 
tasks, for instance, to classify images, cellular pathways and complex 
systems. Different machine learning algorithms could be trained for this 
purpose, such as decision trees, support vector machines, or artificial 
neural networks. Boosting (e.g. AdaBoost) and bagging (e.g. random 
forest) represent ensemble learning methods that enable the development 
of strong classification models from a number of weak classifiers (e.g. 
decision trees). In brief, boosting algorithms work by sequentially adding 
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models that correct the residual prediction errors of previous models, 
while bagging approaches build several weak classifiers in parallel and 
make predictions based on a majority vote. The prespecified number of 
models represents a hyperparameter, which should be opportunely tuned 
to avoid overfitting. Motwani et al. used a boosting approach, specifically 
a LogitBoost algorithm, with 25 clinical and 44 coronary CT angiography 
parameters from 10,030 patients with suspected coronary artery disease, 
to develop a model to predict 5-year mortality. The study showed that the 
machine learning-based model had a higher area under the curve (AUC) 
than the widely used Framingham risk score or CT angiography severity 
scores alone.19 Similarly, echocardiography variables have been 
incorporated in a machine learning model, developed by Reddy et al., to 
derive a risk score for the diagnosis of HF with preserved ejection fraction 
(HFpEF) in symptomatic patients.24 Using a classification and regression 
tree, echocardiographic E/e′ ratio >9 and pulmonary artery systolic 
pressure >35 mmHg were combined with other clinical variables to derive 
the H2FPEF score in a cohort of 414 patients. When the risk score was 
tested in 100 consecutive patients, the H2FPEF score had an AUC of 0.841 
for the diagnosis of HFpEF and outperformed the European Society of 
Cardiology’s 2016 algorithm for HFpEF detection (which had an AUC of 
0.672).24 As well as their use in the development of predictive tools, 
supervised learning algorithms have also been shown to improve the 
diagnostic accuracy of different imaging techniques. For instance, 
Betancur et al. reported that support vector machines enable automatic 
and accurate localisation of the mitral valve plane during segmentation of 
the left ventricle for single-photon emission CT (SPECT) myocardial 
perfusion imaging, potentially resulting in reduced user dependence in 
this setting.25 Similarly, Arsanjani et al. showed how combining data from 
myocardial perfusion SPECT and clinical features in a LogitBoost algorithm 
might significantly improve the diagnostic performance of myocardial 
perfusion SPECT in comparison with expert evaluation.26

Another example of the use of supervised learning in cardiovascular 
medicine is represented by in silico model. In brief, in silico models apply 

computational models and simulations to replicate human anatomy and 
physiology. One of the main advantages of a verified and validated in 
silico model stems from the ability to simulate countless iterations of a 
physiological process using variations in anatomy, physiological state 
and/or intervention. In other words, the in silico environment enables the 
analysis of aspects of biology that would otherwise never be possible. In 
contrast to in vivo clinical testing, in which a single test usually results in a 
single outcome, the output of a single simulation can yield many different 
output fields, such as the displacement and stress and strain of deformable 
structural parts and velocities and pressures for fluids. Indeed, one of the 
most relevant applications of in silico models in the cardiovascular setting 
is the study of the haemodynamics of the native and bioprosthetic heart 
valve.27 For instance, Rocatello et al. used patient-specific computer 
simulations based on finite-element analysis to evaluate the effect of 
maximum contact pressure on the membranous septum in patients 
undergoing transcatheter aortic valve replacement (TAVR) on the risk of 
new conduction abnormalities. The authors found that contact pressure 
and the area undergoing contact pressure, but not the depth of valve 
implantation, were associated with the occurrence of new conduction 
abnormalities after CoreValve/Evolut R implantation.28

Machine learning approaches have also been applied to untargeted 
metabolomics analysis, in order to overcome limitations related to 
established HF biomarkers such as brain natriuretic peptide (BNP), 
N-terminal pro-BNP (NT-proBNP) and suppression of tumorigenicity 2 
(ST2). Marcinkiewicz-Siemion et al. used random forest models to select a 
limited number of metabolites to develop a practical diagnostic panel for 
HF with reduced ejection fraction (HFrEF), evaluated in a cohort of 67 
patients with HFrEF and 39 healthy matched controls. The accuracy of the 
model based on the eight selected metabolites did not outperform BNP 
alone in the prediction of HFrEF (AUC 0.82 versus 0.85), but the study 
demonstrated that the combination of metabolomics and machine-
learning methods enables the identification of novel diagnostic panels.29

Machine learning models and multiple risk calculation scoring systems 

Figure 2: Main Applications of Machine Learning Methods in the Cardiovascular Setting.
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have been developed for early detection of mortality risk in patients with 
HF, in order to help clinicians target subsequent interventions. In 2015, 
Panahiazar et al. compared different machine learning models with the 
Seattle HF model (SHFM), a well-established model for HF survival risk. 
Using characteristics from electronic health records of 1,560 patients with 
HFrEF, the authors trained their model using different algorithms (random 
forest, logistic regression, support vector regression, decision tree and 
AdaBoost). Compared with the SHFM, their model resulted in improved 
performance for predicting 1-, 2-, and 5-year survival, with an improvement 
in the AUC of 11%; of note, logistic regression and random forest were the 
most accurate approaches.30 Similarly, Samad et al. incorporated clinical 
variables, ejection fraction and echocardiographic measurements from 
171,150 patients into different predictive models developed with logistic 
regression, support vector machines, gradient boosting trees, 
classification and regression tree, AdaBoost and random forest.31 The 
random forest model achieved significantly higher prediction accuracy 
(AUC >0.82), outperforming logistic regression and conventional risk 
scores such as the SHFM. Incorporating echocardiographic measurements 
significantly improved the prediction accuracy of the random forest 
model, with six out of the 10 most important variables derived from 
echocardiography. Recently, Adler et al. reported MARKER-HF, a machine 
learning-derived risk score for prediction of mortality, trained in a cohort 
of 5,822 patients with HF.32 Including eight clinical variables, the risk 
score accurately discriminated between patients at low and high risk of 
death and had an AUC of 0.88, higher than other conventional risk scores. 
MARKER-HF was subsequently used to predict mortality risk in a cohort of 
4,064 patients categorised as having reduced, mid-range or preserved 
left ventricular ejection fraction (LVEF).33 The risk score was more accurate 
than LVEF in all three HF categories, with c-statistics ranging between 
0.83 and 0.89. Considering the high impact of re-hospitalisations in terms 
of healthcare system costs, poor quality of life and prognosis, predictive 
models have been developed to predict the risk of future hospitalisation. 
For example, Frizzell et al. evaluated machine learning approaches for the 
prediction of HF readmission in 56,477 patients; of the multiple algorithms, 
none performed better in the prediction of 30-day readmission than 
logistic regression, although it had limited performance, with an AUC of 
0.624.34 Other competitive models have been developed but accurate 
prediction of early readmission for HF remains challenging.35 In order to 
define the overall predictive performance of machine learning models in 
HF prognosis, Shin et al. performed a meta-analysis of 20 studies with 
686,842 patients.36 The authors reported better discrimination and 
accuracy for machine learning models than conventional statistical 
models with regard to the prediction of mortality and re-hospitalisation in 
patients with HF.

For diagnostic purposes, machine learning-based methods aim to 
improve diagnosis using ECGs, echocardiography, electronic health 
records, serum metabolites and other sources. Indeed, applying AI to ECG 
enables improvement of the diagnostic accuracy based on standard ECG 
evaluation. A large number of studies have reported how supervised 
learning techniques might help to identify episodic AF from an ECG 
acquired during sinus rhythm, as well as left ventricular dysfunction, 
valvular heart disease, or hypertrophic cardiomyopathy. Attia et al. used a 
convolutional neural network to develop a model to detect the signature 
of AF in ECGs recorded during sinus rhythm. The model was developed 
and internally validated from a sample of 649,931 normal sinus rhythm 
ECGs and was found to have a high predictive ability (AUC of 0.90).37 The 
same group developed a convolutional neural network to identify patients 
with ventricular dysfunction, defined as ejection fraction ≤35%, using ECG 
data alone.38 The model was trained retrospectively using pairs of 12-lead 

ECGs and echocardiogram data from 44,959 patients and subsequently 
tested on an independent set of 52,870 patients. The model predicted the 
presence of ventricular dysfunction with an AUC of 0.93 and sensitivity, 
specificity and accuracy of 86.3%, 85.7% and 85.7%, respectively. In 
patients without ventricular dysfunction, those with a positive AI screen 
had a fourfold higher risk of developing ventricular dysfunction than those 
with a negative screen.

Given the fundamental role of echocardiography in the diagnosis, 
classification and follow-up of HF, and the great ability of machine learning 
methods in medical imaging processing and analysis, the applications of 
AI to echocardiography represent another promising field. In 2018, Zhang 
et al. developed a convolutional neural network trained with 14,035 
echocardiograms to determine ejection fraction, longitudinal strain and to 
detect hypertrophic cardiomyopathy, cardiac amyloidosis and pulmonary 
arterial hypertension. When the model was validated in a set of 8,666 
echocardiograms, it automatically calculated ejection fraction and 
longitudinal strain measurements agreed with manual values with a 
median deviation on a relative scale of 9.7% and 7.5%, respectively; the 
detection of hypertrophic cardiomyopathy, cardiac amyloidosis and 
pulmonary arterial hypertension had a c-statistic of 0.93, 0.87 and 0.85, 
respectively.39 Given that ejection fraction calculation relies on either 
manual or automated identification of endocardial boundaries and this 
approach is still prone to errors, Asch et al. developed a neural network 
algorithm that could circumvent border detection and instead estimate 
the degree of ventricular contraction, like a human expert trained on tens 
of thousands of images.40 The algorithm was developed on a database of 
>50,000 echocardiograms and tested on an independent group of 99 
patients. The model showed high consistency (mean absolute 
deviation = 2.9%) and excellent agreement with the expert-derived values 
(r=0.95) with a sensitivity of 0.90 and specificity of 0.92 for the detection 
of ejection fraction ≤35%.

Unsupervised Learning
In contrast with supervised learning, unsupervised machine learning 
methods are useful for developing models to identify patterns in the input 
data and do not require the presence of labels. This approach enables the 
identification of relationships between features and helps to elucidate 
hidden structures (e.g. patterns or clusters) in a dataset. Typical examples 
of unsupervised algorithms include k-means or hierarchical clustering. 
Neural networks (e.g. convolutional, or recurrent) are also used in an 
unsupervised learning setting. In particular, convolutional neural networks 
stand out for their ability to automatically extract patterns or clusters (even 
those not visible to the human eye) when the goal is to assess complex 
datasets such as genomic, transcriptomic, or proteomic profiles, or 
echocardiography or MRI, or even textual datasets. At this point in time, 
unsupervised algorithms are mainly used in the cardiovascular setting to 
identify groups of patients with similar patterns of presentation. These 
groups are then evaluated to improve risk stratification or provide 
molecular insights into the pathogenesis or progression of CVDs. K-means 
is one of the simplest and most common unsupervised learning algorithms. 
It works by grouping similar data points together with the aim of 
discovering underlying patterns, by looking for a number (k) of clusters in 
the population. The target number of centroids – the supposed or real 
point representing the centre of the cluster – needs to be prespecified. All 
data points are then allocated in the cluster of the nearest centroid. 
Garcia-Canadilla et al. recently evaluated a k-means algorithm to identify 
distinct groups of patients with paediatric idiopathic, genetic, or familial 
dilated cardiomyopathy based on similar echocardiographic and clinical 
patterns. A control cohort of healthy volunteers with no history of 



Artificial Intelligence for Cardiovascular Risk prediction

EUROPEAN CARDIOLOGY REVIEW
www.ECRjournal.com

cardiovascular events and normal physical examination and 
echocardiogram was included. The algorithm identified five distinct 
groups with different rates of death or heart transplant, correctly identified 
healthy controls, and aided in a more precise prognostic stratification of 
affected patients.41 Similarly, He et al. used k-means and hierarchical 
clustering to stratify patients with HFrEF, HF with mildly reduced EF, 
HFpEF and controls matched for demographic features and comorbidities 
based on their urinary peptide profiles. The authors reported remarkable 
differences in multiple urinary peptides between patients with HF and 
matched controls, mainly related to peptides involved in dysregulation of 
collagen turnover and inflammation.42 Lastly, Kariotis et al. used k-means, 
hierarchical and spectral clustering to identify subgroups of patients with 
idiopathic pulmonary hypertension with different transcriptomic and 
clinical feature signatures. The authors identified three major subgroups 
with poor, moderate and good prognosis. Each group had specific 
upregulation or downregulation of several genes, providing important 
insights into the risk stratification and pathogenesis of idiopathic 
pulmonary hypertension.43

Pitfalls of Machine Learning-based Models
The examples in the previous sections clearly show how machine-learning 
models could outperform classic statistical models in terms of calibration 
and discrimination. The number of studies describing the development of 
prediction models in the field of CVD is impressive. Nonetheless, only a 
minority of these models have been subsequently adequately validated. 
A recent review showed that almost two out of three prediction models 
for CVD risk are not validated at all and that external validation is extremely 
infrequent.44 Moreover, there is a paucity of studies reporting comparisons 
between prediction models. Machine learning-based prediction models 
might be affected by these issues too. Indeed, considering the wide 
availability of large datasets, future research should focus on external 
validation and comparison of risk models, in order to provide insights into 
the performance of specific scores in different settings. Of note, validation 
and comparison of both machine learning- and classic regression-based 
models rely on the use of classic statistical techniques, such as the 
c-statistic or area under the receiver operating characteristic curve. While 
the receiver operating characteristic curve represents all of the sensitivity 
and specificity pairs for a model, the c-statistic expresses the probability 
that a randomly selected patient who had an event had a higher risk score 
than a patient who had not had the event and ranges from 0.5 to 1. 
Another metric is the Hosmer–Lemeshow calibration test, which provides 
information on how well the data fit the model, calculating whether the 
observed event rates match the expected event rates.10

Machine learning-based models present similar but also distinct 
limitations. Overfitting and limited generalisability of a model are 
limitations shared by classic regression techniques, but other issues are 
specific to machine learning-based models.

First, many predictive models are used to stratify the risk for the 
occurrence of adverse events at long-term follow-up, but the most widely 
used machine learning models are not able to account for time-to-event 
variations and censored patients, remarkably limiting their performance 
remarkably in this setting. Indeed, Li et al. showed that logistic regression 
and machine learning models that ignored censoring substantially 
underestimated the risk of cardiovascular events when compared with 
Cox proportional hazards models.45

Another limitation relates to the interpretability of some machine learning 
models. An interpretable model is important when machine learning is 

used in critical areas, such as in clinical practice, where an understanding 
of the model’s logic, functionality and results is necessary. Model 
interpretability encompasses both the concept of ‘transparency’, which 
focuses on the understanding of the model and the post-hoc explanation 
of the results, which involves the extraction of information from a learned 
model.46 In this regard, the ‘black box’ concept, which refers to a predictor 
for which the internals are either unknown to the observer or are known 
but are uninterpretable by humans, might also prevent an explanation of 
the predictions.47 For instance, if a high number of variables and 
interactions are used to predict risk in a black box model, the identification 
of specific therapeutic targets can be challenging or impossible. This 
issue could have a different impact based on the specific condition that is 
evaluated: many current therapeutic options for patients with established 
coronary artery disease are largely based on their risk for ischaemic 
events, irrespective of the specific causative risk factors involved in their 
poor prognosis. Hence, the benefit provided by an incremental 
improvement in risk stratification in this setting is represented by the 
possible avoidance of unnecessary treatments in low-risk patients, 
limiting the use of specific therapies to patients at increased risk. 
Conversely, the interpretability issue is more relevant if the aim of the 
model is to predict the occurrence of HF, given that in this case, it is 
necessary to know the relevance of the therapeutic target, in order to 
avoid futile treatment and potential unjustified harm.

Recent studies in the novel field ‘eXplainable AI’ (XAI) have introduced a 
suite of techniques to overcome the limitations of black box models. Such 
techniques aim to produce more explainable models, enabling humans to 
understand and interpret the results, while maintaining high predictive 
performance. One of the most common techniques, referred to as saliency 
masking (SM), tries to explain the outcome of a black box model by 
identifying a subset of the input that is mainly responsible for the 
prediction. The rationale is to explain what a certain model depends on 
locally, instead of trying to understand the full mapping learned by the 
black box. This local explanation aims to predict the response of the 
predictor in the neighbourhood of a given input. For this reason, SM is 
defined as a summarised explanation of where the AI model ‘looks’ to 
make its prediction.48 A suitable example is provided by an image 
classification task, where SM can be used to find the salient part of an 
image most responsible for the model decision.49

Lastly, it should be kept in mind that association does not imply causality. 
Nonetheless, machine learning predictive models could help to classify 
patients in different risk classes and then guide prospective studies aimed 
at identifying causal factors and interactions, in order to determine new 
therapeutic targets.

Conclusion
The use of AI in cardiovascular research and daily patient care is rapidly 
expanding. Machine learning-based models could outperform classic 
regression-based models, although this advantage is potentially lost in 
different settings. An adequate knowledge of the basic concepts of AI is 
pivotal not only to understand and exploit the potential applications of 
these innovative techniques, but also to critically review the literature on 
their use. 
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