
Special Issue: Hormones, Inflammation and Congestive Heart Failure

Hormone treatments in
congestive heart failure

Lei Lei1 and Yuanjie Mao2

Abstract

The common ultimate pathological feature for all cardiovascular diseases, congestive heart failure

(CHF), is now considered as one of the main public health burdens that is associated with grave

implications. Neurohormonal systems play a critical role in cardiovascular homeostasis, patho-

physiology, and cardiovascular diseases. Hormone treatments such as the newly invented dual-

acting drug valsartan/sacubitril are promising candidates for CHF, in addition to the conventional

medications encompassing beta receptor blockers, angiotensin-converting enzyme inhibitors,

angiotensin receptor blockers, and mineralocorticoid receptor antagonists. Clinical trials also

indicate that in CHF patients with low insulin-like growth factor-1 or low thyroid hormone levels,

supplemental treatment with growth hormone or thyroid hormone seems to be cardioprotec-

tive; and in CHF patients with volume overload the vasopressin antagonists can relieve the

symptoms superior to loop diuretics. Furthermore, a combination of selective glucocorticoid

receptor agonist and mineralocorticoid receptor antagonist may be used in patients with diuretic

resistance. Finally, the potential cardiovascular efficacy and safety of incretin-based therapies,

testosterone or estrogen supplementation needs to be prudently evaluated in large-scale clinical

studies. In this review, we briefly discuss the therapeutic effects of several key hormones in CHF.
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Introduction

The common ultimate pathological feature

for all cardiovascular diseases, congestive

heart failure (CHF), is now considered as

one of the main public health burdens that

is associated with grave implications.1 It is

estimated that approximately 5.3 million
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people suffer from CHF (2.5% of adult

Americans) and that approximately $60 bil-

lion per year is spent on the management of

CHF in the US.2,3 Despite advancements in

pharmaceutical treatments and medical

devices for CHF, the long-term mortality

and morbidity of CHF is still unacceptably

high, and the median 5-year survival is

below 50%.4

Neurohormonal systems play a critical

role in cardiovascular homeostasis, patho-

physiology, and cardiovascular diseases. A

large number of studies have established the

crucial role played by the activated sympa-

thetic nervous system in the decompensa-

tory progression of CHF. Meanwhile,

sympathetic suppressants, from peripheral

beta receptor blockers to central sympatho-

lytics that block sympathetic activation, can

mitigate or protect the failing heart.5 In

terms of the parasympathetic nervous

system, vagus nerve afferent activation

from the periphery can modulate efferent

adrenergic and cholinergic neurons central-

ly and cholinergic neurons exert tonic inhi-

bition of adrenergic neuron activation and

of norepinephrine release from nerve termi-

nals.5 Clinically, vagus nerve stimulation

therapy, combined with chronic beta recep-

tor blocker therapy, has been shown to fur-

ther improve left ventricle (LV) function

and reverse remodeling beyond what is

achieved with beta receptor blockers

alone.5,6 Furthermore, endothelin-1 (ET-1)

is the most abundant isoform of endothelin

in the human cardiovascular system and

this peptide induces vasoconstriction

mainly via the endothelin A receptor.7

Experimental studies identified ET-1 as a

regulator of the interaction between sympa-

thetic neurons and cardiac myocytes that

may be of clinical importance.7 However,

nonselective and selective endothelin A

receptor antagonists have not yet been

approved for use due to lack of effective-

ness in clinical trials for CHF.7

The renin–angiotensin–aldosterone
system (RAAS) was the first neurohormon-
al system studied in CHF.8 Overactivation
of the RAAS leads to increased cardiac
injury and vascular endothelial damage,
which predisposes to CHF.8 In addition to
the direct hemodynamic effects, an imbal-
anced RAAS may cause heart dysfunction
through mechanisms including inflamma-
tion, oxidative stress, and cardiac remodel-
ing.8 The crucial finding that blockade of
the RAAS significantly improves survival
of CHF has formed the basis of current
professional guidelines, which uniformly
recommend inhibition of RAAS with an
angiotensin-converting enzyme (ACE)
inhibitor, angiotensin receptor blockers
(ARBs), and/or mineralocorticoid receptor
antagonists (MRAs) as the standard treat-
ment for CHF.8

To date, other hormones such as natri-
uretic peptides, incretins, growth hormone,
vasopressin, glucocorticoids, thyroid hor-
mone, and sex hormones have been inten-
sively studied in an experimental animal
model of CHF and in clinical trials. In
this review, we briefly discuss the current
understanding regarding the therapeutic
effects of these key hormones in CHF.

Natriuretic peptides and
neprilysin

Natriuretic peptides

Natriuretic peptides (NPs), encompassing
atrial natriuretic peptide (ANP), brain
natriuretic peptide (BNP), and C-type
natriuretic peptide (CNP), have demon-
strated beneficial effects in CHF such as
vasodilatation via suppressing the sympa-
thetic activity and the RAAS.9 NPs also
promote natriuresis via inhibiting the reab-
sorption of sodium and water in the distal
and proximal nephron.9 Among the NPs,
ANP is synthesized and secreted in the
atria in response to distension, BNP is
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primarily synthesized and secreted by ven-
tricular myocytes in response to volume
overload-induced ventricular stretch, and
CNP is synthesized by endothelial cells
under the stimulation of acetylcholine,
cytokine receptor agonists, or shear stress.9

Nesiritide is a recombinant human BNP
that has undergone clinical trials in patients
with acute decompensated heart failure
(ADHF). Nesiritide acutely reduced heart
failure symptoms and pulmonary capillary
wedge pressure in these patients.10,11

However, although nesiritide slightly reduced
dyspnea, it did not alter mortality or rehospi-
talization, but significantly increased rates of
hypotension in a large randomized con-
trolled trial.12 One meta-analysis encompass-
ing three randomized controlled trials found
that patients receiving nesiritide treatment
had a trend toward increased 30-day mortal-
ity,13 but this was not confirmed by a later
meta-analysis encompassing seven random-
ized controlled trials.14

Urodilatin, a 32-amino acid peptide that
shares a similar structure to ANP, is differ-
entially processed from pro-ANP.15–17

Secreted by distal renal tubule cells, urodi-
latin decreases sodium and water reabsorp-
tion at the level of the collecting duct.15,18

Ularitide is a synthesized analogue of
human urodilatin. In animal models and
clinical trials, ularitide relieved CHF symp-
toms and preserved renal function.19 In a
phase III clinical study (TRUE-AHF), the
ularitide group had greater reductions
in systolic blood pressure and in levels of
N-terminal pro-BNP than the placebo
group.20 However, short-term treatment
did not affect a clinical composite end-
point or reduce long-term cardiovascular
mortality.19,20

Neprilysin

Neprilysin (NEP) is a neutral endopepti-
dase mainly expressed in the kidneys.21 It
degrades NPs and other vasoactive peptides

such as angiotensin (ANG) II, ET-1, sub-
stance P and bradykinin.21 Consequently,
the net physiological effect of NEP depends
on the balance of its actions on vasodilators
and vasoconstrictors.21 Valsartan/sacubitril
(LCZ696), a combination of a NEP inhibi-
tor (sacubitril) and an ARB (valsartan), is a
newly US Food and Drug Administration
approved drug for CHF.22 In comparison
with enalapril, the PARADIGM trial
showed valsartan/sacubitril reduced cardio-
vascular mortality and rehospitalization in
patients with heart failure with reduced
ejection fraction (HFrEF).22 In patients
with heart failure with preserved ejection
fraction (HFpEF), valsartan/sacubitril also
reduced the N-terminal pro-BNP levels
and improved the patients’ symptoms.22

Therefore, in addition to the conventional
medications such as ACE inhibitors, ARBs,
MRAs, and beta receptor blockers, valsar-
tan/sacubitril is another promising medica-
tion for CHF.22

Incretins

In a blood glucose-dependent manner,
incretins can stimulate the pancreatic secre-
tion of insulin.23 Therefore, incretin-based
therapies are now widely used in patients
with diabetes mellitus, such as glucagon-
like peptide-1 (GLP-1) receptor agonists
and dipeptidyl peptidase (DPP)-4 inhibi-
tors.23 Notably, GLP-1 can act on the
heart and vasculature as well, and its recep-
tors are expressed on cardiomyocytes, cor-
onary smooth muscle cells and endothelial
cells, and human umbilical vein endothelial
cells.24–27

Incretin-based therapies exert cardiopro-
tective effects in animal studies.23 In dogs
with pacing-induced dilated cardiomyopa-
thy (DCM), the administration of recombi-
nant GLP-1, GLP-1 (7-36) or GLP-1 (9-36)
reduced the plasma levels of norepineph-
rine, decreased the LV end-diastolic pres-
sure, heart rate (HR), and systemic
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vascular resistance, and improved LV func-
tion represented by stroke volume (SV),
cardiac output (CO), and the LV dP/dt
values.28,29 In rats with spontaneous hyper-
tension, GLP-1 administered for 3 months
reduced cardiomyocyte apoptosis, preserved
LV contractility, and further improved the
survival rates.30 In pigs with pacing-induced
DCM, administration of a DPP-4 inhibitor
sitagliptin for 3 weeks also increased SV,
reduced HR, and preserved renal function.31

In patients with CHF after myocardial
infarction (MI) or percutaneous coronary
intervention, infusion of GLP-1 improves
both the LV ejection fraction (LVEF) and
wall motion.28,32 In a single-center non-
randomized study, infusion of GLP-1 ago-
nist for 5 weeks improved the LVEF,
oxygen consumption, 6-min walk test
(6MWT) scores, and quality of life in 12
patients with CHF (New York Heart
Association [NYHA] class III/IV).33

However, in a double-blind placebo-con-
trolled trial, infusion of GLP-1 agonist for
48 hours had no significant effect on LV
function in 15 patients with CHF (NYHA
class II–III and LVEF< 40%).34 A long
duration of GLP-1 agonist infusion might
be required to improve heart function.

Compared with these studies, large-scale
clinical trials failed to show the cardiopro-
tective roles for GLP-1 agonists and DPP-4
inhibitors beyond glucose regulation. For
example, the SAVOR-TIMI 53 study is a
randomized trial in patients with a history
of, or those at risk of, cardiovascular
events.35 Within 2.1 years of follow-up, sax-
agliptin did not alter the incidence of car-
diovascular events, whereas it increased the
rates of CHF hospitalization by 27%.35 The
EXAMINE study, another randomized
trial among patients with type 2 diabetes
and a recent history of acute coronary syn-
drome, found that alogliptin had no signif-
icant effect on cardiovascular events during
18-months of follow-up.36 The TECOS
(Trial Evaluating Cardiovascular Outcomes

with Sitagliptin) trial revealed that sitagliptin
had neutral effects on cardiovascular risk and
CHF hospitalization among older patients
with type 2 diabetes and cardiovascular dis-
ease.37 Until other ongoing clinical trials
such as the FIGHT (The Functional Impact
of GLP-1 for Heart Failure Treatment) and
CAROLINA (Cardiovascular Outcome
Study of Linagliptin versus Glimepiride in
Patients with Type 2 Diabetes) studies pub-
lish their results, the clinical benefit of
incretin-based therapies in CHF will remain
unclear.

Growth hormone and ghrelin

Growth hormone

Growth hormone (GH) plays a crucial role
for the maintenance of structure and func-
tion of normal adult hearts.38,39 Since the
myocardium and vessels secrete insulin-like
growth factor-1 (IGF-1)40–42 and express
functional receptors for both GH43–45 and
IGF-1,46,47 it is speculated that GH could
directly act on the cardiovascular system as
well as indirectly via the autocrine/paracrine
effects of IGF-I. GH/IGF-1 can stimulate
cardiac growth and contractility, and regu-
late vascular tone and peripheral resistance.48

In a rat model with ischemic CHF, GH
and IGF-I increased SV and CO.49,50 In
patients with CHF due to ischemia or idio-
pathic DCM, both short-term infusion
and chronic therapy of GH improved
LVEF, CO, and exercise performance.51–53

Additionally, GH treatment in patients
with CHF promoted endothelial function
and nonendothelium-dependent vasodila-
tion,54 and decreased the levels of circulat-
ing cytokines and apoptotic agents.55

However, in other studies in patients with
CHF, although GH treatment significantly
increased IGF-1 levels, it did not improve
cardiac performance.56–58 Meanwhile, in a
further subgroup analysis with those that
had higher serum IGF-I levels in response
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to GH treatment, the LVEF was also sig-
nificantly increased by GH treatment.59

Acquired GH resistance may explain
these controversial results.56 An acquired
GH-resistant state has been described in
CHF, with a typical pattern of high GH
levels and low IGF-1 levels.60 GH levels
were increased three-fold in CHF patients
with significant weight loss compared with
healthy subjects and noncachectic patients;
in contrast, IGF-1 levels were reduced, par-
ticularly in patients with cachexia.61 It has
been shown that GH infusion produced less
cardiovascular beneficial effects in patients
with a lower baseline serum IGF-1.62 In a
meta-analysis including 12 clinical trials,
beneficial effects of GH treatment on
LVEF and exercise parameters correlated
with the extent of increased levels of
serum IGF-1.63 Recently, in a randomized,
single-blind study, only CHF patients with
GH deficiency were selected and treated
with GH for 6 months.64 GH treatment sig-
nificantly increased peak oxygen uptake,
exercise duration, and flow-mediated vaso-
dilation, and improved quality of life.64

Moreover, GH treatment led to a signifi-
cant increase in LVEF and a reduction in
circulating N-terminal pro-BNP levels.64

Hence, the benefit of GH treatment in
selected CHF patients, especially those
with GH deficiency, might be the future
direction; however, these findings need fur-
ther validation in more robust clinical trials.

Ghrelin

Ghrelin, a growth hormone-releasing pep-
tide, is an endogenous ligand of growth hor-
mone secretagogue receptors (GHSRs).65

The high expression of GHSR1a in the
heart and large vessels provides evidence of
its cardiac activity, indicating ghrelin is a
promising new therapeutic agent for cardio-
vascular diseases.66

In rats with chronic heart failure, ghrelin
treatment attenuates the development of

LV remodeling and improves LV dysfunc-

tion as indicated by the increases in CO and

LV fractional shortening.67 Activation of

cardiac sympathetic nervous activity

(SNA) and maladaptive remodeling is also

manifested in ghrelin-deficient mice with

CHF at 2 weeks after MI, accounting for

the high mortality, particularly in cases that

have been caused directly by HF.68,69

Chronic treatment with metoprolol or ghre-

lin, which were associated with cardiac

SNA inhibition and a decrease in plasma

catecholamine levels, improved heart

dysfunction and mortality.68 In patients

with CHF, ghrelin administration signifi-

cantly decreases systemic vascular resis-

tance and increases the CO and SV.70,71

Furthermore, intravenous administration

of ghrelin (2 mg/kg, twice a day for 3

weeks) significantly improved LVEF from

27% to 31% and increased peak workload

and oxygen consumption during exercise,

while dramatically decreasing plasma nor-

epinephrine.72 Taken together, these find-

ings indicate that both exogenous and

endogenous ghrelin are crucial in balancing

the autonomic nervous system, protecting

cardiac function, and improving prognosis

in CHF.73 However, these effects have not

been confirmed by large-scale controlled

clinical trials.

Vasopressin-receptor antagonists

Arginine vasopressin (AVP) is a neurohy-

pophysial hormone secreted from the pos-

terior pituitary in response to decreased

blood pressure and increased plasma osmo-

lality. AVP regulates vascular tone via the

nonosmotic AVP V1a receptor on vascular

smooth muscle cells, and modulates volume

homeostasis via the osmotic AVP V2 recep-

tor on principal cells of the renal collecting

duct.74,75 Further, AVP contributes to car-

diac fibrosis and hypertrophy at the later

stages of CHF.74
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Arginine vasopressin V2 receptor selec-
tive antagonists, like tolvaptan and lixivap-
tan, have been studied in animal and
human CHF.76–79 In patients with CHF
and preserved renal function, single doses
of tolvaptan (30 mg) or furosemide
(80 mg) led to a similar urine output.78

In rats with CHF, tolvaptan dose-
dependently increased the concentration of
plasma sodium, whereas furosemide almost
decreased it.80 Notably, furosemide increased
plasma renin activity and aldosterone con-
centration, whereas tolvaptan did not, imply-
ing that tolvaptan is superior to furosemide
in the treatment of CHF with volume over-
load.80 In addition, without inducing renal
injury, the progression of LV dysfunction
was halted by chronic tolvaptan treatment
in rats with CHF.81 In rats with MI, chronic
tolvaptan treatment also improved LVEF
and reduced MI-induced remodeling such
as macrophage infiltration, interstitial fibro-
sis, and mineralocorticoid receptor (MR)
expression in the LV.82–84 These studies indi-
cated that tolvaptan is cardioprotective for
CHF, which may be mediated by the sup-
pression of the RAAS and inflammation.

However, neither short- nor long-term
morbidity/mortality has been improved by
these agents in large-scale clinical trials. For
example, the ACTIV in CHF trial (Acute
and Chronic Therapeutic Impact of a
Vasopressin Antagonist in Congestive
Heart Failure) evaluated the short- and
intermediate-term effects of tolvaptan in
symptomatic HFrEF patients.85 Compared
with the standard therapy group, the tol-
vaptan therapy group had a lower body
weight and higher net fluid loss.85 Although
it did not affect blood pressure, HR, or elec-
trolytes, tolvaptan did not reduce the exacer-
bation rate of CHF.85 The EVEREST trial
(Efficacy of Vasopressin Antagonism in
Heart Failure Outcome Study with
Tolvaptan) evaluated the short- and long-
term effects of tolvaptan in CHF patients
when added to standard therapy within 48

hours of hospitalization.86 A 60-day tolvap-
tan treatment period symptomatically
improved heart failure without any serious
side-effects, but did not improve mortality.86

The ECLIPSE trial (Effect of Tolvaptan on
Hemodynamic Parameters in Subjects with
Heart Failure) evaluated the hemodynamic
effects of tolvaptan in symptomatic HFrEF
patients.87 Tolvaptan dose-dependently
increased urine output and levels of serum
sodium without changing blood pressure
(BP), HR, pulmonary and systemic vascular
resistance, or cardiac index.87

To explain the discrepancy between basic
studies and clinical trials, as most clinical
trials evaluated the effects of AVP antago-
nists in CHF patients who had been taking
diuretics, these results can be confounded.
Therefore, head-to-head studies are war-
ranted to directly compare the effects of
AVP antagonists with standard diuretics
in the clinical setting.

Glucocorticoids and urocortins

Glucocorticoids

Stresses play a significant role in the
exacerbation and progression of CHF.
Glucocorticoids are the primary hormones
in the response to a vast array of stresses.
The actions of glucocorticoids are mediated
by their glucocorticoid receptors (GR).
In certain cells such as cardiomyocytes,
the MRs may also be activated by
glucocorticoids.88

Acute increases in glucocorticoids can
enhance cardiomyocyte contractility and
promote survival under stresses; whereas
sustained high levels of glucocorticoids
due to chronic stress or therapeutic inter-
vention could be hazardous to the cardio-
vascular system through their systemic and
local effects.88 An association between
supraphysiological levels of glucocorticoids
and the incidence of CHF has been demon-
strated in epidemiological studies.89,90
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Patients who have sustained high levels
of glucocorticoids such as those with
Cushing’s syndrome will develop hyperten-
sion and metabolic syndrome, two well rec-
ognized risk factors for CHF.88 Acute
glucocorticoid administration in healthy
volunteers can reduce heart rate,91 and
chronic use can induce cardiac hypertro-
phy.92–95 The local effects of glucocorti-
coids are mediated by over-activation of
cardiomyocyte MR and cardiomyocyte
GR, both of which lead to metabolic
impairment, and translate into tissue
damage, impairment of exercise capacity,
and worsening symptoms.88 Results from
transgenic mice suggest that GR signaling
in cardiomyocytes is critical for the normal
heart function, while MR signaling partic-
ipates in the development and progression
of heart dysfunction.88 Therefore, a combi-
nation of a selective GR agonist and MR
antagonist might be a new therapeutic
target.

Further, diuretic resistance is very common
in CHF and associated with poor outcomes.
Recent evidence showed that glucocorticoids
may help to overcome diuretic resistance.96,97

In a study in patients with refractory ADHF,
adding prednisone (1 mg/kg per day,
maximum dosage of 60 mg/day) to standard
treatment doubled daily urine output,
and improved CHF symptoms in 80% of
patients.98 In addition, the levels of serum cre-
atinine were reduced in patients who received
prednisone whereas unchanged in patients
who received standard treatment.98

Urocortins

Urocortin 1, 2 and 3 are a group of endog-
enous peptide hormones belonging to the
corticotropin-releasing hormone (CRH)
family.99 The effects of urocortins are medi-
ated by activation of central CRH receptor
1 (CRH-R1) and peripheral CRH-R2.99 It
has been shown that urocortins produce
vasodilation and positive inotropic effects,

and exert cardioprotective effects against
ischemia-reperfusion injury.99 They can
also regulate the sympathetic nervous
system and the RAAS.99 In eight HFrEF
patients, an intravenous urocortin 1 infu-
sion was associated with high adrenocorti-
cotropic hormone and cortisol levels and
no changes in the levels of ANP or ghrelin,
or any significant hemodynamic or renal
effects compared with the placebo
group.100 In eight HFrEF patients (six
with non-ischemic etiology and two with
ischemic cardiomyopathy) who received
low and high doses (25 mg and 100 mg) of
intravenous urocortin 2, the urocortin
group had increases in CO and LVEF that
proportionally correlated with urocortin
dose, accompanied by a reduction in
mean arterial pressure, systemic peripheral
resistance, and cardiac work.101 In a phase
II study, administration of urocortin 3 in
patients with HFrEF (LVEF< 35%)
caused dose-dependent increases in cardiac
index and reduction in systemic vascular
resistance, without any effects on pulmo-
nary capillary wedge pressure, HR or
systolic BP.102 The above reports suggest
that urocortins may be potential therapeu-
tic targets of CHF.

Testosterone and estrogen

Testosterone supplementation

Low testosterone levels are common in men
with CHF and are an independent risk
predictor for decreased exercise capacity
and poor prognosis in these patients.103–105

Furthermore, intravenous testosterone
administration in patients with CHF acutely
reduces peripheral vascular resistance and
increases CO.106 A meta-analysis revealed
that in patients with HFrEF, testosterone
supplementation for 12–52 weeks was asso-
ciated with an increase of exercise capacity
represented by 6MWT;107 although the
sample size was modest and the routes of
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testosterone administration were differ-
ent.108–111 This degree of improvement is
greater than that seen with other therapies
that are currently used for morbidity
and mortality reduction in patients with
CHF such as ACE inhibitors, beta receptor
blockers, and cardiac resynchronization
therapy.112–114 Furthermore, there was an
improvement in NYHA functional class;
35% of patients in the testosterone group
(versus 10% in the placebo group) had an
improvement of at least 1 class.107 However,
this improvement occurred in the absence of
cardiac structure or functional change on
echocardiography; hence the improvement
in exercise capacity was likely achieved via
peripheral mechanisms.115 Nevertheless, tes-
tosterone therapy can cause water and salt
retention and pose a potential safety con-
cern. The TOM (Testosterone in Older
Men with Mobility Limitations) trial was
discontinued early due to significantly
higher cardiovascular events in the testoster-
one group.116

Hormone replacement treatment

Several large-scale clinical trials have been
conducted in examining the effects of post-
menopausal hormone replacement treat-
ment (HRT) on cardiovascular health. For
example, in a primary prevention trial with
16 608 women and a mean of 5.2 years
follow-up, HRT did not reduce the inci-
dence of stroke, coronary heart disease
(CHD), and pulmonary embolism.117 In a
secondary prevention clinical trial in
women with CHD, HRT did not decrease
the cardiovascular events.118 However,
recent studies proposed a timing-related
benefit of HRT on CHD. When HRT was
initiated in younger women (<60 years) and
at an earlier stage of menopause (<10 years
after onset), it reduced the total mortality
and cardiovascular events; but when
HRT was initiated in older women
(>60 years) or at a later stage of menopause

(>10 years after onset), it had no effect or a
possible adverse effect on these end-
points.119–121 A large meta-analysis includ-
ing 23 randomized controlled clinical
trials and 39 000 women confirmed a 32%
reduction of CHD incidence in women ini-
tiating HRT before 60 years of age
and<10 years after menopause.122 This
risk reduction was lost in women older
than 60 years of age or in those for whom
HRT was initiated> 10 years after the men-
opause.122 These results support the timing-
related benefit hypothesis.123 Although
none of these clinical trials examined the
impact of HRT on heart function or dys-
function, its involvement is nearly certain as
ischemia precedes both diastolic and systol-
ic CHF.

Thyroid Hormones

Many critical cardiovascular functions such
as heart contraction, relaxation, and coro-
nary blood flow are regulated by thyroid
hormones.124 The proper balance of thyroid
hormones is necessary to maintain cardio-
vascular homeostasis, as both hyperthy-
roidism and hypothyroidism result in
pathological cardiac conditions.125

A large body of evidence suggests an
increase of cardiovascular events with bor-
derline low thyroid hormones conditions
such as subclinical hypothyroidism,126–130

which were improved after thyroid hor-
mone treatment.129–132 In fact, recent stud-
ies in CHF patients have also shown an
increased mortality with low thyroid func-
tion.133–135 However, this association is
controversial, as one meta-analysis did not
reveal a link136 and two others did.137,138

Moreover, no studies have examined the
effects of thyroid hormone treatment on
mortality in CHF patients.

Notably, the high incidence of borderline
low thyroid hormone conditions implies
that nearly half of CHF patients could
suffer from this condition.128 Animal
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Table 1. Overview of hormone therapeutics in patients with congestive heart failure (CHF).

Hormones

Mechanism of

action

Hemodynamic

effects Clinical outcomes Other notes

Natriuretic

peptides

Natriuresis; vasodi-

latation; sup-

pressing the

sympathetic

activity and the

RAAS9

Reduced pulmo-

nary capillary

wedge pressure;

improved heart

failure

symptoms10,11

Did not alter mortality

or rehospitalization12

Neprilysin inhibitor Neprilysin degrades

natriuretic pepti-

des and other

vasoactive

peptides21

Reduced N-termi-

nal pro-BNP

levels; improved

symptoms22

Reduced cardiovascu-

lar mortality and

rehospitalization22

Incretin-based ther-

apies (GLP-1

receptor ago-

nists and DPP-4

inhibitors)

Incretin acts on

receptors of the

heart and

vasculature23–26

Decreased system-

ic vascular resis-

tance; improved

LV function28,29

Neutral or increased

the rates of CHF

hospitalization35–37

Growth hormone Acts on receptors

of the heart and

vasculature43–47

Promoted cardiac

growth and con-

tractility; regu-

late vascular

tone and periph-

eral resistance48

Unknown Better effects of

GH treatment

on LV function in

selected CHF

patients with GH

deficiency63,64

Ghrelin Receptors in the

heart and large

vessel; SNA

inhibition66

Increased the car-

diac output71,72
Unknown

Vasopressin recep-

tor antagonists

Vasopressin modu-

lates volume

homeostasis;

regulates vascu-

lar tone74,75

Preserved renal

function;

increased urine

output76–81

Not improve in short-

nor long-term mor-

bidity/mortality85–87

Glucocorticoids Via glucocorticoid

receptors88
Promoted cardio-

myocytes con-

tractility; induced

cardiac

hypertrophy88

Cardiovascular

hazardous88–90
Overcome diuretic

resistance96–98

Urocortins Activation of cen-

tral CRH recep-

tors; regulates

the SNA and the

RAAS99

Vasodilation and

positive inotro-

pic

effects99,101,102

Unknown

Testosterone

supplementation

No improvement in

cardiac function

or structure; via

peripheral indi-

rect

mechanisms115

Reduced peripheral

vascular resis-

tance; increased

cardiac output106

Higher cardiovascular

events116

(continued)
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experiments in CHF have indicated that

low cardiac tissue triiodothyronine (T3)

levels may be present even in the back-

ground of normal serum thyroid hor-

mones.139,140 The restoration of cardiac

tissue T3 levels was associated with an

improvement of LV function in rats.139,141

However, the doses of thyroid hormone

treatment needed to fully restore cardiac

tissue T3 levels and improve LV function

resulted in higher than normal levels of

serum thyroid hormone.141 The actual inci-

dence of low cardiac tissue T3 levels in

CHF patients remains unknown.

Future directions

Other hormones have been studied in

patients with CHF that might point to

future directions. For example, serelaxin is

the recombinant form of human relaxin-2, a

naturally occurring peptide hormone that

mediates systemic hemodynamic and renal
adaptive changes during pregnancy.142 In

the RELAX-AHF study, serelaxin was
found to significantly improve symptoms

and signs of ADHF, prevent in-hospital
worsening heart failure, as well as signifi-

cantly improve 180-day cardiovascular

and all-cause mortality after a 48-hour infu-
sion commenced within 16 hours of presen-

tation.142 Sodium-glucose cotransporter-2
(SGLT2) is a protein that facilitates glucose

reabsorption in the kidney.143 SGLT2 inhi-
bition can promote natriuresis and osmotic

diuresis, leading to plasma volume contrac-

tion and reduced preload, and decreases in
blood pressure, arterial stiffness, and after-

load, thereby improving sub-endocardial
blood flow in patients with CHF.143

The EMPA-REG OUTCOME trial demon-
strated that empagliflozin significantly

reduced mortality and heart failure (HF)

hospitalization risk in patients with type 2

Table 1. Continued

Hormones

Mechanism of

action

Hemodynamic

effects Clinical outcomes Other notes

Estrogen

replacement

Via receptors in

cardiovascular

systems

Unclear Reduced the total

mortality and car-

diovascular events

when initiated in

younger women

(<60 years) and

earlier stage of

menopause (<10

years); possible

adverse effect when

initiated in older

women (>60 years)

or later stage of

menopause (>10

years)119–123

Thyroid hormones Via thyroid hor-

mone

receptors124

Improvement of LV

function139,141
Unknown

RAAS, renin–angiotensin-–aldosterone system; BNP, brain natriuretic peptide; GLP-1, glucagon-like peptide-1; DPP-4,

dipeptidyl peptidase-4; LV, left ventricle; GH, growth hormone; SNA, sympathetic nervous activity; CRH, corticotropin

releasing hormone.
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diabetes.144 The CANVAS trial subsequent-
ly reported that canagliflozin treatment
reduced major adverse cardiovascular
events and HF hospitalization risk in
patients with type 2 diabetes using insu-
lin.145 The mechanisms responsible for the
cardioprotective effects of SGLT2 inhibi-
tors remain incompletely understood.143

Large clinical trials with SGLT2 inhibitors
are now investigating the potential use of
SGLT2 inhibition in patients who have
HF with and without type 2 diabetes.

In addition, HFpEF is a form of CHF
where the patients presenting with HF have
a normal LV ejection fraction. Although
approximately 50% of patients with HF
have HFpEF, there is still very little evi-
dence regarding hormone treatments for
HFpEF.146 The findings of some recent
studies are highlighted here. Serelaxin
was well tolerated and effective in relieving
dyspnea and had a similar effect on
short- and long-term outcomes, including
survival improvement in ADHF patients
with HFpEF compared with those with
HFrEF.147 Treatment with a selective endo-
thelin receptor A antagonist in HFpEF
patients increased exercise tolerance but did
not improve any of the secondary
end-points such as LV mass or diastolic
function.148 In patients with pulmonary
hypertension and HFpEF, endothelin recep-
tor blockade may have no beneficial effects
and could even be detrimental in compari-
son with a placebo.149 On the other hand, in
high-risk patients with HFpEF, a strategy of
N-terminal pro-BNP-guided therapy (target
to less than 1000 pg/ml) was not more effec-
tive than the usual care strategy in improv-
ing outcomes.150

Conclusion

The prevalence of CHF has increased in the
past several decades. Despite considerable
advances and innovations in both medica-
tions and medical devices, the prognosis of

CHF remains very poor. There is an unmet
need to develop alternative or additional
treatment modalities. Hormonal imbalance
is a key finding and common feature in
CHF, such as the over-activated RAAS,
which translates into progression of the
underlying disease, development of cardio-

vascular comorbidities, and increases in
major adverse cardiovascular events.
Hormonal modulation is therefore an
important therapeutic strategy for CHF.

An overview of hormone therapeutics
in patients with CHF is summarized in
Table 1.9–12,21–26,28,29,35–37,43–48,63,64,66,71,72,
74–81,85–90,96–99,101,102,106,115,116,119–124,139,141

Among the discussed hormones in this
review, neprilysin inhibitor is a promising
drug candidate for the treatment of CHF
on the top of current conventional medica-
tions. Secondly, by using an approach in the
selection of CHF patients with low IGF-1

levels or low thyroid hormone levels, supple-
mental treatment with GH or thyroid
hormone seems to be reasonable and cardio-
protective. Nonetheless, there have been no
clinical trials examining the long-term effects
of GH or thyroid hormone treatment on car-
diovascular mortality in CHF patients.
Moreover, in the clinical settings of CHF
with volume overload or edematous status,

the AVP antagonists can relieve the symp-
toms without sympathetic system or the
RAAS activation superior to loop diuretics.
A combination of selective GR agonist and
MR antagonist may represent an improved
approach for glucocorticoids in the treatment
of CHF, specifically in patients with diuretic
resistance. Finally, the potential cardiovascu-
lar efficacy and safety of incretin-based ther-
apies, testosterone supplementation, or HRT

needs to be prudently evaluated in large-scale
clinical studies.
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