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Abstract

In the last few decades, utilization of medicinal plants by the pharmaceutical industry has led to 

the identification of many new bioactive compounds. The genus Pterodon, native of the Brazilian 

Flora, is known for the therapeutic properties attributed to its species, which are widely used in 

popular medicine for their anti-inflammatory, anti-rheumatic, tonic, and depurative properties. The 

intrinsic low water solubility of the plant derivatives from the genus, including diterpenes with 

vouacapane skeletons that are partially associated with the pharmacological activities, impairs 

the bioavailability of these bioactive compounds. Recent studies have aimed to encapsulate 

Pterodon products to improve their water solubility, achieve stability, increase their efficacy, and 

allow clinical applications. The purpose of this paper is to review recent research on the use of 

nanotechnology for the development of new products from plant derivatives of the Pterodon genus 

in different types of micro- and nanocarriers. Therapeutic properties of their different products 

are also presented. Finally, an update about the current and future applications of encapsulated 

formulations is provided.
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1. Introduction

The use of plants for medicinal purposes for the treatment of various diseases has occurred 

for thousands of years and the wide structural variability of molecules with biological 

activity has been appreciated more recently [1–3]. The World Health Organization (WHO) 

suggests that developing countries, comprising around 80% of the world population, depend 

on traditional medicine for primary health care [4,5].

In recent years, the search for new natural products has escalated. The number of 

publications for the term “Natural Products” on Pubmed increased from 452 items in 

2000 to more than 5000 in 2021. In addition, plants are of great importance in traditional 

medicine, cosmetics, and homeopathy, although their use goes far beyond the new drugs 

approved by regulatory agencies such as the US Food and Drug Administration (FDA) or 

the Brazilian Health Regulatory Agency (ANVISA) [6]. Plant-derived natural compounds 

are responsible, directly or indirectly, for approximately one-quarter of the drugs currently 

available in the world [7].

Synthesis of chemical entities from plants of medicinal importance has been a valuable 

resource for the development of new drugs [8]. Since these new bioactive compounds 

can be used either directly as therapeutic agents or as prototypes for the development of 

new analogs with improved efficacy or reduced toxicity [9–11]. Examples of commercially 

available plant-derived drugs include salicin (analgesic agent) extracted from Salix spp. 

and later the development of its derivative, the aspirin [12]. Quinine and artemisinin 

and its derivatives (antimalarial), isolated from Cinchona officinalis and Artemisia annua, 
respectively [13,14]; digoxin (muscle relaxant) isolated from Digitalis lanata, used for more 

than 200 years [15,16]; codeine and morphine (analgesic) isolated from opium (Papaver 
somniferum) [17,18]. An antiviral and antitumoral agent, podophyllotoxin, was isolated 

from Podophyllum peltatum [19,20].

The search for new compounds with biological activity is motivated by unmet therapeutic 

needs. Brazil is a particularly rich source of plants that have undiscovered bioactive 

compounds having wide biodiversity. However, the use of naturally derived molecules as 

a source of new medicines also presents some challenges. The isolation, characterization, 

and purification processes can be costly and time-consuming. In addition, the lipophilicity of 

the compounds can impair their use in vivo [21]. This helps to explain why among the 1562 

drugs approved by FDA from 1981 to 2014, 21% were natural product derivatives. However, 

only 4% were used without alteration [6].

The trees of the genus Pterodon are native to, and have an extensive presence in, Brazil. 

Their extracts and oils contain bioactive compounds, subject to ethnopharmacological use 

mainly as anti-rheumatic, pain relief or to treat throat infections and respiratory disorders 
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such as bronchitis [22–24]. The main compounds present in this genus are isoflavones 

and triterpenes found in the wood [25]; alkaloids, saponins, glycosides, and steroids in the 

bark [26–29]; sesquiterpenes, isoflavones, and saponins in the leaves [30–33]; terpenoids of 

furanoditerpenes type, sesquiterpenes, diterpene vouacapanic skeleton in fruit oil [34–40].

Some studies suggest that biological activities of the species of the genus Pterodon are 

directly related to the furan diterpene and sesquiterpene contents [41–43]. Pterodon-derived 

products include oleoresin, an essential oil that can be extracted by cold-pressing and 

hydro-distillation with no use of solvents [34,40,44,45]. Biological activities have been 

ascribed to diterpenes from the fruit, especially the vouacapan skeleton, 6α, 7β-dihydroxy-

vouacapan-17β-oic acid extracted by the Soxhlet method, using solvents like petroleum 

ether [46] hexane [47,48], ethanol [49]. Cold extraction using dichloromethane [39,50] and 

hexane [23,42] were also reported to produce Pterodon extracts.

These extracts are complex mixtures of chemicals that might have associated biological 

properties. A study that evaluated the anti-nociceptive and anti-inflammatory effect, in 

addition to the suppression of B and T lymphocyte response and nitric oxide production, 

suggested the therapeutic potential of the genus in controlling exacerbated cellular and 

humoral immune response in autoimmune diseases and chronic inflammatory processes 

[51,52]. In another study, antinociceptive activity was attributed to geranylgeraniol and 

the diterpene 6α,7β-dihydroxyivouacapan-17 α-methyl-oate isolated from the crude seed 

extract [50]. Analysis of the hydroethanolic extract also demonstrated anti-nociceptive 

activity in acute and chronic pain models [53].

The oleoresins extracted from the fruit include a blend of lipophilic molecules, including 

the volatile and non-volatile fractions, while their essential oils are made up of volatile 

lipophilic substances with antispasmodic and anti-inflammatory actions [41,45,54,55]. 

However, their therapeutic use is still limited by poor water solubility, which results in low 

bioavailability and impairs clinical application. To overcome these problems, formulations 

using micro- and nanotechnology-based systems are being developed (Fig. 1) [56].

Particulate nanocarriers can be used to facilitate the dispersion of lipophilic compounds 

in water, the encapsulation of hydro and/or lipophilic compounds, protection of the 

encapsulated compound against degradation, modification of the drug pharmacokinetics, 

increase in therapeutic efficiency, [57–61]. Recently, studies have shown the promising 

capacity of micro and nanostructured systems as a delivery platform for vegetable 

derivatives extracted from the species of the genus Pterodon, implying the possible extension 

of this approach to other bioactive molecules from the same genus.

2. Pterodon genus

The plants of the genus Pterodon (family Leguminosae/Fabaceae) are native to Brazil 

and popularly known as “Sucupira-branca” or “Faveiro”, classified into four species: 

P. emarginatus Vogel (synonymy Sweetia inornata Mohlenbr.; Acosmium inornatum 
(Mohlenbr.) Yakovlev; P. polygalaeflorus (Benth)); P. pubescens (Benth.) Benth; P. abruptus 
(Moric.) Benth. (synonymy Commilobium abruptum Moric.); P. apparicioi Pedersoli, where 
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the last two are endemic [53,62]. The genus Pterodon comprises aromatic trees growing 6–

18 m tall and may have alternating or opposite leaflets. Their flowers may be pink or violet 

with cryptosmara type fruits with well-developed wings, or not. Present in several Brazilian 

phytogeographic domains, the species are widely distributed in the various North regions 

(Rondônia e Tocantins), Northeast (Bahia, Ceará, Maranhão e Piauí), Midwest (Distrito 

Federal, Goiás, Mato Grosso do Sul e Mato Grosso), and Southeast (Minas Gerais e São 

Paulo) [24, 62].

The literature reports that oils and extracts obtained from fruit or seeds of Pterodon genus 

have a large array of active compounds and are recognized for their therapeutic properties, 

being widely used in popular medicine [24,49]. Furthermore, a growing scientific interest 

is observed not only in biological applications and activities, but also in a search for a 

renewable source of the sample, the seeds, and fruit of Pterodon species, in which the supply 

of drug, extracts or fractions would not be limiting. Moreover, use of native materials is 

sustainable and may improve ecological conservation efforts.

2.1. Phytochemicals

Phytochemical investigations on the extracts and oil of the fruits and seeds of the Pterodon 
species revealed the presence of compounds such as saponins, phenolics, and terpenes 

[63,64]. There are several papers referring also to the isolation of di- and sesquiterpenes 

such as specific compounds of interest within this genus, according to their displayed effects 

and probably related to biological activities [46,65]. Since the various substances in the 

class of terpenes are derived from mevalonic acid, their molecular structures are composed 

of variations of isoprene units (Fig. 2a). Diterpenes contain four isoprene units in their 

basic structure and may be linear (i.e., geranylgeraniol) (Fig. 2b) or cyclic with vouacapanic 

structure (also referred to as furan diterpenes) (Fig. 2c) [66].

Other constituents, still of the terpene class, that have been identified as major 

components in the genus include the sesquiterpenes, with potential antioxidant activities 

and anti-inflammatory properties [36,45, 53,67]. Compounds from the essential oils 

of P. polygalaeflorus seeds, with a basic structure of three isoprene units such as β-

elemene, β-caryophyllene, and α-humulene (Fig. 3) are associated with anti-nociceptive, 

anti-inflammatory, and antispasmodic effects [41,55,68].

2.2. Therapeutic properties

Although the biological effects of this genus are accepted, there is a lack of analytical 

methodologies to isolate and quantify furan diterpenes compared to sesquiterpenes. In 

this scenario, there remains a need to better understand the effects of this complex 

mixtures. Hydroalcoholic extracts from seeds of Pterodon pubescens show an anti-arthritic 

effect related dependent on the presence of furan diterpenoids and sesquiterpenes [69–

71]. Further biological activities were presented for oleaginous extracts obtained from 

Pterodon: antinociceptive [50,51,63,72], anti-inflammatory [23,37,42,73], antileishmanial 

[31] and antimicrobial [30,74]. Some of the bioactive molecules such as β-caryophyllene 

and β-elemene are reported as major constituents in the essential oils of P. emarginatus 
comprising ~35% and 17%, respectively, depending on the plant collection site [34,40,75]. 
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Possible therapeutic targets of these compounds seem associated with suppression of pro-

inflammatory cytokines (IL-1β, TNF-α, IL-6) and cell adhesion molecules (MCP-1) [76–

78].

In the 1960s, studies of the genus Pterodon started when Mors and colleagues demonstrated 

the chemoprophylactic efficacy of the P. pubescens fruit essential oil against Shistosoma 
mansoni cercariae [79]. Later, geranylgeraniol and 14,15-epoxigeranylgeraniol were isolated 

from the fruits of P. pubescens crude oil and the latter demonstrated prophylactic action 

against the trematode that causes schistosomiasis, by inhibiting the penetration of cercariae 

into the skin [80].

Subsequently, studies revealed other activities such as the analgesic effect of 

oleaginous extracts obtained from Pterodon species [81–83]. Vouacapan derivatives 

6α-7β-dihydroxyvouacapan-17β-oate [81], 6α, 7β-Diacetoxyvouacapane [39] and 6α-7β-

Dihydroxyvouacapan-17β-oic acid (DHVA) [43] were previously associated with this 

activity via activation of the catecholaminergic system or the involvement of central and 

peripheral opioidergic mechanisms [72,81]. Oral administration of different doses of DHVA 

(50 and 100 mg/kg) inhibited the second phase of nociceptive behavior of the formalin test, 

which is dependent on peripheral inflammation and changes in central processing [43,84]. 

However, there is no evidence that DHVA has any central anti-nociceptive activities. Other 

than the vouacapan derivatives, linear diterpenes geranylgeraniol and farnesol seem also to 

contribute to their analgesic actions, through modulation of inflammation [82].

The hexane and methanol extracts of the fruits and seeds of Pterodon polygalaeflorus 
showed larvicidal activity against Aedes aegypti [47]. In this study, hexane extracts 

showed the best activity, which could be related to furanic diterpenes such as 

methyl 6α,7β-dihydroxyvouacapan-17β-oate, 6β-hydroxyvouacapan-7β, 17β-lactone, 6α-

acetoxyvouacapane and DHVA [47,85]. Studies of antiproliferative activities in tumor cells 

of crude extracts of Pterodon seeds also were performed [39,49,86]. Furan diterpene rich 

fractions were able to induce DNA fragmentation, cell cycle arrest in the G1 phase, change 

in cyclin D1 and E2-expressing levels, increased cytochrome C release, and apoptosis 

induction in tumor cells [87,88].

The bioactive molecules of the genus Pterodon present in extracts, fractions, as well 

as the isolated compounds of the species are mostly substances with large hydrocarbon 

chains of low polarity with enormous structural diversity (Figs. 2 and 3), features that 

can limit bioavailability. To circumvent this problem, development of pharmaceutical 

nanotechnology-based formulations has been carried out [89]. Delivery systems from 

bioactive natural products are considered promising to increase therapeutic efficacy, mask 

the flavor of plant-derived product and protect it from possible degradation [90–92].

3. Nanotechnology as a drug delivery strategy for encapsulating 

derivatives from the genus Pterodon

Nanotechnology is the manipulation and control of matter on the nanoscale dimension using 

scientific knowledge [93]. It can be applied in several areas since it is a multidisciplinary 
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field, including industrial and biomedical applications [94–96]. One significant challenge in 

developing pharmaceutical products is low water solubility and limited cellular permeability. 

This limitation can be overcome using nanosystems, exemplified by such marketed 

products as the liposomal formulations encapsulating the antitumor drugs daunorubicin 

and cytarabine (Vyxeos®), doxorubicin (Doxil®), vincristine sulfate (Marqibo®), irinotecan 

(Onivyde®) or antifungal amphotericin (AmBisome®, Abelcet®, Amphotec®), as well 

as the polymer-based nanoparticles for encapsulating triptorelin (Trelstar™), certolizumab 

pegol (Cimzia®) and estradiol (Estrasorb®) formulations indicated to treat prostate 

cancer, moderate vasomotor symptoms and autoimmune inflammatory diseases, respectively 

[97,98].

Liposomes and polymer-based nanoparticles are the most advanced in terms of clinical 

translation, cancer therapy being the main application, which may reflect both the levels 

of funding in the area as well as the suitability of nanocarriers for the drug delivery 

of antineoplastic. In addition to the encapsulation of drug molecules, research has 

shown that lipid-based nanoparticles are interesting strategies for the encapsulation of 

oligonucleotides (RNA, mRNA, siRNA, and DNA) for the treatment and prevention of 

various diseases [99,100]. Recently, there was FDA approval for Onpattro®, consisting of 

siRNA encapsulated in lipid nanoparticles for the treatment of polyneuropathy in adults 

with hereditary transthyretin-mediated amyloidosis [101,102]. Given the current situation 

regarding the SARS-CoV-2 pandemic scenario, the successful development and fast-tracking 

of nanotechnology-based vaccines as the delivery vehicle of messenger RNA (mRNA) and 

DNA have shown notable implications for the future of nanotechnology-enabled for drug 

and gene delivery. The safety and efficacy data of these nanosystems already available 

on the market can supply the foundation for the clinical translation on future therapeutic 

applications. Although each formulation has its challenges to face and overcome [103].

As a drug transport and delivery system, nanocarriers in medicine are colloidal systems 

that contain an encapsulated active pharmaceutical ingredient (API), integrated into the 

particle core, or matrix, conjugated on the nanoparticle surface [104]. They can be used 

as a platform for the diagnosis, prevention, and/or treatment of several diseases [105–107]. 

Different systems can be used to encapsulate bioactive compounds. Due to their small size 

and the large surface area, leading to improved pharmacokinetics and site-specific delivery, 

nanoscale particles have shown promising drug delivery properties [104, 108]. In general, 

their applications aim to increase a drug’s therapeutic index and safety profile, lowering the 

required doses used to achieve effective therapy. They, also, can be used to protect unstable 

substances in the face of early degradation or against possible instabilities in the biological 

environment. Furthermore, sustained drug release and increased cellular uptake are often 

associated with the use of nanosystems [89,109].

Nanostructured systems can be categorized as metallic, lipid, or polymeric [110]. Metallic 

nanoparticles have a core composed of alkali and noble metals [61,111]. They can be 

classified as hard-nanoparticles whose central core is hardened and may limit drug-loading/

appending capacity to the particle’s surface. Soft-nanoparticles refer to those materials 

whose central core is efficient for drug-loading and provide structural flexibility [112]. The 

polymeric and lipidic nanoparticles have flexible cores which can deform temporarily by 
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stress or contact with surfaces [113]. Polymer-based nanoparticles are colloidal particles 

such as nanocapsules, and nanospheres where the drug can be encapsulated or adsorbed to 

the polymer [114,115]. While lipid-based systems consist of a lipidic dispersion stabilized 

by surfactants (phospholipids, proteins, polysaccharides or minerals) and can be represented 

by liposomes, nano, or microemulsions, nanostructured lipid carriers [116].

They can also be classified as passive or active targeting depending on how they target 

the desired tissue. In passive targeting, drug-loaded nanocarriers remain sufficiently long 

in circulation to accumulate in a desired tissue contingent on properties like size, pH, 

temperature, and charge [117,118]. Drug accumulation in areas with leaky vasculature i. 

e., tumors, is also exploited for passively targeting [119,120]. The aim is to get selective 

delivery of drugs into the site of action and low systemic toxicity. Alternatively, in the 

active targeting (or ligand-based targeting), a biological marker is attached to the nanocarrier 

surface to be recognized by receptors expressed in the target cell surfaces [119,121]. This 

strategy is expected not only to improve the affinity and precision of the nanocarriers to 

the target cells/tissue but also to increase cell uptake [122,123]. Active targeting can lead to 

better therapeutic effects. Some studies demonstrated that folate receptor–targeted liposomes 

loaded with antitumor drugs inhibited tumor growth [124,125]. Liposomal formulations 

showed greater efficacy in MDA-MB-231 and 4T1 mouse models of metastatic breast cancer 

compared to individual components or current conventional formulations. Highlighting 

the efficiency of using active targeting for recognition, retention, and cell uptake after 

accumulation in the target region [126–129]. The development of receptor-targeted systems 

could, therefore, significantly improve the delivery efficiency of drug-loaded nanocarriers.

For the administration of bioactive compounds from plants, nanosystems have been studied 

[130]. However, encapsulation of compounds and derivatives from the genus Pterodon has 

produced twenty-three (23) types of formulations that have been reported in the literature. 

As shown in Fig. 4, nanoemulsions and microemulsions are the most prevalent, followed 

by polymeric particulate systems, magnetic/metallic, and nanoparticles nanostructured lipid 

carriers.

Throughout the literature, different combinations of drugs/bioactive ingredients of Pterodon 
spp. loaded in drug-delivery systems can be found and are listed in Table 1.

3.1. Micro and nanoemulsions

Nanoemulsions are colloidal thermodynamically unstable dispersions of oil in water (O/W) 

or water in oil (W/O) stabilized by an interfacial film of surfactant molecules and 

sometimes co-surfactants [150–152]. Microemulsions can be differentiated as a colloidal 

thermodynamically stable dispersion. These nanosystems have the advantage of transporting 

high loads of lipophilic substances and also protect the encapsulated bioactives from 

hydrolysis, oxidation, or enzymatic degradation [153]. The main interest for using drug 

delivery systems based on microemulsions or nanoemulsions is to increase bioactive 

bioavailability [154,155]. This incorporation can be accomplished through several methods, 

classified into two primary categories: high-energy and low-energy methods (Fig. 5). 

Nanoemulsions require the input of some external energy to convert the separate immiscible 

components into a dispersion. High-energy methods supply intense forces that disrupt and 
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intermingle the oil and water phases resulting in tiny droplets with high kinetic energy. 

Mechanical devices such as ultrasonication or high-pressure homogenizers are generally 

used for nanoemulsion preparations [151,156]. Nanoemulsions formulated through high-

energy methods can therefore achieve high stability and small particle size. In contrast, low-

energy methods take advantage of the intrinsic physicochemical properties of formulation 

components that require a little addition of external energy to generate droplets. Phase 

inversion emulsification (emulsification methods) and self-emulsification are examples 

of low-energy approaches for the formation of micro and nanoemulsions. In principle, 

the process consists of mixing two liquid phases, one oily phase containing hydrophilic 

surfactant (plus drug) and an aqueous phase. When these two liquids are brought into 

contact, the surfactant molecules rapidly diffuse from the oily phase to the aqueous phase, 

which causes turbulence creating nano-sized emulsion droplets [154]. Currently, there is 

a focus on producing nano or microemulsions using low-energy methods once they are 

considered energetically efficient. In addition, it has a simple implementation and does not 

require sophisticated and expensive equipment [157].

Once the thermodynamic instability of nanoemulsions is dependent on the preparation 

method, its optimization appears to be of fundamental importance for the development of 

successful delivery systems [156] and can lead to safer and more environmentally friendly 

practices.

Nanoemulsion is also an alternative for the delivery of hydrophobic compounds [158]. In 

order to increase the pharmacological efficacy of oily extracts from the genus Pterodon, 
several nanoemulsions (NE) have been developed. Among them, NE of the essential 

oil extracted from P. emarginatus. In this context, a study proposed the development 

of NE (O/W) with essential oils from P. emarginatus [131]. NE with the best results 

were prepared with essential oil and polysorbate 80 (1:1) in concentrations of 0.25% 

(wt/wt), using a simple organic solvent-free, low-energy method. NE containing essential 

oil from P. emarginatus fruits were able to induce mortality in Aedes aegypti larvae. 

This larvicidal activity may be associated with β-caryophyllene, the main compound 

corresponding to 25.8% of the relative percentage in the oil. Valentim et al. [135] evaluated 

the in vitro antiparasitic activity of NE containing essential oil of P. emarginatus against 

monogenic parasites of the type Anacanthorus spathulatus, Notozothecium janauachensis, 
and Mymarothecium boegeri that usually infect the fish Colossoma macropomum. The in 
vitro results showed that NE containing the essential oils at concentrations from 100 to 600 

mg/L had 100% antiparasitic activity. As the main constituents present in the essential oil 

of P. emarginatus are the compounds β-elemene, β-caryophyllene, and α-humulene, we can 

imply that they are responsible for biological activity. Recently, NE loaded P. emarginatus 
essential oil demonstrated high kinetic stability and was non-irritating, estimated by HET-

CAM [40]. The results of this study can serve as a lead in determining in vivo therapeutic 

properties of this nanoformulation.

The amber-colored oleoresin from P. emarginatus has been widely investigated, where the 

main components include the volatile essential oils made up of a mixture of terpenoids, 

e.g., the diterpenes with vouacapan skeleton and the non-volatile components [132]. 

Recent studies have focused on the development of NE for carrying this oleoresin (NE 
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P. emarginatus oleoresin) for larvicidal applications against Aedes aegypti and Culex 
quinquefasciatus, the main vector of dengue and lymphatic filariasis, respectively [45,133]. 

The NE were developed using a simple low-energy method with or without heating in 

solvent-free conditions, remaining stable during storage at room temperature when protected 

from light [45,132,133]. The formulations proposed in these studies for encapsulation of 

oleoresin showed activities (at 250–12.5 ppm, relative to oleoresin) against A. aegypti 
having a possible mechanism through the reversible inhibition of acetylcholinesterase 

[45]. Larvicidal activity against Culex quinquefasciatus, indicated morphological changes. 

However, unlike the larvicidal mechanism of action presented for A. aegypti, NE P. 
emarginatus oleoresin does not seem to inhibit acetylcholinesterase in C. quinquefasciatus 
larvae, and further studies are needed to evaluate possible mechanisms of action. In addition 

to evaluating the activity of a new product, it is essential to assess toxicological profiles, 

in this case, ecotoxicological risks. Exposing NE P. emarginatus oleoresin to an aquatic 

ecosystem using Chlorella vulgaris as a biological indicator, showed this formulation is 

potentially ecofriendly and non-toxic [133].

Recently, NE prepared with oleoresin from the fruits of P. emarginatus showed antioxidant 

and chemoprotective activity, at 10 μg/mL, against ultraviolet (UV) radiation to human 

keratinocytes. These activities were related to the presence of phenolic compounds and 

terpenes present in the extracts of P. emarginatus. In parallel to the antioxidant effects, the 

NE managed to modulate the inflammatory profile of epithelial cells. A reduction in the 

levels of pro-inflammatory cytokines, IL-6 and IL-8, was observed in keratinocytes after UV 

irradiation [134]. Despite the high energy emulsification method and heating (at 65 °C) used 

to produce the nanoformulation, the oil activity was preserved.

The anti-inflammatory effects of P. emarginatus oleoresin from fruits Kawakami et al. 

[136] was evaluated with the topical use of NE oleoresin at 20% (wt/wt) in combination 

with intraperitoneal (i.p.) meglumine antimoniate in the treatment of lesions caused by 

Leishmania (Leishmania) amazonensis. The results demonstrated the effectiveness of the 

proposed combination in reducing the parasitic burden and the levels of cytokines (IFN-γ 
and IL-10) in the lesion. In a study reported by Santos et al. [137] extracts from the 

fruits of P. pubescens presented antileishmanial activity and the nanoemulsions from the 

optimized extracts were proposed to increase the activity and reduce possible toxicities. The 

extraction method influenced the pharmacological activities of the extracts (IC50: 40.7 ± 

2.9 μg/mL for hexane extract and IC50: 33, 8 ± 4,6 μg/mL for supercritical fluid extract). 

Although both extracts have high cytotoxicity, supercritical extracts were more effective, 

showing superior inhibition against L. amazonensis promastigotes and amastigotes than 

extracts obtained by conventional methods. This fact is attributed to the high content of the 

geranylgeraniol derivative in supercritical extracts. Nanoemulsions showed a better index 

of selectivity and significant activity against parasite amastigotes Leishmania amazonensis 
(IC50: 2.7 ± 0.1 μg/mL for hexane extract nanoemulsion and IC50: 1.9 ± 0.3 μg/mL for 

supercritical fluid extract nanoemulsion). The findings of this study show that the developed 

NE promotes a drastic decrease in the IC50 and increase in the selectivity index [137]. In 

the search for an efficient topical application system, the incorporation of hyaluronic acid in 

NE with P. pubescens fruit extract-loaded was also evaluated and showed an improvement 
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of rheological properties. The addition of the cross-linked biomaterial resulted in increased 

viscosity and stability, which might facilitate topical applications [141].

Nanoemulsions containing optimized P. pubescens ethanolic extracts of the fruits were 

developed by Hoscheid et al. [138]. To assess their efficiency and safety, another study 

by the same group [139], evaluated the anti-inflammatory activities of NE in a model 

of carrageenan-induced peritonitis. The NE containing ethanolic extracts of P. pubescens 
showed a significant inhibitory effect on leukocyte migration, even after 1 year of storage, 

indicating potential use in anti-inflammatory therapies, as well as in the treatment of arthritis 

[142]. The anti-inflammatory potential of the oil extracted from the fruits of P. emarginatus 
and encapsulated in microemulsions was evaluated in the ear edema model induced by 

the topical application of croton oil [140]. Both the oil extracted and the proposed 

microemulsion system showed anti-inflammatory potential. However, the microemulsion 

was more efficient, possibly due to dermal or transdermal permeability improvements [159].

Fundamental differences between micro and nanoemulsion surround the free energy of the 

system, giving them distinct characteristics in preparation, formulation and stability [160]. 

However, the use of microemulsions for bioactive compound delivery can be limited by the 

high concentrations of surfactants, since these agents, at certain levels, might be irritatants 

[161,162]. On the other hand, nanoemulsions can be potential alternatives in this case since 

lower concentrations of surfactant are needed when compared to microemulsions [163].

3.2. Polymeric particles

Polymeric particles have been extensively researched as delivery systems. Data in the 

literature have shown that such systems can modify pharmacokinetics and improve the 

therapeutic index of many drugs [164]. Some of the advantages of using polymeric 

systems include easy production, the facility to obtain a solid form that is more stable and 

marketable, controlled and sustained drug release, ability to modify surfaces with ligands 

for targeted drug delivery [165]. Differences between micro and nanoparticles relate to their 

size in micrometers and nanometers, respectively. For structural organization, they can be 

classified as spheres and capsules. The spheres are formed by a polymeric matrix, where the 

lipophilic and/or hydrophilic drug can be retained (solubilized or dispersed). The capsules 

are vesicular systems in which a polymeric wall surrounds the oily liquid core. In this 

case, the lipophilic drug is usually dissolved in the core, but may also be adsorbed to the 

polymeric surface [166,167].

Countless synthetic or natural polymers can be used for the development of polymeric 

nanoparticles. The release profile of the compound can be modulated according to its hydro 

and lipophilic properties and the nature of the polymers used in the development of the 

systems [168, 169]. Natural polymers, such as polysaccharides e.g., chitosan, dextran, are 

well known for their benefits in biodegradability and their negligible toxicity. On the other 

side, customizable degradation rates and physical and mechanical characteristics benefit 

synthetic polymers compared to natural polymers. The polymers most commonly used in 

the production of these carriers are aliphatic polyesters such as polyglycolic acid (PGA), 

polylactic acid (PLA), poly-lactic-co-glycolic acid (PLGA), and poly--ε-caprolactone (PCL) 

due to biocompatibility and biodegradability [170, 171].
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In order to produce microcapsules, the most common techniques used for encapsulation 

of oils are spray-drying and coacervation [172, 173]. Spray-drying is well-established to 

produce microparticles by atomizing the liquid suspension into a fine spray-dried by a 

stream of hot air. This method provides stable dehydrated products in the form of fine 

powders [174]. The principle behind the coacervation process involves the precipitation of 

polymers around of active compound, thus encapsulating it. With specific environmental 

influence (ionic strength, pH, or temperature variation), the liquid phase separates 

from the polymer-rich (coacervate) phase, forming microspheres or core-shell structured 

microcapsules [174,175]. This method offers an advantage for encapsulating heat-sensitive 

compounds. However, depending on the polymer used, a high amount of organic solvent 

might be required, requiring subsequent evaporation from the product [176,177]. In some 

cases, the encapsulation by the spray-drying process may be preferred to the coacervation 

method, as no organic solvents are needed within the preparation and is associated with 

low process costs allowing large-scale production in a continuous mode [177]. Different 

polymeric systems were developed from natural or synthetic polymers for the encapsulation 

of phytochemicals or plant extracts of Pterodon species (Fig. 6), in search of potential 

therapeutic interventions for future use in many diseases.

The first study to develop polymeric particulate systems employing derivatives of the 

genus Pterodon was reported by Servat et al. [143]. Microcapsules were produced by 

spray-drying of the biopolymers maltodextrin and gum arabic and the crude extract 

or vouacapan mixture (6α-hydroxy-7β-acetoxy-vouacapan-17β-oate methyl ester and 

6α-acetoxy-7β-hydroxy-vouacapan-17β-oate methyl). Antinociceptive activity after i.p. 

administration of microcapsules with the crude extract or the vouacapan mixture was 

confirmed. Subsequently, a study by Alves et al. [44] evaluated the influence of different 

spray-drying parameters (as dryer inlet and flow injection) and excipient proportions on 

the production and the stability of microcapsule produced with P. emarginatus essential 

oil. Thus, the proposed system produced microcapsules around 5 μm with encapsulation 

efficiency higher than 90% and increased stability, in addition to solving the inconvenience 

of poor water solubility [44,143]. In another study, Reinas et al. [90] microcapsules 

with oleaginous fractions were obtained from an alcohol extract from the fruits of P. 
pubescens using alginate/chitosan polymers of different molecular weights. Diameters of 

the microcapsules were between 0.4 and 1.0 μm. The best formulation prepared with 

alginate and low-molecular-weight chitosan presented high encapsulation efficiency of about 

99,5% for vouacapanes methyl 6α-acetoxy-7β-hydroxyvouacapan-17β-oate and methyl 

6α-hydroxy-7β-acetoxyvouacapan-17β-oate. Furthermore, in vitro release profile of the 

vouacapanes-loaded microcapsules was close to 75% (acid pH) after 24 h. Recently, 

PCL-based nanofibers associated with the ethanolic extracts from P. pubescens fruits were 

developed and showed potential in vitro activity in wound-healing assays. The extract could 

inhibit acute inflammatory actions attributed to the presence of voaucapans, limiting the 

phases of pain response and edema formation [144].

3.3. Magnetic and metallic nanoparticles

Among the various nanosystems, magnetic iron oxide nanoparticles stand out for their 

high surface area and specific properties related to their magnetism [178,179]. Various 
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methods have been reported for the synthesis of iron oxide magnetite (Fe3O4) or maghemite 

(γ-Fe2O3) nano-particles. The most common include sol-gel synthesis, co-precipitation, 

micro-emulsion, and hydrothermal synthesis. However, co-precipitation has advantages of 

low cost, high product purity, and organic solvent-free conditions, presenting great potential 

for applications in several technological areas [180].

Silveira et al. [145] proposed the development of maghemite nano-particles conjugated with 

sucupira seed resins produced by co-precipitation methods, without the need for expensive 

equipment or organic solvents. Molecular traces of iron oxide in the resins extracted 

from sucupira seeds expressed semiconductor characteristics. This system could be further 

investigated regarding more improved preparation methods and characterization [145]. In 

addition, the potential applications of maghemite nanoparticles directed against a specific 

target with the use of an external magnetic field combined with bioactive sucupira resin are 

of potential interest [181]. More studies are needed on the phytochemical characterization 

of the resins extracted from the sucupira seeds and the development of colloidal systems 

with ideal physicochemical characteristics for application in vivo [182,183]. Preparation 

of promising delivery systems phytochemicals-based or plant extracts have also been 

employed successfully to generate metal nanoparticles with enhanced antimicrobial property 

(Fig. 7) [184,185]. Within this context, recently Oliveira et al. [146] synthesized silver 

nanoparticles using aqueous extracts of P. emarginatus (AgNPs-PE). Similarly, Toledo et al. 

[147] demonstrated bactericidal and fungal activity of AgNPs-PE when associated with 1% 

gentamicin sulfate (AgNPs-PEG) and hyaluronic acid (AgNPs-PEG-AH2).

3.4. Nanostructured lipid carriers (NLCs)

NLCs are systems formed by mixing solid and liquid lipids (oils), generating a less 

structured lipid matrix with imperfections that lead to greater accommodation of bioactive 

compounds, stabilized in water solution by surfactants [186]. The NLCs have been 

developed to enhance the encapsulation efficiency and prevent the expulsion of the drug 

during storage, a condition that usually can occur with solid lipid nanoparticles [187]. 

Its advantages compared to other nanosystems include the absence of organic solvents 

for their production and the ability to modulate the release profile of the encapsulated 

bioactive compound [188]. Furthermore, lipid nanocarriers can be produced with natural 

lipids that have the advantage of inherent biological activity [189]. Developed as a promising 

alternative for liposomes and nano-emulsions, NLCs show advantageous features such 

as the use of low-cost excipients, ease of preparation, and high-scale production [190]. 

In this process, different methods have been developed and modified to produce NLCs 

under stable conditions, capable of reaching the specific target. In general, the most 

common methods used to manufacture these nanosystems can be divided into three different 

approaches. The first involves high-energy methods such as high shear homogenization 

and/or ultrasound techniques performed at elevated temperatures (hot homogenization) or 

below room temperature (cold homogenization). This approach has the advantage of being 

a highly effective dispersion technique for large-scale production. The cold homogenization 

further includes advantages as an absence of drug degradation by temperature or crystalline 

modification. The second approach involves low-energy methods, in which the commonly 

used technique is microemulsion formation. The advantage of this method is producing 
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NLCs spherical and narrow in size [191]. The solvent emulsification-evaporation technique 

is a third approach for obtaining NLCs [191]. The technique consists of mixing an 

organic containing oil phase (liquid lipid + solid lipid) and drug dissolved in an organic 

solvent (water-immiscible) with an aqueous phase. This process allows the formation of 

nanodispersions, followed by evaporating the organic solvent causing precipitation of lipid 

nanoparticles in the aqueous phase. Through this method, small and monodisperse particles 

are obtained with high encapsulation efficiency [192]. However, the drawback of the method 

is the use of organic solvents, potentially leading to toxicity issues [191].

Outuki et al. [148] optimized the development of NLCs containing P. pubescens fruit oil 

that provided promising activities against human colon adenocarcinoma cell line (HT-29) 

in vitro. In this study, the NLCs formulation containing 5% Precirol® ATO 5, 0.5% P80H, 

2.5% PEG-40H castor oil as an aqueous surfactant, and 2% P. pubescens oil presented 

the best physicochemical characteristics. The authors showed that NLC formulations 

encapsulating P. pubescens oil were more effective against HT-29 cells when compared 

to the free oil, associating the efficiency improvement with the higher cellular uptake of the 

NLCs. Therefore, a well-designed controlled release system may enhance target specificity, 

optimizing the activities of compounds perhaps implying further application in colorectal 

cancer therapy.

The essential oils from fruits of the genus Pterodon was also encapsulated in NLCs by [149]. 

The optimized NLCs in this study consisted of 0.5% (wt/vol) essential oil of Pterodon, 4.5% 

(wt/vol) of glycerol monostearate as a solid lipid, and 1.4% (wt/vol) polyethylene glycol 

succinate D-α-tocopherol as surfactant. Using Franz diffusion cells, the release kinetics 

followed first-order, where the variation in concentration over time depends only on the 

concentration of sucupira oil encapsulated in the NLCs. Additional bioavailability studies 

are still required, in addition to in vivo efficacy.

The development of Pterodon genus-derived bioactive-loaded NLC has been extensively 

investigated showing promising results as drug delivery systems for the treatment of various 

diseases (Fig. 8).

4. Conclusion

The search for new therapeutic alternatives using flora provides a valuable outlet for 

new drug discovery in the pharmaceutical industry. However, many new drug molecules 

have poor water solubility. Overcoming such solubility and/or permeability barriers can be 

achieved using drug delivery systems such as nano- and micro- structured systems. In this 

review, we stress the capacity for particulate carriers to encapsulate vegetal derivatives, and 

detail how their use has shown promising biological activities. This serves to highlight the 

benefits of encapsulating extracts, oils, and bioactive compounds of the genus Pterodon 
in lipid, polymeric, and hybrid diverse particulate systems with desired performance and 

functionality. However, such approaches are mostly at the fundamental research stage 

still focused on the development of micro and nanostructured systems to overcome some 

potential challenges related to stability, solubility, and bioavailability. Therefore, there 

are currently no Pterodon genus-derived encapsulated formulations in clinical trials or 
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commercially available. Although many different combinations of drug carriers and extracts, 

oils, and bioactive compounds of the genus Pterodon are currently being developed. 

Further related to the potential of Pterodon genus compounds, there is a relative dearth 

of information about their mechanisms of action and toxicities. Even though particulate 

carriers have been studied with respect to their application of the genus Pterodon, there is 

a requirement for more robust in vivo studies. These could provide a platform for further 

development of safe and effective therapies using these natural product extracts.
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Fig. 1. 
Worldwide importance of medicinal plants and their progress towards micro and nano-

encapsulation.
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Fig. 2. 
Chemical structure of (a) isoprene and isolated diterpenes from Pterodon sp. (b) linear 

structure of Geranylgeraniol and (c) cyclic structure of vouacapane compounds. Dashed 

lines indicate where the four isoprene units are joined.
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Fig. 3. 
Chemical structure of some of the main sesquiterpene compounds isolated from the essential 

oil seeds and fruits of the genus Pterodon.
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Fig. 4. 
Percentage distribution profile of nanostructured systems based on species of the genus 

Pterodon.
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Fig. 5. 
Schematic illustration of the high-energy and low-energy methods for obtaining micro and 

nano-emulsion.
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Fig. 6. 
Schematic illustration of the use of different polymer systems for encapsulation of 

phytochemicals or plant extracts of Pterodon species.
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Fig. 7. 
Schematic illustration of the association between plant extracts or phytochemicals and their 

possible biomedical application.

de Alcantara Lemos et al. Page 32

Biomed Pharmacother. Author manuscript; available in PMC 2022 March 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 8. 
Schematic representation of the theoretical upside of developing plant (Pterodon genus) 

derived bioactive-loaded nanostructured lipid carriers.
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