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Background-—Consensus panels regularly recommend aerobic exercise for its health-promoting properties, due in part to
presumed anti-inflammatory effects, but many studies show no such effect, possibly related to study differences in participants,
interventions, inflammatory markers, and statistical approaches. This variability makes an unequivocal determination of the anti-
inflammatory effects of aerobic training elusive.

Methods and Results-—We conducted a randomized controlled trial of 12 weeks of aerobic exercise training or a wait list control
condition followed by 4 weeks of sedentary deconditioning on lipopolysaccharide (0, 0.1, and 1.0 ng/mL)-inducible tumor necrosis
factor-a (TNF-a) and interleukin-6 (IL-6), and on toll-like receptor 4 in 119 healthy, sedentary young adults. Aerobic capacity by
cardiopulmonary exercise testing was measured at study entry (T1) and after training (T2) and deconditioning (T3). Despite a 15%
increase in maximal oxygen consumption, there were no changes in inflammatory markers. Additional analyses revealed a
differential longitudinal aerobic exercise training effect by lipopolysaccharide level in inducible TNF-a (P=0.08) and IL-6 (P=0.011),
showing T1 to T2 increases rather than decreases in inducible (lipopolysaccharide 0.1, 1.0 versus 0.0 ng/mL) TNF-a (51%
increase, P=0.041) and IL-6 (42% increase, P=0.11), and significant T2 to T3 decreases in inducible TNF-a (54% decrease, P=0.007)
and IL-6 (55% decrease, P<0.001). There were no significant changes in either group at the 0.0 ng/mL lipopolysaccharide level for
TNF-a or IL-6.

Conclusions-—The failure to support the primary hypotheses and the unexpected post hoc findings of an exercise-training–induced
proinflammatory response raise questions about whether and under what conditions exercise training has anti-inflammatory
effects.

Clinical Trial Registration-—URL: http://www.clinicaltrials.gov. Unique identifier: NCT01335737. ( J Am Heart Assoc. 2018;7:
e010201. DOI: 10.1161/JAHA.118.010201.)
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O ne mechanism by which exercise contributes to cardio-
protection may be via its anti-inflammatory effects.1–3

Observational studies generally support this hypothesis. For
example, the 13 748 participants in the NHANES (National

Health and Nutrition Examination Survey) III study who
engaged in regular aerobic dancing or jogging were less
likely to have elevated levels of C-reactive protein (CRP), white
blood cell count, and fibrinogen,1,2 and men in the British
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Regional Heart Study who either maintained a minimum of
light physical activity or became physically active over a 20-
year period had lower levels of CRP and white blood cell count
than less active groups.4 Although some studies have failed to
find such cross-sectional relationships,5,6 a literature review
identified at least 9 large cohort studies, with almost all
showing the predicted inverse dose response effect between
physical activity and measures of inflammation.7

However, intervention studies to date have had less
consistent findings. Among negative studies, Lakka et al
reported no overall effect of a 20-week aerobic training
program on CRP in 652 sedentary, healthy 35-year-old
participants, but a positive effect among those subjects in
the top tertile of CRP (>3.0 mg/L) at study entry.8 Aerobic
training programs for 140 middle-aged men3 and 162 men
and women did not lead to reductions in CRP.9 Aerobic
training with or without dietary intervention led to improve-
ments in aerobic capacity, but did not change interleukin-6
(IL-6), tumor necrosis factor-a (TNF-a), or CRP, in young,
moderately overweight men.10 In 25 overweight men (aged
52.8�7.2 years), a 16-week aerobic training program had no
effect on IL-6, TNF-a, or CRP.11 Libardi et al reported similar
findings.12 In 102 sedentary men and women, aerobic training
led to improvements in fitness but did not change IL-6 or
CRP.13

Other studies, in contrast, do show the hypothesized anti-
inflammatory effects of exercise training, with reductions in

CRP14,15 and IL-615,16 and white blood cell count.17 In a small
randomized controlled trial of 49 sedentary men aged 45 to
64 years, a 24-week aerobic training program followed by
2 weeks of deconditioning led to a significant increase in
maximal oxygen consumption (VO2max) that was retained
after deconditioning by a per-protocol analysis of the 41
participants who completed the study.18 Serum IL-6 fell
significantly in the exercise group after training and rose after
deconditioning.

These inconsistencies are likely to be the product of many
factors that vary across studies: (1) observational versus
interventional studies; (2) study design (eg, exercise alone
versus exercise plus weight loss); (3) differences in partici-
pants (eg, old versus middle aged; men, women, or both;
healthy versus unhealthy patients; overweight/obese versus
normal weight); (4) differences in training protocols (short-
term versus long-term regimens); (5) differences in inflamma-
tory markers assessed; and (6) differences in data analytic
approaches. In view of these many differences, it is not
surprising that the literature is inconsistent.

A feature shared by all of the studies discussed above is
measurement of in vivo circulating levels of inflammatory
markers. A disadvantage of this design is failure to account
for the complex role of tissues other than monocytes—
adipocytes, endothelial cells, muscle—in generating circulat-
ing inflammatory cytokines. A more precise estimation of the
effect of exercise on monocyte-related inflammation may be
achieved with ex vivo stimulation of white cells by lipopolysac-
charide. While influenced by differences in stimulation
concentrations, incubation time, and cell preparation,19

ex vivo stimulation by lipopolysaccharide nonetheless may
more accurately reflect immune regulation.20 Many
human21,22 and animal23–25 studies (though not all—see
below) report the predicted anti-inflammatory effects of
exercise training on lipopolysaccharide-inducible cytokine
release.

With this report, we try to bring some clarity to this
matter. Because even results of studies on CRP have yielded
inconsistent findings, we focused on upstream inflammatory
markers (TNF-a and IL-6, and toll-like receptor 4 [TLR4],
whose activation initiates an NFjB-mediated cascade culmi-
nating in the production of TNF-a and IL-6). We focused on
the effects of aerobic exercise training on ex vivo lipopolysac-
charide-stimulated generation of inflammatory markers by
peripheral whole blood monocytes. We conducted a random-
ized controlled trial and conducted our primary analysis on
the basis of intention-to-treat group assignment. Additionally,
we conducted per-protocol analyses to determine the effects
of changes in inflammatory markers, specifically among
those subjects who adhered to the exercise protocol.
Furthermore, because we measured cardiorespiratory fitness
throughout the study, we were able to confirm the fitness

Clinical Perspective

What Is New?

• The cardioprotective effects of aerobic exercise training are
well-established in patients and healthy subjects.

• Hypothesized mechanisms for the protective effect included
training-induced anti-inflammatory effects.

• Twelve weeks of training yielded the expected significant
increase in aerobic capacity in the training but not the wait-
list control condition, but contrary to expectation, there were
no treatment effects on ex vivo lipopolysaccharide-induced
levels of tumor necrosis factor-a or interleukin-6 (IL-6).

• Post hoc analyses revealed that training led to an increase
in tumor necrosis factor-a and IL-6 induced by 0.1 and
1.0 ng/mL lipopolysaccharide compared with 0.0 ng/mL
lipopolysaccharide.

What Are the Clinical Implications?

• In young, healthy participants, aerobic exercise training may
not elicit anti-inflammatory effects.

• In fact, training may elicit a proinflammatory effect,
consistent with an immune system that evolved to combat
sterile injury and infectious challenge.

DOI: 10.1161/JAHA.118.010201 Journal of the American Heart Association 2

Aerobic Exercise Training and Inflammation Sloan et al
O
R
IG

IN
A
L
R
E
S
E
A
R
C
H



effect of the exercise intervention. Finally, we included a 4-
week sedentary deconditioning period as a further test of the
effect of reversal of improvements in fitness on inflammatory
markers.

The primary aim of the present study was to test the
hypothesis that lipopolysaccharide-inducible monocyte pro-
duction of TNF-a in whole blood ex vivo would decrease more
from study entry (T1) to 12-week follow-up (T2) in the aerobic
exercise group, compared with the wait-list control group, and
that this effect would be reversed by sedentary decondition-
ing. The secondary aims were to examine whether a similar
decrease occurs in the lipopolysaccharide-inducible produc-
tion of IL-6 and in TLR4.

Methods

Research Materials Transparency
Upon receiving a request to the corresponding author from a
member of the research community, we will make data,
research and analytic methods, and materials used to conduct
this study available for purposes of reproducing the results or
replicating the procedure.

Participants
A total of 119 healthy young adults (age 20–45 years) were
recruited from the Columbia University Medical Center/New
York Presbyterian Hospital community. Recruitment was by
flyers posted throughout the Medical Center and electronic
bulletin boards. Subjects were nonsmoking, sedentary, habit-
ual nonexercisers. The study was approved by the Institutional
Review Board of the New York State Psychiatric Institute and
was registered at ClinicalTrials.gov: NCT01335737.

Study Protocol
The study protocol is depicted in the Consort Diagram (see
Figure 1). To determine eligibility, potential participants
completed a phone screening including the Baecke Physical
Activity assessment.26 Those who were regular exercisers,
defined as a score of ≥10 on this scale (range, 3–15 points),
were excluded from further participation. Qualifying partici-
pants provided informed consent and were further screened
for medical conditions that contraindicated exercise training,
use of hormonal birth control, and body mass index >33 or
<18 kg/m2. Those still eligible completed a maximal car-
diopulmonary exercise test (CPET). Participants who qualified
as no better than average fitness by American Heart Associ-
ation standards (VO2max <43 mL/kg per minute for men,
<37 mL/kg per minute for women) were eligible to continue in
the study. Following the CPET, all participants went through a

2-week run-in period described below. They then were sched-
uled for the time1 (T1)measurement session, duringwhich they
provided a fasting blood sample. After the blood draw, they
were provided with a light breakfast, then completed several
mood inventories and participated in a psychophysiology stress
challenge in which high-frequency heart rate variability was
measured. These data will be reported elsewhere. Women were
scheduled for testing during their midluteal menstrual phase to
control for the effects of menstrual cycle variation on cardiac
autonomic control, as described below.27 Thosewho completed
this measurement session were randomized to either the
12-week aerobic training program or a wait-list control
condition using random block assignment stratified by sex.
Identical measurement sessions were conducted after the
intervention (time 2 [T2]) and again after 4 weeks of sedentary
deconditioning (time 3 [T3]). Participants received up to $210
compensation for the various testing sessions in the study. To
encourage adherence, those who completed 85% of their
training sessions received 2 months of bonus gym member-
ship. Wait-list participants received 5 months of gym member-
ship after their final measurement session.

Physical activity outside of the training sessions was
monitored using a pedometer (Omron HJ-710ITTFFP) to
assess potential changes in unsupervised physical activity.
All participants in both the training and wait-list groups were
required to wear the step counter throughout the 16 weeks of
training and deconditioning to assess adherence to a
sedentary lifestyle.

Run-in Stretching Period
During this 2-week period, participants came to the Fitness
Center 4 times/week for 30 minutes of stretching. Each
participant was assigned a research assistant “coach” who
provided detailed instruction on stretches, consisting of arm
circles, neck rotations, toe reach, gluteal stretches, lateral leg
swings, Achilles stretch, and ankle rolls. All participants wore
Polar heart rate monitors during the stretching sessions.
Coaches monitored participants’ adherence to the stretching
protocol via gym attendance records and heart rate (HR)
monitor data. Only those participants who attended at least 7
sessions were permitted to continue in the study.

Aerobic Training Program
For 12 weeks, participants randomized to aerobic training group
came to the Fitness Center for 4 sessions/week according to a
schedule they determined. Their coaches provided them with
guidelines specifying their training goals to assure that they
exercised at the appropriate level of intensity.

All training sessions consisted of 10 to 15 minutes of
warm-up and cool-down and 30 to 40 minutes of workout.
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Subjects were permitted to select from a series of aerobic
activities and for weeks 1 and 2 of the program, they trained
at 55% to 65% of maximum HR as established during their

qualifying CPET. In weeks 3 and 4, they increased their
intensity to 65% to 75% of maximum HR, and in weeks 5 to
12, they trained at 75% of maximum HR.

Figure 1. CONSORT diagram.
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To exercise at their target HR, participants wore a Polar
Electro model s610i HR monitor during each training session.
This monitor provided a digital display of HR and recorded HR
throughout the training session. At the end of each session,
participants uploaded the data from the monitor into a
computer located in the Fitness Center. Coaches instructed
participants on the use of the monitors and on how to upload
data. These data were used to verify that they trained as
prescribed.

Adherence to the training programs were documented by
weekly logs, computerized attendance records at the facility,
and data from HR monitors used during each training session.
Subjects were contacted on a weekly basis by their coaches
to monitor their progress. If the performance of participants in
the aerobic training condition fell out of range (described
below), they were contacted more frequently until they
returned to prescribed training levels.

Sedentary Deconditioning
After completion of training and posttraining testing, aerobic
training group participants refrained from any type of exercise
for a 4-week period. During this time, they were contacted by
their coaches on a weekly basis to encourage adherence to
this deconditioning phase of the study.

Wait-List Control Condition
Subjects randomized to the wait-list group maintained their
sedentary lifestyle after their qualifying testing session for
12 weeks plus the 4-week period corresponding to the
deconditioning period, for a total of 16 weeks.

Laboratory Testing Sessions
After the run-in period, qualifying participants arrived at the
Behavioral Medicine Laboratory at 8 AM after an overnight
fast. Forty-five milliliters of venous whole blood was drawn for
cytokine and hormone analysis. After the blood draw, they
received a light breakfast. Waist circumference was measured
with a Gulick anthropometric tape. Height was measured
using the Seca 214 Portable Height Rod (Seca Corporation,
Hamburg, Germany). Weight and body composition were
measured using a Tanita BF-350 monitor (Tanita UK Limited,
Middlesex, UK).

Measurement of Aerobic Capacity

Maximum aerobic fitness was measured by a graded exercise
test on an Ergoline 800S electronic-braked cycle ergometer
(SensorMedics Corporation, Anaheim, CA). All subjects had
their peak ventilatory capacity (maximum voluntary ventilation)

determined before the exercise test via a Vmax Encore System
(Sensormedics, Yorba Linda, CA). Peak exercise capacity was
determined by subjects having all subjects achieve at least 2 of
the following: >85% peak predicted heart rate (220 – age),
maximal exertion with limitation due to dyspnea, maximum
exertion with muscle fatigue, respiratory exchange ratio >1.10,
or increasing wattage with plateau of VO2. Each subject had a
5-minute resting phase followed by a 3-minute warm-up and
then a progressive ramped exercise test at 15 W/min until
achieving VO2max criteria (respiratory quotient ≥1.1, increases
in ventilation without concomitant increases in VO2, maximum
age-predicted HR was reached, and/or volitional fatigue).
Minute ventilation, expired oxygen, and carbon dioxide were
measured using Vmax Encore Metabolic system (Sen-
sormedics, Inc, Loma Linda, CA). The flow sensor and the gas
analyzer were calibrated against known medical-grade gases
before each test. VO2max was determined from the peak 20-
second average of the breath-by-breath measurement of the
VO2. Identical test procedures were carried out at the end of
the training and deconditioning phases of the trial. Anaerobic
threshold was determined for each subject using the V-slope
technique.28 Subjects qualifying as below average fitness by
American Heart Association standards (VO2max <43 mL/kg
per minute for men, <37 mg/kg per minute for women)
proceeded to the 2-week run-in stretching period.

Treatment Assessments
Inflammation Measures

We used a standardized method to activate cytokine release
in whole blood ex vivo by addition of lipopolysaccharide (0,
0.1 and 1 ng/mL). Blood was collected into a heparinized
blood collection tube. Endotoxin (lipopolysaccharide, e coli
0111:B4, Sigma cat. No. L4130) was sonicated for 30 min-
utes, vortexed well, and diluted with 1X phosphate-buffered
saline (PBS) to create a working 1 mg/mL stock. The
lipopolysaccharide stock was serially diluted with 1X PBS to
final concentrations of 1, 0.1, and 0 ng/mL in blood aliquots.
Microfuge tubes aliquoted with blood and endotoxin were
gently pulsed on a vortexer and incubated in a test tube rack
on a rocking platform at 37°C, low CO2 for 4 hours. The
Microfuge tubes were removed from incubation, centrifuged
in a tabletop microfuge (5 minutes, 2040 g), after which
plasma was collected and stored at �20°C for future analysis
of cytokine levels.

Multiplex Analysis of Cytokines

We quantified stimulated and study entry circulating TNF-a
and IL-6 using a Discovery Assay called the Human Cytokine
Array Focused 11-Plex (Eve Technologies Corporation, Cal-
gary, AB, Canada). The multiplex assay was performed at Eve
Technologies by using the Bio-Plex 200 system (Bio-Rad
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Laboratories, Inc, Hercules, CA, USA), and a Milliplex human
cytokine kit (Millipore, St Charles, MO, USA) according to their
protocol. The assay sensitivities of TNF-a and IL-6 were 0.1
and 0.3 pg/mL, respectively. Individual analyte values and
other assay details are available on the Eve Technologies
website (www.evetechnologies.com) or in the Milliplex protocol
(http://www.emdmillipore.com/US/en/life-science-research/
protein-detection-quantification/milliplex-multiplex-assays-using-
luminex/UjGb.qB.8WQAAAE_rn8RHeN.,nav). All assays were
done in duplicate.

Western Blot Analysis of TLR4

Denatured samples (20 lg/lane) with b-mercaptoethanol
were separated on a 10% sodium dodecyl sulfate polyacry-
lamide gel, and the proteins in the gel were then electro-
transferred to nitrocellulose membranes (Biorad) in PBS +20%
methanol. Following the transfer, the membrane was blocked
with 5% defat milk in PBS with 0.1% Tween (PBS-T), then
incubated with rabbit antihuman TLR4 primary antibody
(1:500, Santa Cruz Biotechnology). The membrane was
washed 3 times with PBS-T and incubated with horseradish
peroxidase–conjugated antirabbit secondary antibody
(Abcam). After washing the membrane 3 more times, TLR4
bands were visualized with the use of the ECL kit (Amersham).
Afterwards, the same membrane was stripped of the TRL4
antibodies in 2% sodium dodecyl sulfate, 0.8% b-mercap-
toethanol PBS Striping buffer and blotted with mouse
antihuman b-actin primary antibody and horseradish peroxi-
dase–conjugated antimouse secondary antibody (Abcam) and
visualized as above. The optical density of TLR4 and b-actin
bands was measured with the use of the GelDoc system
(Biorad), and TLR4 was expressed as a ratio of TLR4 density to
that of b-actin (in arbitrary units; see Figure 2).

Dietary Assessment
We used the Block Brief 2000 FFQ (NutritionQuest, Berkeley,
CA) to assess diet. This questionnaire was designed to
provide estimates of usual and customary dietary intake. The
food list for this questionnaire was developed from the
NHANES III dietary recall data. The nutrient database was
developed from the US Department of Agriculture’s Nutrient
Database for Standard Reference. Individual portion size is
asked, and pictures are provided. Using data from this FFQ,
we derived the alternative Mediterranean diet index.29

Statistical Analyses
The effect of aerobic training on all outcomes was analyzed
using longitudinal mixed effect models with either log-link
functions (for outcomes TNF-a, IL-6, and TLR4) or identity-link
functions (for outcomes VO2max and fat-free mass) to match

their variables’ distributions. A random intercept was used to
account for within-subject correlations over time and the
models adjusted for unequal variance among treatment
groups. All unadjusted models included the effect of time,
treatment group, the 2-way interaction between time and
treatment group, and the corresponding T1 measure.
Adjusted models included the additional covariates of age,
sex, T1 body fat percentage, and T1 alternative Mediterranean
diet index that have previously shown associations with the
outcome measures.30,31 Models of TNF-a and IL-6 were fit
separately for each stimulation level (lipopolysaccharide 0.0,
0.1, and 1.0 ng/mL).

To estimate the within-group changes from T1 to T2 for
each outcome, the observed values at all sessions were
centered by subtracting the grand mean of the corresponding
T1 values, and the same model described above was
performed. Subtracting a constant from the outcome and
baseline values does not affect the relationship but provides a
way to estimate the changes from T1 to T2 within group and
assess their significance (Data S1).32 For each outcome, a
total of 3 prespecified contrasts were obtained: (1) the
treatment group effect at T2, (2) the difference from T1 to T2
for the aerobic exercise training condition, and (3) the
difference from T1 to T2 for the wait-list condition.

All primary outcome analyses were conducted using an
intent-to-treat (ITT) sample. In addition, all primary outcome
models were analyzed using a per-protocol sample. The per-
protocol sample was defined as completing at least 50% of
scheduled exercise training sessions, having a blood draw

Figure 2. Western blots of TLR4 from a participant with T1, T2,
and T3 blood draws. A representative Western blot of peripheral
blood mononuclear cell lysates probed with monoclonal antibod-
ies against TLR4 and ß-actin. 20 lg of cell lysates were loaded on
the gel in duplicates (columns 2, 3, for T1; columns 4, 5 for T2,
and columns 6, 7 for T3). Ctl indicates HEL293 cell lysate with
TLR4 serving as positive control; MW, molecular weight marker.
The arrows in the left margin indicate the TLR4 and ß-actin
proteins detected. MWs are listed on the right.
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within 18 hours to 10 days after the last exercise training
session, and completing the CPET within 14 days of the last
exercise training session.

The original sample size of 182 participants (or 128
completers) was chosen to ensure sufficient power (at least
90%) of a 2-sided test with level of significance of 5% to detect
true effect sizes of 0.67 or greater between the aerobic
exercise training and the wait-list groups with respect to the
primary outcome of TNF-a.33

To assess the moderation effect by baseline inflammation,
that is, the effect of having high versus low levels of
inflammation at study entry on the longitudinal effect of
treatment assignment, each inflammatory measure at study
entry was dichotomized into high and low groups using amedian
split. A 3-way interaction among treatment, time, and the
corresponding dichotomized study entry inflammatory marker
was analyzed using models similar to those described above.

To explore potential longitudinal treatment differences
between lipopolysaccharide-inducible levels of TNF-a and IL-6,
the lipopolysaccharide-inducible level was dichotomized into
lipopolysaccharide 0.0 ng/mL versus lipopolysaccharide 0.1
and 1.0 ng/mL. A 3-way interaction among lipopolysaccha-
ride-inducible level, treatment, and time and subsequent 2-
way interactions and corresponding main effects were
analyzed. These models were adjusted by the same covariates
as primary outcome models.

TNF-a was missing for 5 (4.2%) participants at T1, 20
(16.8%) at T2, and 26 (21.8%) at T3. IL-6 was missing for 7
(5.9%) participants at T1, 23 (19.3%) at T2, and 25 (21.0%) at
T3. TLR4 was missing for 10 (8.4%) participants at T1, 26
(21.9%) at T2, and 30 (25.2%) at T3. The logistic regressions
for the missing values failed to identify any significant
predictors of missingness, so the unobserved values were
assumed to be missing at random. Additionally, a sensitivity
analysis using multiple imputation via the Markov chain Monte
Carlo method was performed on TNF-a, IL-6, and TLR4, and
the results were consistent with the primary analyses on the
basis of the ITT sample.34 Because no violations of missing-at-
random assumptions were identified, and because the
imputation analyses results did not deviate from the results
based on ITT sample, study dropouts are not expected to lead
to any meaningful biases.

All analyses were performed using SAS software (version
9.4, SAS Institute, Cary, NC), and all statistical tests were 2-
sided at a significance level of 5%.

Results

Sample Recruitment and Adherence
We screened 991 potential participants, of whom 119 (63
women, 56 men) were recruited and randomized. Of the 60

participants randomized to the aerobic training condition, 15
dropped out during the training and before T2 testing (see
CONSORT diagram in Figure 1). An additional 5 participants
dropped out during the sedentary deconditioning phase. Only
1 participant in the wait-list condition dropped out, between
T1 and T2 testing. In the aerobic exercise group, an average of
33.5 (SD=17.4) of the 48 training sessions (70%) were
completed, and among T2 completers, 45 participants
attended a mean of 39.8 (SD=13.6) of the scheduled 48
training sessions (83%). Among the 40 who completed
training and all 3 testing sessions, the attendance rate was
90%. There were no protocol-related adverse events.

In the aerobic exercise group for the ITT sample (n=60), the
median number of days between the last completed exercise
training session and posttraining (T2) blood draw was 3 days
(interquartile range [IQR], 2–8 days). The median number of
days between the last completed exercise training session
and posttraining (T2) CPET was 4 days (IQR, 2–6 days).

A total of 90 subjects (aerobic exercise group, n=31; wait-
list group, n=59) were included in the per-protocol sample. In
this sample, participants in the aerobic exercise group
completed an average of 44.2 exercise training sessions
(SD=10.2). The median number of days for the time between
the last completed exercise training session and posttraining
(T2) blood draw as well as posttraining (T2) CPET was 3 days
(IQR, 2–5 days).

Demographics
Time 1 demographic characteristics as well as measures of
aerobic fitness and inflammation are presented for each group
in Table 1. There were no significant differences between the
aerobic training and wait-list groups in any of the T1 measures.
The average age of participants in both groups was 31 (SD=6)
and the mean body mass index was 25 kg/m2 (SD=4).
Participants were 33.6% white, 27.7% Asian, 17.6% black or
African American, 0.8% Native Hawaiian or Pacific Islander,
and 20.2% other races. Overall, study entry circulating inflam-
matory markers were low (median [IQR] of CRP, 0.68 mg/L
[0.31–2.32]; IL-6, 1.33 pg/mL [0.98–2.62]; TNF-a, 8.45 pg/mL
[6.88–10.00]).

Aerobic Capacity
In the unadjusted model on the ITT sample, the aerobic
training group achieved a significantly greater improvement in
aerobic capacity on average by 5.00 mL/kg per minute
(P<0.001) compared with the wait-list group at T2. Within the
aerobic training group, VO2max significantly increased by
4.13 mL/kg per minute at T2, relative to T1 (P<0.001), but
did not change within the wait-list group (P=0.08). The 2-way
interaction between treatment group and time was not
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significant, indicating that treatment differences at T2 and T3
are not significantly different (P=0.19). Similar results were
found when using the per-protocol sample.

Observed descriptive summaries and adjusted model
results using the ITT sample are presented in Table 2. After
controlling for additional covariates of age, sex, T1 body fat
percentage, and T1 alternative Mediterranean diet index,
adjusted model ITT results were similar to the unadjusted
model ITT results except for a reduction in VO2max by
1.00 mL/kg per minute from T1 to T2 in the wait-list group
that reached statistical significance (P=0.045; see Figure 3).
However, in the adjusted model on the per-protocol sample,
the reduction in VO2max from T1 to T2 (by 0.77 mL/kg per
minute) in the wait-list group was no longer statistically
significant (P=0.11).

Physical Activity Independent of the Training
Sessions
During the 12-week training program, the mean (SD) number
of steps/day for the exercise and wait-list groups were 6842
(2294) and 6017 (1983), respectively (P=0.051). During the

4-week deconditioning period, the mean (SD) number of
steps/day was also not significantly different between the
exercise (6051 [2207]) and wait-list (5566 [2265]) groups
(P=0.34). Pearson correlations showed no significant corre-
lations between the average number of steps/day and
unstimulated or stimulated levels of IL-6 or TNF-a at any
point in the study.

Fat-Free Mass
In the unadjusted analysis on the ITT sample, the average
amount of fat-free mass in both the aerobic training and wait-
list groups was not significantly different at T2 (P=0.37). Fat-
free mass did not change for those within the aerobic training
group from T1 to T2 (P=0.37), nor did it change for those in
the wait-list group (P=0.72). The 2-way interaction between
treatment group and time was not significant, indicating that
no significant treatment difference at T2 compared to T3 were
found (P=0.53). The adjusted analyses on the ITT sample (see
Table 2, Figure 4) showed similar results. Results for the per-
protocol sample were similar except that within the aerobic
training group, fat-free mass significantly increased from T1 to
T2 by 3.06 pounds (P=0.011) in the unadjusted analyses and
by 2.98 pounds (P=0.009) in the adjusted analyses.

Inducible TNF-a Release in Whole Blood
In unadjusted analyses using the ITT sample, at T2, there was
no significant effect of the aerobic training intervention on
inducible TNF-a release at T2 (lipopolysaccharide 0.0 ng/mL,
P=0.62; lipopolysaccharide 0.1 ng/mL, P=0.12; lipopolysac-
charide 1.0 ng/mL: P=0.19). Similarly, there were no signif-
icant changes from T1 to T2 within treatment groups. The
2-way interaction between treatment group and time was not
significant, indicating no significant treatment differences
between T2 and T3 (lipopolysaccharide 0.0 ng/mL, P=0.32;
lipopolysaccharide 0.1 ng/mL, P=0.26; lipopolysaccharide
1.0 ng/mL: P=0.10). The unadjusted and adjusted analyses
using the ITT sample and per-protocol sample were similar.
Observed descriptive summaries and adjusted model results
using the ITT sample are presented in Table 2 and Figure 5.

Inducible IL-6 Release in Whole Blood and TLR4
In the unadjusted models using the ITT sample, there was no
significant effect of the aerobic training intervention on
inducible IL-6 release (lipopolysaccharide 0.0 ng/mL: P=0.69;
lipopolysaccharide 0.1 ng/mL: P=0.31; lipopolysaccharide
1.0 ng/mL: P=0.29) or on TLR4 (P=0.49) at T2. There were
also no significant changes from T1 to T2 for each treatment
group on IL-6 or TLR4. The nonsignificant 2-way interaction
between treatment group and time for inducible IL-6 release

Table 1. Demographic and T1 Characteristics of the
Participants Randomized to Exercise and Wait-List Group
(N=119)

Wait List (n=59) Aerobic Training (n=60)

N Mean (SD) or n (%) N Mean (SD) or n (%)

Age, y 59 31.4 (6.2) 60 31.2 (5.7)

Sex 59 60

Male 28 (47.5%) 28 (46.7%)

Female 31 (52.5%) 32 (53.3%)

BMI, kg/m2 59 24.9 (3.8) 59 24.9 (3.8)

Body fat % 56 25.0 (9.5) 58 25.9 (9.7)

AMED index 57 4.4 (1.7) 60 4.3 (1.8)

Race 59 60

Asian 18 (30.5%) 15 (25.0%)

Native Hawaiian
or Pacific
Islander

0 (0.0%) 1 (1.7%)

Black or
African
American

11 (18.6%) 10 (16.7%)

White 20 (33.9%) 20 (33.3%)

Other 10 (16.9%) 14 (23.3%)

Ethnicity 59 60

Hispanic 12 (20.3%) 19 (31.7%)

Not Hispanic 47 (79.7%) 41 (68.3%)

AMED indicates alternative Mediterranean diet; BMI, body mass index.
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(lipopolysaccharide 0.0 ng/mL, P=0.08; lipopolysaccharide
0.1 ng/mL, P=0.22) and TLR4 (P=0.81) indicates no signif-
icant treatment difference between T2 and T3. However, there
was a significant 2-way interaction for IL-6 lipopolysaccharide
1.0 ng/mL, suggesting a differential treatment effect at T2
compared with T3 (P=0.019). Adjusted model results for IL-6
and TLR4 using the ITT sample are presented in Table 2.
Unadjusted and adjusted model results were similar for the
ITT and per-protocol samples.

Moderation of the Treatment Effect by Baseline
Level of Inflammation Markers
The medians and IQR for the low TNF-a groups with
lipopolysaccharide 0.0, 0.1, and 1.0 ng/mL stimulation were
7.7 (4.6–9.7), 25.1 (13.8–49.9), and 66.1 (18.9–291.8),
respectively, and for the high group were 23.4 (17.3–66.5),
321.6 (179.1–494.6), and 1188.3 (526.7–1790.8), respec-
tively. The medians and IQR for the low IL-6 groups with

lipopolysaccharide 0.0, 0.1, and 1.0 ng/mL stimulation were
3.9 (2.6–5.2), 13.0 (5.0–77.0), and 69.5 (20.1–312.8),
respectively, and for the high groups were 11.6 (6.7–99.2),
388.3 (271.5–830.4), and 1406.0 (828.9–1568.9), respec-
tively. The median and IQR for the low TLR4 group was 0.19
(0.1–0.3) and for the high group was 0.7 (0.5–1.1).

The 3-way interaction between dichotomized (high and
low) T1 inflammatory marker levels (TNF-a, IL-6, and TLR4),
treatment, and time was not significant for any inflammatory
outcomes defined above in either the unadjusted or adjusted
models. That is, there was no significant difference in
treatment effect over time between participants with high
versus low levels of the T1 inflammatory markers.

Effect of Inducible Lipopolysaccharide Levels on
TNFa and IL-6
Examination of Table 2 and Figure 5 indicates that in the
training group but not in the wait-list condition, exposure to
0.1 and 1.0 ng/mL lipopolysaccharide increased levels of
TNF-a and IL-6 at T2, but not for the 0.0 ng/mL lipopolysac-
charide condition. The adjusted analyses using the ITT sample
revealed a differential longitudinal treatment effect by
lipopolysaccharide condition in inducible TNF-a (P=0.08) and
IL-6 (P=0.011). Post hoc comparisons showed increases from
T1 to T2 in inducible (lipopolysaccharide 0.1 ng/mL and
lipopolysaccharide 1.0 ng/mL) TNF-a (estimated percent
change 51%; P=0.041) and IL-6 (estimated percent change
42%; P=0.11), as well as significant decreases from T2 to T3
in inducible (lipopolysaccharide 0.1 ng/mL and lipopolysac-
charide1.0 ng/mL) TNF-a (estimated percent change �54%;
P=0.007) and IL-6 (estimated percent change �55%;
P<0.001). No significant changes were seen in either the
training or wait-list groups at the 0.0 ng/mL lipopolysaccha-
ride condition for either TNF-a and IL-6.

Discussion
We conducted an adequately powered, randomized controlled
trial in a cohort of young, healthy, sedentary adults,
contrasting the effects of a 12-week aerobic exercise training
program and a wait-list control condition on lipopolysaccha-
ride-inducible TNF-a, IL-6, and TLR4, following ITT principles of
analysis. Although the training program yielded a 15%
increase in aerobic capacity, planned ITT analysis showed
that there were no effects on any of these inflammatory
markers. Results of the per-protocol analysis were similar. In
order to rule out a “floor effect,” that is, the possibility that
the negative finding was due to our subjects having entered
the study with already relatively low levels of inflammatory
markers, we conducted a secondary analysis, which

Figure 3. Observed T1 mean plotted with adjusted model
estimated T2 and T3 means and standard errors of VO2max on
the intent-to-treat (ITT) sample.

Figure 4. Observed T1 mean plotted with
adjusted model estimated T2 and T3 means and
standard errors of fat-free mass (lbs) on ITT sample.
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confirmed that there were no differences in effects of
treatment in participants with higher versus lower levels of
inflammatory markers at study entry. The failure of the
primary hypothesis, that training would lead to a reduced TNF-
a response to lipopolysaccharide challenge, cannot be
explained by the lack of a training effect because aerobic
capacity increased significantly in the exercise group but did
not change in the wait-list condition. Aerobic group partici-
pants were adherent to the training protocol, as indicated by

exercise logs, gym attendance records, and, most importantly,
training HR levels as measured by HR recordings obtained
during exercise. These data are consistent with the improve-
ment in aerobic capacity in the training but not the wait-list
group.

Intriguingly, post hoc analyses revealed that exercise
training enhanced rather than attenuated the IL-6 and TNF-a
response to the 0.1 and 1.0 ng/mL lipopolysaccharide
conditions and that this effect was reversed by sedentary

Figure 5. Observed T1 geometric mean plotted with adjusted model estimated T2 and T3 geometric
means and standard errors of inducible TNF-a at lipopolysaccharide (A) 0.0 ng/mL, (B) 0.1 ng/mL, and (C)
1.0 ng/mL; and inducible interleukin-6 at lipopolysaccharide (D) 0.0 ng/mL, (E) 0.1 ng/mL, and (F)
1.0 ng/mL. All figures were based on the ITT sample.
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deconditioning. This finding, although preliminary, is incon-
sistent with the prevailing view that the health promotional
benefits of exercise training derive in part through its anti-
inflammatory effects. Nonetheless, some studies have
reported similar findings. A small study contrasting endur-
ance-trained and sedentary men found that lipopolysaccha-
ride-induced monocyte production of IL-6 was greater in the
trained group.35 In 79 middle-aged women in the SWAN
(Study of Women’s Health Across the Nation) study, self-
reported levels of physical activity were associated with
greater lipopolysaccharide-induced production of IL-6, inter-
leukin-1ß, and TNF-a.36 In vivo administration of lipopolysac-
charide to healthy, young, trained or untrained men revealed
tissue-specific induced inflammatory responses: Compared
with their untrained counterparts, trained subjects had an
enhanced lipopolysaccharide-induced TNF-a and IL-6 mRNA
expression in skeletal muscle and slightly reduced responses
systemically and in adipose tissue.37 Some animal studies
also report increases in ex vivo lipopolysaccharide-stimulation
models, with exercise training leading to increases in TNF-a
but not IL-6 in rats38,39; in interleukin-1ß, interleukin-12, TNF-
a, and interferon-c in mice,40–43 and in TNF-a and interferon-ß
in horses.44

Under ordinary circumstances, inflammatory responses to
challenge are under tight feedback control by activation of the
hypothalamic-pituitary-adrenal axis, leading to increased pro-
duction of glucocorticoids, which can inhibit inflammation.
Reduced glucocorticoid production or sensitivity disinhibits
this suppressive process, resulting in greater cytokine pro-
duction. It is possible that exercise training functions in this
way, eliciting increases in lipopolysaccharide-inducible cytoki-
nes by attenuating glucocorticoid sensitivity. Some studies
report findings consistent with this hypothesis. For example,
dexamethasone inhibition of lipopolysaccharide-induced IL-6
was lower in trained compared with untrained men.35 In 18
male cadets in the Brazilian Air Force Academy, 6 weeks of
intensive exercise training led to a reduction in basal cortisol
levels, and in glucocorticoid receptor (GR) mRNA levels and
decreased glucocorticoid sensitivity, measured as the
response to intravenous low-dose dexamethasone.45,46 Bind-
ing capacity of GRs in peripheral blood monocytes was lower in
semiprofessional soccer players than in young and older
comparison subjects.47 Highly trained swimmers had sub-
stantially lower GR-a mRNA expression than untrained control
subjects.48 The increased basal cortisol levels49–51 seen in
endurance athletes may function to downregulate GR activ-
ity.52 GR-binding capacity in peripheral leukocytes was lower
in trained athletes compared with untrained controls.53 These
studies all are consistent with the hypothesis that aerobic
exercise training leads to reduced feedback control of
inflammation by diminished GR activity, resulting in an
enhanced inflammatory response to challenge.

Recent theoretical and empirical work is consistent with
this conclusion, asking in effect why evolution would confer a
survival advantage to diminished immunocompetence when
the immune system’s primary function is to protect the
organism from threat, for example, infection or sterile
injury,54,55 by eliminating the cause of cell injury, removing
necrotic cells, and initiating tissue repair. Thus, there is a
clear survival advantage of having an immune system capable
of a robust response to threat so long as the response does
not persist beyond resolution of that threat. Viewed in this
way, exercise training still is a health-promoting behavior,
increasing the capacity to mount an enhanced, rather than
diminished, inflammatory response to challenge. This position
is consistent with the work of Miller and colleagues56 and,
more generally, of the views of Dhabhar and colleagues54,57,58

and Dienstbier,59 who argued for the health benefits of
significant responsiveness to challenge.

Curiously, precisely this same finding—increased
lipopolysaccharide-induced cytokine production—is reported
in studies investigating the effects of risk-enhancing psy-
chosocial characteristics, for example, caregiving for a sick
relative or early life adversity or traits like hostility and
depression. For example, Miller and Chen showed that young
women raised in harsh family settings had elevated IL-6
responses to lipopolysaccharide challenge associated with GR
desensitization.60 Suarez et al found that greater levels of
hostility and depressive symptomatology were associated
with greater lipopolysaccharide-induced cytokine production
in healthy women61 and men.62 Parents of children with
cancer had diminished dexamethasone-induced suppression
of lipopolysaccharide-induced IL-6 but not TNF-a or inter-
leukin-1ß production compared with a control group.63

Thus, both aerobic exercise training, a health promoting
activity, and psychosocial disadvantage, associated with
elevated risk, show the same phenotypic inflammatory
responses to infectious challenge. Why exercise training and
caregiving stress should share a common mechanism is
unclear. However, an enhanced inflammatory response to
challenge has survival value only to the extent that it abates
after successful resolution of the threat.54,57,58 Resolution of
inflammation, once considered merely the passive dilution
of granulocytes and the return to preinflammation levels of
mononuclear cells, now is seen as an active process
characterized by programmed apoptosis of leukocytes and
phagocytic clearance cellular debris64,65 that may operate
independently of proinflammatory processes. It is possible
that while exercise training and psychosocial disadvantage
promote an enhanced response to ex vivo infectious
challenge, they differ in the resolution of challenge. Testing
this would require measurement of anti-inflammatory cytoki-
nes, for example, interleukin-10 and other proresolution
mediators, and measurement of the proinflammatory cytokine
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response induced by lipopolysaccharide challenge over time
to determine whether it persists or resolves. Neither our study
nor those examining psychosocial risk have collected the data
required to test this hypothesis.

It is possible that because we conducted an ITT analysis,
which includes data from all randomized participants irre-
spective of whether they completed the trial, our sample is
significantly different from other studies, most of which
analyzed data from only those participants who completed
both waves of data collection, as discussed above. By
including participants who dropped out after randomization
but before T2 testing, we may be biasing our findings against
the possibility of a significant effect of training. However, the
per-protocol analysis, in which data only from participants
who completed the study were analyzed, still found no anti-
inflammatory effects of aerobic training.

Additionally, participants in the aerobic exercise arm of
the trial were permitted to choose from among various
training modalities (eg, cycling, Stairmaster, treadmill) so long
as they achieved their target HRs during training, but the
cardiopulmonary exercise tests were conducted on cycle
ergometers. Multiple studies have shown that when CPET is
performed with a modality different than the one used during
training (eg, swimmers tested on a cycle ergometer), the
transfer of training effects is incomplete.66,67 Therefore, our
postintervention CPET measurement may have underesti-
mated the training-induced increase in aerobic fitness in
some of our subjects. However, underestimation would only
strengthen the conclusion that aerobic exercise training does
not have a significant effect on inflammation as measured in
this study.

Finally, our trial was relatively brief in length—only
12 weeks of training. Many studies reporting longer training
programs, some as long as many years, show the predicted
anti-inflammatory effects of training. However, this explana-
tion, too, is unlikely to account for the failure of the training
program to produce an anti-inflammatory effect because
many longer studies show no effect9–12 and many studies of
shorter interventions have the predicted effects.14,16,33

Strengths and Limitations
Strengths of this study include a large sample size, prospec-
tive design, a training plus deconditioning phase, randomiza-
tion, fidelity to the intervention with good adherence achieved
by coaching, and analysis by ITT principles. Additionally,
because participants in this study exercised on their own,
these findings have greater generalizability compared with
studies in which all training sessions were supervised.
Limitations include the relative youth and good health of the
subjects and variability in the specific exercise equipment

chosen by the subject so long as they were able to train at the
target HR. We are unable to determine the effect of this
variation. Other potential limitations include the proportion of
missing data and variation in the interval from last exercise
session to the posttraining (T2) blood draw, as well as the lack
of power to explore potential longitudinal treatment differ-
ences between lipopolysaccharide-inducible levels of TNF-a
and IL-6 using the 3-way interaction between lipopolysaccha-
ride-inducible level, treatment, and time and subsequent
contrasts performed.

In this trial, 16.8% and 19.3% of the T2 (posttraining) data
were missing for our primary outcomes TNF-a and IL-6,
respectively, based on the ITT sample of 119 randomized
participants. By comparison, for example, of 855 enrolled
participants in the HERITAGE study,8 652 had complete data;
that is, the rate of missing data was 23.7%. Reports of other
trials, many of them smaller, also report equivalent or higher
rates of missing data68–70 or fail to report them at all.18,71–74

These studies suggest that the rate of missing data in our trial
was typical for exercise training trials.

As in most clinical trials, exercise related or otherwise,
there was variation in the timing of the postintervention data
collection. In the aerobic exercise group, the median interval
between the last training session and posttraining (T2) blood
draw was 3 days IQR, 2–8 days) for the ITT sample and
3 days (IQR, 2–5 days) for the per-protocol sample. It is
conceivable that this variation may have influenced the
posttraining levels of TNF-a or IL-6, with any training effect
diminishing with an increasing interval. The literature provides
little guidance regarding the maximum interval between the
last exercise session and the blood draw to control for the
loss of an effect of the training regimen. Thompson et al
showed that for circulating IL-6 but for no other inflammatory
marker, an exercise-training–induced reduction was lost after
2 weeks of deconditioning.18 In another study, 12 weeks of
aerobic training led to a reduction in s-intercellular adhesion
molecule-1, which returned to baseline after 4 weeks of
deconditioning, but there was no similar effect on CRP or TNF-
a. IL-6 did not change after training but unexpectedly rose
after deconditioning.75

Given the limited evidence on this matter, we examined the
change from T1 to T2 in TNF-a and IL-6 from the exercise
group as a function of the interval between the last training
session and blood draw. As Figure S1 indicates, up to an
interval of 10 days, there is considerable variability in the
magnitude of change in TNF-a. However, starting at about
10 days, the variability drops substantially, showing that after
this time point, T1 and T2 values were similar, consistent with
the view that an effect of training persists for about 10 days.

More broadly, however, variations in timing of data
collection in human clinical trials are inevitable. Even in the
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best-designed protocols with the most motivated participants,
the real-life considerations of human subjects with busy and
complicated lives may interfere with perfect compliance with
all aspects of the trial. However, with sufficiently large samples
and random assignment, we can minimize their impact.

Importantly, we elected to focus on inducible cytokine
responses to exercise training and not circulating levels
because the latter reflect the contribution of adipocytes,
endothelial cells, and muscle, in addition to monocytes/
macrophages. However, it is clear that these approaches
measure different facets of the inflammatory process: Circu-
lating measures examine levels of systemic inflammation,
whereas inducible measures reflect the ability of cells to
produce cytokines in response to challenge. Many, but as
indicated above, by no means all of the studies demonstrating
anti-inflammatory effects of exercise training measured
circulating levels of inflammation.

Finally, it is difficult to conclusively infer changes in chronic
inflammatory status using a single snapshot sample, given
most markers can vary considerably depending on a variety of
factors including sleep status, diet, time of last exercise bout,
and so on.

Conclusions
This 12-week randomized controlled trial of aerobic exercise
training in healthy, sedentary, young adults produced a 15%
increase in VO2max and a significant increase for fat-free mass
in the per-protocol treatment group and not in the control
group but failed to support the hypothesis that training would
reduce inducible TNF-a, IL-6, and TLR4. However, post hoc
analysis revealed a training-induced enhanced IL-6 and TNF-a
response to lipopolysaccharide stimulation, a finding consis-
tent with the possibility that health benefits of aerobic exercise
training include a robust but time-limited proinflammatory
response to challenge. The failure to support the primary
hypotheses and the unexpected post hoc findings raise
questions about whether and under what conditions exercise
training has anti-inflammatory effects.
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Data S1.  

 

Supplemental Statistical Methods 

Analysis of covariance (ANCOVA) with grand mean centering was used to assess treatment effects and 

within-group changes of aerobic capacity, fat free mass, and inflammation. The model used for 

estimating these effects was as follows: 

Yij - Y̅0 = β0 + boi + β1*(Y0i - Y̅0) + β2*trti + β3*timej + β4*trti*timej    (1) 

Where i is the index for subject, j is the index for time (Session 2, Session 3), Y is the outcome value,  Y̅0 

is the grand (across all subjects and both groups) mean of the outcome at baseline, β0 is the overall 

model intercept, boi is the random intercept for subject i, β1 is slope of the association between the 

outcome at baseline and follow-up, β2 is the treatment effect at session 2, β3 is the change in 

outcome from Session 2 to Session 3 for the waitlist group, and β4 is the treatment difference in 

change from Session 2 to Session 3. “Waitlist” was the reference value for trt. “Session 2” was the 

reference value for time. 

This model is equivalent to modeling the Session 2 and Session 3 outcome values, while adjusting 

for baseline, as: 

Yij = β0 + boi + β1*Y0i + β2*trti + β3*timej + β4*trti*timej     (2) 

in that the error variances for the 2 models are identical (Mulligan and Wiesen, 2003). Moreover, the 

treatment effect at Session 2, β2 (which is the primary parameter of interest for this study), has the 

same interpretation in both models, Similar for β3 and β4. However, model (1) is preferable, as it is 

more straightforward to estimate within-group change from baseline in the outcome: Using model (1), 

the mean change from baseline to Session 2 for the waitlist group is simply equal to β0; the mean 

change from baseline to Session 2 for the exercise group is equal to β0 + β2; the mean change from 

baseline to Session 3 for the waitlist group is equal to β0 + β3; and, finally, the mean change from 

baseline to Session 3 for the exercise group is equal to β0 + β2 + β3 + β4. 



Figure S1. Change in TNF, stimulated by 0.0, 0.1, and 1.0 ng/mL LPS, from study 

entry to post-conditioning as a function of the interval between the final exercise 

training session and the T2 blood draw.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Up to about 10 days, there is substantial variability in the change in TNF, after which little 

change is seen.  
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