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Understanding of human intention by observing a series of human actions has been a

challenging task. In order to do so, we need to analyze longer sequences of human

actions related with intentions and extract the context from the dynamic features. The

multiple timescales recurrent neural network (MTRNN) model, which is believed to be a

kind of solution, is a useful tool for recording and regenerating a continuous signal for

dynamic tasks. However, the conventional MTRNN suffers from the vanishing gradient

problem which renders it impossible to be used for longer sequence understanding.

To address this problem, we propose a new model named Continuous Timescale

Long-Short Term Memory (CTLSTM) in which we inherit the multiple timescales concept

into the Long-Short TermMemory (LSTM) recurrent neural network (RNN) that addresses

the vanishing gradient problem. We design an additional recurrent connection in the

LSTM cell outputs to produce a time-delay in order to capture the slow context. Our

experiments show that the proposed model exhibits better context modeling ability and

captures the dynamic features on multiple large dataset classification tasks. The results

illustrate that the multiple timescales concept enhances the ability of our model to handle

longer sequences related with human intentions and hence proving to be more suitable

for complex tasks, such as intention recognition.

Keywords: continuous timescale, recurrent neural network, LSTM, classification, dynamic sequence

INTRODUCTION

In machine learning, dynamic sequence modeling is a burning research topic, which includes
intention understanding, action recognition, language understanding, semantic understanding
(Peniak et al., 2011; Wasser and Lincoln, 2012; Wonmin et al., 2015; Kim et al., 2017) etc.
Unlike popular static models, such as Convolutional Neural Network (CNN) (LeCun et al.,
1998) and Deep Belief Network (DBN) (Hinton and Salakhutdinov, 2006) that focus on the
feature of the data without considering any time dependency, the dynamic models try to find
the relationships between data following the time axis. Context, which is generally mentioned in
language understanding (Ghadessy, 1999; Givón, 2005), also plays an important role in dynamic
sequence classification. Context contains several physical and abstract aspects such as time,
symbols, location, names, etc. to describe the background of dynamic signal. Same words may have
different meaning under different contexts. In short, context plays the role of surroundings, which
contains some inconspicuous but important descriptions of the current phenomenon. Context can
be deemed as the key of the dynamic sequence learning.
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Multiple Timescales Neural Network (MTRNN), developed
by Tani et al. (2008), is believed to be efficient to hold the context
of dynamic trajectories. MTRNN is a successive extension of
Recurrent Neural Network (RRN). All biological neural networks
are recurrent (Jaeger, 2002), which is one of the reasons to choose
RNN for dynamic sequence modeling. MTRNN, in turn, consists
of multiple Continuous Recurrent Neural Network (CTRNN)
layers. Each CTRNN layer is allowed to have one or more
different timescale constants. Different time constants imply
different activation speeds. That is why this network is called
“multiple timescales.” Inspired by the structure of human brain,
MTRNNhas been proved to be useful on goal-planning problems
(Arie et al., 2009; Jeong et al., 2012).

There are several extensions of RNN such as Elman networks,
Jordan network, etc. These extensions aim to improve the
memory ability and the performance of RNN (Cruse, 2006)
but suffer from the vanishing gradient problem (Hochreiter
et al., 2001). Long Short Term Memory network (LSTM),
developed by Hochreiter and Schmidhuber (1997), and promises
to overcome this problem. Similar to most RNNs, LSTM also
uses derivative based methods to evolve itself. LSTM uses several
gates with different functions to control the neurons and store
the information. LSTM cell has the ability to keep important
information for a longer period it is used. This property of
holding information allows LSTM to perform well on classifying,
processing or predicting a complex dynamic sequence. Research
has shown that LSTM can achieve better performance than
Hidden Markov Model (HMM) along with other RNNs on
several real-world problems, such as handwriting recognition
(Graves and Schmidhuber, 2005; Baccouche et al., 2011; Graves
et al., 2013). It has also been proved that RNN performs well in
human action modeling (Schrodt and Butz, 2016; Bütepage et al.,
2017a). Moreover, deep RNN structures are able to represent
human motion and natural language (Bütepage et al., 2017b;
Plappert et al., 2017). Thus, deep RNN is a good candidate
to handle human motion and language modeling problems.
But how to design an efficient deep RNN structure is still a
challenging problem.

We intend to capture the context efficiently while overcoming
the vanishing gradient problem, which is still existing in
CTRNN and MTRNN. We propose a model considering the
advantages of an LSTM and inheriting the biological idea given
by CTRNN. The proposed Continuous Timescale Long-Short
Term Memory (CTLSTM) builds a temporal hierarchy into the
architecture that enhances the model’s ability to solve long-
term complex sequence modeling problems. We evaluate our
model on multiple public datasets to compare with the baselines.
We demonstrate the capability of our model in human action
classification tasks as well as human intention recognition tasks
which consist of longer multiple action sequences. Our results
illustrate that our proposed model outperforms the existing
baselines.

The remainder of this paper is organized as follows: The
proposed model is described in Section Proposed Model. The
experiments and results are reported in Section Experiments and
Results. Finally, the conclusion and discussion are presented in
Section Conclusion and Discussion.

PROPOSED MODEL

We describe the proposed model in this section including
the background study as well as the motivation of our
model.

Motivation
Dynamic sequence, in general, is a number set (vector)
combination in which each vector has a given time or spatial
coordinates. A dynamic model can also be considered as a set of
relationships between two ormoremeasurable quantities. It relies
on one or more fixed rules to describe how the dynamic model
works and evolves itself. At any given point of time, a dynamic
system has a state given by a set of real numbers (a vector) that
can represent the current situation.

Inspired by MTRNN and LSTM, we aim to develop a
RNN with multiple timescales structure with better ability to
capture the dynamic features in longer sequences such as a
series of human actions for understanding human intention.
Time constants, which are the key of CTRNN, can be defined
separately for each neuron node. Different time constants lead to
different neuron activation abilities. For example, neurons with
large timescale will activate slowly. That means slow neuron will
become inactive to some short-term signals. Once the neuron
starts firing, it would last for a longer time according to its
timescale. Based on the results of previous research (Tani et al.,
2008; Arie et al., 2012; Jeong et al., 2012; Yu and Lee, 2015a,b), we
believe that different time scales would bring benefits for dynamic
signal modeling. Thus, to inherit the advantages of MTRNN,
the model is designed with different time scales. Layers with
different time constants work differently. Layers with slower time
constants would focus on signal organization and planning, while
layers with faster time constants can implement the elemental
dynamic sequences. Yu and Lee (2015a) and Kim et al. (2017)
have already demonstrated the use of MTRNN in motion based
intent recognition tasks. On the other hand, LSTM, which has
a more complex structure than the common RNN neuron, is
efficient in various applications involving long-term dependency
(Gers et al., 2000, 2002). We aim to design a dynamic system,
which has the multiple timescales structure but with more
efficient neurons.

Continuous Timescale Recurrent Neural
Network
CTRNN, which is also an extension of RNN, is a kind of artificial
neural network described by Hopfield, Tank, and Beer (Hopfield
and Tank, 1986; Beer, 1995). With a plausible biological
interpretation and inexpensive computational complexity,
CTRNN has always been used to explain biological phenomena
(Kier et al., 2006). The structure of CTRNN is shown in Figure 1.

CTRNNs were developed by Beer (1995). The basic
hypothesis is:

τm
dym

dt
= −ytm +

∑N

n
wnmθ

(

ytn − bn
)

+ Ii(t) (1)

where τm is the membrane time constants of the neuron
m; ytm is the membrane potential after the deletion of the
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FIGURE 1 | Structure of a CTRNN neuron.

action potential; bn is the bias of the neuron n (n ∈ N);
Ii(t) is the additional input in time t; θ(.) is the activation
function which could be logistic sigmoid, softmax or hyperbolic
tangent.

Equation (1) was derived based on the RC circuit
neural model (Dwyer et al., 2010). Thus, CTRNN has a
clear interpretation rule from the biological neurons to
the artificial neurons of the engineering model. For this
very reason, CTRNNs have been used to explain biological
phenomenon.

Similar to RNN, the forward process of CTRNN can be
concluded as:

utm =

(

1−
1

τm

)

ut−1
m +

1

τm

(

∑I

i
wimx

t
i +

∑H

h
whmy

t−1
h

)

(2)

where τm is the time constant of the neuron m; utm is the
presynaptic value of the mth neuron in the tth step and x is
the net inputs of the neuron m; whm is the weight between the
hth neuron to the mth neuron; I represents the direct inputs
of neuron m and H denotes all other hidden neurons with
have weight connections to m. After the presynaptic values are
obtained, the activation output can be calculated with suitable
activation function. The importance of τm is to produce a
resistance to reject the input from other neurons and try to
keep the history information in the neuron. Larger τm means
stronger resistance and a slower activation process. In other
words, a neuron with large time constant attempts to store
the history information and needs a longer time to accept new
inputs.

Back Propagation Through Time (BPTT) can also be used to
update the weights of CTRNN as:

∂E

∂utm
= θ

′ (

utm
)

(

∑O

o
wmo

∂E

∂uto
+

1

τh

∑H

h
wmh

∂E

∂ut+1
h

)

+

(

1−
1

τm

)

∂E

∂ut+1
m

(3)

where τh is the time constant of the neuron h; O denotes
the output neurons; ∂E

∂utm
represents the error gradient of the

neuron utm. Please note that τm and τh can be different. With
the derivative and the synaptic outputs, weights between two
neurons can be obtained using Equation (4).

∂E

∂wmn
=

∑T

t

∂E

∂utn

∂utn
∂wmn

=

∑T

t

∂E

∂utn
ytm (4)

Long-Short Term Memory
LSTM was created by Hochreiter and Schmidhuber (1997).
Unlike the previous RNN models (mentioned in Section
Continuous Timescale Recurrent Neural Network) that focus on
biological interpretation, LSTM was developed as an engineering
model to solve the vanishing gradient problem (Hochreiter et al.,
2001).

The structure of LSTM is shown in Figure 2. In order to solve
the vanishing gradient problem, the first model of LSTM defines
two kinds of gates: input and output gates. Input gate is used to
control whether the cell should accept the input information or
not. The output gate decides whether the cell should output the
contents stored in the cell. Gers et al. improved this prototype and
added a forget gate to the model in 2000 (Gers et al., 2000). The
forget gate provides a way to reset the contents of cells. LSTMwas
further improved by Gers et al. (2002). They added the peephole
connections to make it possible for the cells to control the time
for gate opening inside the block.

The LSTM cells are key in handling the vanishing gradient
problem. LSTM can control the information though time and can
retain the important information bymaking the information flow
unchanged all along the time steps. LSTM has the ability to add
or remove information via the three gates and each gate learns to
do so through backpropagation.

The Proposed Continuous Timescale
Long-Short Term Memory (CTLSTM) Model
As shown in Figure 1, CTRNN neuron is still very similar to
a traditional RNN neuron. The difference between a CTRNN
neuron and an RNNneuron is that the CTRNNneuron considers
a time scale delay after calculating the network input. However,
LSTM uses a considerably different structure called block and
cells instead of the traditional RNN neurons. An LSTM block
includes three different gates and several cells (Only one cell is
shown in Figure 2). Each cell has an input and an output. But
the same gates control cells in one block. The inputs of gates are
similar with net inputs. Both direct inputs and neuron (block)
outputs from other hidden layer could be the gate inputs or net
inputs. Although these two structures are quite different from
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FIGURE 2 | Structure of LSTM block with a single cell.

each other, the input and output rules are still similar. This makes
it possible for us to combine these two models.

The proposed CTLSTM model is shown in Figure 3. It is
known that LSTM cell is able to capture the non-linear properties
and can solve the “vanishing gradient” problem. The idea of
CTLSTM network is to separate different tasks to different blocks
with different timescales. We integrate the LSTM model with
the CTRNN model by including a timescale delay at the end of
the block. This idea has been proved to be efficient in the case
of MTRNN (Alnajjar et al., 2013). The forward process of the
proposed CTLSTMmodel is shown in Equations (5–13).

utl =

∑I

i
wimx

t
i +

∑H

h
whmy

t−1
h

+

∑C

c
wcms

t−1
c (5)

ytl = f (utl ) (6)

utφ =

∑I

i
wiφx

t
i +

∑H

h
whφy

t−1
h

+

∑C

c
wcφs

t−1
c (7)

ytφ = f (utφ) (8)

utc =

∑I

i
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t
i +

∑H

h
whwy

t−1
h

(9)

stc = ytφs
t−1
c + ytlg(u

t
l ) (10)

utw =

∑I

i
wiwx

t
i +

∑H

h
whwy

t−1
h

+

∑C

c
wcws

t
c (11)

ytw = f (utw) (12)

ytc =
1

τ
ytwh

(

stc
)

+ (1−
1

τ
)yt−1

c (13)

The activation process of the input gate is shown in Equations
(5) and (6). i, h, and c denote the input, hidden and cell state,
respectively. Similarly, forget gate is represented in Equations (7)
and (8). Cell input is obtained in Equation (9) and the cell state is
calculated using Equation (10). Similar to input and forget gate,
the output gate activation function is represented in Equations
(11) and (12). States at time t step stc are used for the input of

FIGURE 3 | Structure of the proposed Continuous Timescale LSTM

(CTLSTM).

the output gate in time t, while the state in t - 1 step st−1
c is

used for calculating the input and forget gate values in time t.
Finally, the cell outputs are calculated using Equation (13) where
we added a time constant τ for each cell. Larger τ means slower
cell outputs, and can make the cell focus on the slow features of
the dynamic input signal. The traditional LSTM block would be
a special case of CTLSTM when τ = 1. f (.) is the activation
function of the gates while g(.) and h(.) are the activation function
of the cell input and output, respectively.We followedGraves and
Schmidhuber (2005) and define f (.) as logistic sigmoid function
while g(.) and h(.) are hyperbolic tangent functions.

According to the forward process (Equations 5–13) and
the BPTT rules, the backward pass (Equations 14–18) can be
derived as:

∂E

∂ytc
=

(

1−
1

τ

)

∂E

∂yt+1
c

+
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wck

∂E
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k

+
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h
wch

∂E

∂ut+1
h

(14)

∂E

∂utw
=

1

τ
f ′(utw)

∑C

c
h(stc)

∂E

∂ytc
(15)

∂E

∂stc
=

1

τ
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′ (

stc
) ∂E

∂utco
+ yt+1

φ

∂E
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+ wcl
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l
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+wcφ
∂E

∂ut+1
φ

+ wcw
∂E

∂utw
(16)

∂E

∂utc
= f (utφ)

∂E

∂stc
(17)

∂E

∂utφ
= f ′(utφ)

∑C

c
st−1
c

∂E

∂ytc
(18)

∂E

∂ut
l

= f ′(utl )
∑C

c
g(utc)

∂E

∂ytc
(19)

where the derivative of cell outputs are calculated in Equation
(14),

∑K
k wck

∂E
∂ut

k

is the error term from the output layer and
∑H

h wch
∂E

∂ut±1
h

denotes the error come from other hidden layers.

H can be cell, gate or the neurons of the RNN. Equations (15),
(18), and (19) represent the error term of output gate, forget gate,
and input gate, respectively. The cell state error is calculated in
Equation (16) and cell input error is shown in Equation (17).

Figure 4 shows an application example of the proposed
CTLSTM network. We use two CTLSTM layers to build a
CTLSTM model. Similar to Supervised MTRNN (Yu and Lee,
2015a), CTLSTM also has slow and fast context layers and can
work for both classification and prediction tasks simultaneously.
We believe that the fast CTLSTM layer can focus on the
fast fractional work while slow CTLSTM can work for slow
organizing tasks. This property will help the CTLSTM model
to capture the dynamic context from the longer sequences
efficiently.

EXPERIMENTS AND RESULTS

In order to evaluate our model, we conducted several
experiments using multiple datasets including human motion
and intention recognition. The mean results are reported with
± s.d. for the performance over 10 runs for each task. We also
report the Wilcoxon signed-rank statistical test results to find
the significance of the performance of CTLSTM over the existing
model in each task. The details of each experiment and the results
are illustrated in this section.

UCI Character Trajectories Dataset
We used the character trajectories dataset which is a part of
the UCI dataset (Williams et al., 2006). It has a total of 2,858

FIGURE 4 | Structure of a CTLSTM network.

samples and 20 kinds of character trajectories. The data consist
of three dimensions which is x, y, and the pen tip force. This
dataset consists of only one stroke characters with a single
“PEN-DOWN” segment since the character segmentation was
performed using a pen tip force cut-off point. For example,
characters like “t” or “f ” were not included in the dataset. The
details of the 20 kinds of characters are shown in Table 1 and
Figure 5. 1,433 randomly selected samples are used for training
and the remaining 1,425 samples are used for testing. We train
the CTLSTM and LSTM models for 500 epochs. This stopping
point was chosen since the error does not decrease after an
additional training of 50 epochs. The neuron cell states are
initialized as set as 0 in all experiments.

The learning rate for both the baseline model using LSTM
and the proposed model using CTLSTM was set to 0.00001. 130
blocks (100 + 30 as two layers) were used in the LSTM model.
100 fast CTLSTM blocks (τ = 1) and 30 slow CTLSTM blocks
were used to build the CTLSTM model. Each block of CTLSTM
or LSTM contain only one cell. For a fair comparison, we chose
the same network structure (100+ 30 as two layers) as described
in Figure 4 for both CTLSTM and LSTM. Max pooling was
used for classification decision in both models. Both offline and
online classification results are shown in Table 2. The definition
of offline and online accuracy are given below:

P(x) =
Nx

Ntotal
(20)

Acccoffline =

{

1 if argmax
x

P(x) = C

0 else
(21)

TABLE 1 | UCI dataset description.

Train and test sequences

Classes Training set Test set Total

a 97 74 171

b 73 68 141

c 55 87 142

d 82 75 157

e 113 73 186

g 66 72 138

h 57 70 127

l 80 94 174

m 69 56 125

n 56 74 130

o 68 73 141

p 70 61 131

q 70 54 124

r 57 62 119

s 64 69 133

u 67 64 131

v 74 81 155

w 60 65 125

y 67 70 137

z 88 83 171

Total 1,433 1,425 2,858
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FIGURE 5 | Twenty samples of characters taken from the mixed dataset. Total size of dataset is 2,858 characters, with over 100 samples of each character.

TABLE 2 | Classification results for UCI dataset.

Accuracy (True positive)

Max-pooling (Offline) Real-time (Online)

Classes CTLSTM LSTM CTLSTM LSTM

a 75.68 ± 15.02 45.14 ± 19.35 45.59 ± 5.49 35.14 ± 9.73

b 87.65 ± 13.59 80 ± 9.54 72.94 ± 9.73 64.22 ± 8.28

c 87.36 ± 7.69 68.85 ± 10.87 53.88 ± 5.01 42.58 ± 6.63

d 98.8 ± 2.1 97.6 ± 3.31 78.68 ± 4.09 74.7 ± 2.68

e 97.26 ± 0.61 96.44 ± 4.21 90.22 ± 1.49 89.51 ± .3.97

g 97.92 ± 1.55 94.17 ± .4.68 78.4 ± 3.28 72.07 ± 6.8

h 83 ± 8.89 75.86 ± 9.46 66.87 ± 7.75 62.02 ± 8.15

l 92.34 ± 14.55 60.96 ± 16.8 71.49 ± 5.92 54.1 ± 14.02

m 74.82 ± 8.54 79.29 ± 11.01 67.81 ± 7.1 68.63 ± .9.19

n 53.78 ± 10.02 42.43 ± 12.27 43.57 ± 7.62 32.48 ± 8.54

o 76.99 ± 10.1 73.97 ± 11.15 54.79 ± 7.36 57.16 ± 8.32

p 94.59 ± 3.03 93.44 ± 5.96 77.69 ± 2.37 73.7 ± 6.48

q 92.22 ± 3.78 81.11 ± 10.37 70.02 ± 5.3 65.43 ± 9.08

r 60 ± 12.38 70.48 ± 18.18 55.64 ± 7.51 62.28 ± 15.27

s 96.52 ± 5.55 96.67 ± 2.25 79.49 ± 5.55 78.62 ± 2.99

u 79.06 ± 10.69 80.47 ± 8.16 60.79 ± 7.99 59.26 ± 6.47

v 98.64 ± 2.94 98.77 ± 2.34 81.24 ± 2.76 81.96 ± 2.63

w 73.54 ± 9.23 85.85 ± 6.8 62.21 ± 7.23 70.77 ± 5.76

y 93.86 ± 3.62 96.14 ± 3 71.95 ± 4.59 75.06 ± 3.57

z 100 ± 0 100 ± 0 95.33 ± 2.42 95.17 ± 1.6

Avg. 85.7 ± 1.53 80.88 ± 3.74 68.93 ± 0.98 65.74 ± 2.54

Weighted Avg. 86.2 ± 1.72 80.57 ± 3.75 69.12 ± 1.02 65.5 ± 2.49

Numbers in bold show the best performance in the particular task.

Accconline = P(c) =
Nc

Ntotal
(22)

Accweighted avg =

∑M

m

Nm
∑M

m Nm

Accmonline (23)

where Nx is the frame number which is classified as class x
and Ntotal is the total frame number of the current sequence. In
simple terms, there are only two cases of offline classification on
one sample: 100 or 0%. But online classification requires a real-
time per frame accuracy. Since, this dataset is unbalanced, we
performed a weighted average according to Equation (27), where
Nm is the frame number of class m,M is the species number and
Accm

online
is the online accuracy of classm.

Theoretically, the timescale should be similar to the length of
a dynamic feature. From Figure 7 we can find that a dynamic
feature (e.g., from peak to valley) ranges from 10 to 30 frames,
thus we chose 20 as the slow context timescale for this task.

With the help of the slow CTLSTM blocks, CTLSTM has
better performance than traditional LSTM on multiple character
trajectories classification on both cases. Figure 6 shows the real-
time classification outputs. The red lines denote the output
neuron activation corresponding to the correct class, and the
blue lines mean the output neuron activation corresponding to
the other classes. The activation of the correct class of CTLSTM
goes up and never falls down in Figure 6. The neuron activation
illustrated using pixels is shown in Figure 7. Brighter pixels
express higher activation value, while the darker ones express
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FIGURE 6 | An example of real-time classification outputs of the two models

(character m).

lower value. X axis denotes the time axis while the Y axis is
the activation of the corresponding neuron number. The neuron
activation of the traditional LSTM layer is shown in the top part
of Figure 7. Out of the 130 neurons in total, the 30 neurons are
in the slow CTLSTM layer. The activation of the slow and fast
CTLSM layer neurons can be seen in the middle part of Figure 7.
As illustrated in Figure 7, we can distinguish the neuron activities
of LSTM and CTLSTM. We can see that the neuron activity
of LSTM is uniform for all the neurons. Whereas, the slower
CTLSTM neurons can be seen to start its activations with a
delay since the timescale is larger for those slow neurons. On
the other hand the faster CTLSTM behaves similar to the LSTM
since the timescale is 1 for these neurons as the case of LSTM.
In the case of LSTM, the activations of all the neurons fires
frequently, similar to the fast CTLSTM cell. However, in CTLSM,
we can easily distinguish that the cells in the slow CTLSTM
layer have slower activation than the ones of fast CTLSTM
layer. This feature helps the model to become more stable in
the real-time classification task. It would be more easily for a
slow CTLSTM block to capture and hold an important dynamic
feature than a fast CTLSTM (LSTM) block. The classification
accuracy, the error curve of classification and prediction are
shown in Figures 8–10, respectively. The structure illustrated
in Figure 4 is also implemented for LSTM in order to conduct
a fair comparison. We implemented a two layer LSTM with
100 + 30 LSTM blocks and compare it to CTLSTM. Similar
to the classification error decreasing curve shown in Figure 9,
the prediction error of CTLSTM decreases faster than LSTM
as shown in Figure 10. The classification performance is shown
in Table 2. The experiment results show that prediction helps
both CTLSTM and LSTM to converge faster, and CTLSTM
outperforms LSTM in both prediction as well as classification.
The confusion matrix of CTLTM with prediction is shown
in Figure 11. It can be seen that both algorithms have some

FIGURE 7 | An example of real-time neuron activation of the two models

(character m).

difficulty in classifying similar pairs such as “n” and “h”, “a” and
“c”, “q” and “g,” etc.

Furthermore, Table 3 shows the Wilcoxon signed-rank test
to check the difference in performance between CTLSTM and
LSTM. As illustrated in the results, CTLSTM outperforms LSTM
significantly.

Microsoft Research Cambridge-12 Kinect
Gesture Dataset
We use the Microsoft Research Cambridge-12 (Fothergill et al.,
2012) dataset in this experiment. The dataset consists of
sequences of human movements, represented as body-part
locations, and the associated gesture to be recognized by the
system. It included 594 sequences and 719,359 frames—∼6 h
and 40 min—collected from 30 people performing 12 gestures.
In total, there are 6,244 gesture instances. Each sequence lasts
about 900–3,000 frames. We use 100 fast with 30 slow blocks
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FIGURE 8 | Classification accuracy (true positive) curve of CTLSTM and LSTM

for UCI dataset.

FIGURE 9 | Classification error decreasing curve of CTLSTM and LSTM for

UCI dataset.

for CTLSTM structure. LSTM with 130 blocks is used for
comparison. The average length of MRC12 dataset is about 1,000
frames. Thus, the time constant we used for slow blocks is set to
40. The motion files contain tracks of 20 joints estimated using
the Kinect Pose Estimation pipeline. X, Y coordinates and the
depth distances are recorded in the dataset. The body poses are
captured at a sample rate of 30 Hz with an accuracy of about 2
cm in joint positions.

Similar to our previous experiment, we randomly select half
of the dataset to be used for training and the other half is used
for testing. The stopping point was chosen when the error did
not decrease after 30 epochs. The dataset is normalized by using
min-max normalization. The details of the 12 kinds of motions,
and the sequences used for train and test are shown in Table 4.

FIGURE 10 | Prediction error decreasing curve of CTLSTM and LSTM for UCI

dataset.

FIGURE 11 | Confusion matrix of UCI dataset.

TABLE 3 | Wilcoxon signed-rank test results for the UCI dataset.

Method 1 Method 2 Z **p

Offline LSTM CTLSTM −2.803 0.005

Online LSTM CTLSTM −2.803 0.005

The classification performance of CTLSTM shows significant increase in the comparison

(**p < 0.01).

We set the learning rate for both LSTM and CTLSTM to
0.00001. In both models, each block included one cell. Max
pooling was used for classification decision in both models.
The classification performance is shown in Table 5. CTLSTM
shows better performance than LSTM. We also report the
Wilcoxon signed-rank test in Table 6 and the results indicate
the significance of the performance of CTLSTM over LSTM
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and MTRNN. The accuracy and the error curve of the training
are shown in Figures 12, 13, respectively. Note that CTLSTM
converges much faster and is more stable than LSTM. With the
help of slow blocks, CTLSTM manages to outperform LSTM.
We also compare our model to another neural recurrent model
called Supervised MTRNN (Yu and Lee, 2015b). The neuron
number, network structure and timescales used in Supervised
MTRNN are the same as CTLSTM. We omit the result of
Supervised MTRNN in the first experiment with UCI dataset
because Supervised MTRNN did not converge over 1,000
epochs.

We also test the prediction performance of LSTM, CTLSTM
and Supervised MTRNN in Figure 14 for the Microsoft

TABLE 4 | Dataset description of Microsoft Research Cambridge-12 (MRC12)

dataset.

Train and test sequences

Classes Training Test Total

set set

Iconic

gestures

Crouch or hide (G2) 25 25 50

Put on night vision goggles (G4) 25 25 50

Shoot a pistol (G6) 25 24 49

Throw an object (G8) 25 24 49

Change weapon (G10) 24 24 48

Kick (G12) 25 24 49

Metaphoric

gestures

Start music/raise volume (of music) (G1) 25 25 50

Navigate to next menu (G3) 25 25 50

Wind up the music (G5) 24 24 48

Take a bow to end music session (G7) 25 25 50

Protest the music (G9) 25 25 50

Move up the tempo of the song (G11) 25 24 49

Research Cambridge-12 dataset. Similar as the results shown in
Figure 10, prediction error of CTLSTM decreases faster than
LSTM.

TABLE 6 | Wilcoxon signed-rank test results for Microsoft Research

Cambridge-12 (MRC12) dataset.

Method 1 Method 2 Z **p

LSTM CTLSTM −2.599 0.009

MTRNN CTLSTM −2.803 0.005

MTRNN LSTM −2.803 0.005

The classification performance of CTLSTM is shown to have a significant increase in the

comparison (**p < 0.01).

FIGURE 12 | Classification accuracy (true positive) curve of CTLSTM and

LSTM for Microsoft Research Cambridge-12.

TABLE 5 | Online classification results for Microsoft Research Cambridge-12 (MRC12) dataset.

Real-time classification accuracy in %

Classes CTLSTM LSTM MTRNN

Iconic gestures Crouch or hide (G2) 73.78 ± 5.69 69.04 ± 7.68 31.88 ± 19.07

Put on night vision goggles (G4) 86.69 ± 3.35 80.35 ± 6.49 65.68 ± 24.68

Shoot a pistol (G6) 87 ± 4.2 79.01 ± 3.83 54.54 ± 25.89

Throw an object (G8) 84.89 ± 4.61 79.17 ± 6.68 39.1 ± 25.88

Change weapon (G10) 78.16 ± 4.54 74.13 ± 3.84 24.54 ± 11.45

Kick (G12) 85.59 ± 4.61 86.77 ± 6.65 56.28 ± 17.74

Metaphoric gestures Start Music/Raise Volume (of music) (G1) 82.46 ± 5.34 77.17 ± 5.28 49.43 ± 29.48

Navigate to next menu (G3) 89.38 ± 1.52 91.36 ± 0.97 48.09 ± 18.43

Wind up the music (G5) 73.03 ± 4.47 72.66 ± 6.69 35.3 ± 23.06

Take a Bow to end music session (G7) 69.12 ± 5.97 76.62 ± 3.03 55.63 ± 17.8

Protest the music (G9) 62 ± 6.65 61.28 ± 8.6 37.55 ± 14.12

Move up the tempo of the song (G11) 86.95 ± 1.65 86.57 ± 1.96 37.95 ± 12.45

Average 79.92 ± 1.45 77.84 ± 1.71 44.66 ± 8.22

Number in bold shows the best performance.
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FIGURE 13 | Classification error decreasing curve of CTLSTM and LSTM for Microsoft Research Cambridge-12.

FIGURE 14 | Prediction error decreasing curve of CTLSTM and LSTM for

Microsoft Research Cambridge-12.

Human Action Dataset
This experiment is conducted on a custom dataset collected
by us. It consists of long sequences of human movements,

TABLE 7 | Dataset description for 10 kinds of actions.

Train and test sequences

Classes Training set Test set Total

Standing 10 10 20

Eating noodles 10 10 20

Drinking 10 10 20

Clapping 10 10 20

Raising hand 10 10 20

Pointing 10 10 20

Bowing 10 10 20

Crouching 10 10 20

Punching 10 10 20

Kicking 10 10 20

represented as body-part locations, and the associated gesture to
be recognized by the system. The dataset includes 200 sequences
and 200,000 frames—∼2 h—collected using 10 volunteers
performing 10 actions. Each sequence lasts about 1,000 frames.
The details of this dataset and the sequences used for training
and testing are listed in Table 7. The data contain tracks of 25
joints estimated collected using Kinect v2. X, Y coordinates and
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the depth distance are recorded in the dataset. The body poses
are captured at a sample rate of 30 Hz with an accuracy of about

TABLE 8 | Online classification results for 10 kinds of actions.

Real-time classification accuracy in %

Classes CTLSTM LSTM MTRNN

Standing 90.64 ± 2.78 91.31 ± 3.98 90.33 ± 5.16

Eating noodles 81.58 ± 2.76 66.55 ± 3.7 71.6 ± 6.46

Drinking 79.63 ± 3.16 78.38 ± 4.45 73.89 ± 6.04

Clapping 65.32 ± 2.91 79.01 ± 5.26 95.05 ± 3.75

Raising hand 96.53 ± 2.4 85.83 ± 5.28 90.33 ± 4.07

Pointing 87.76 ± 2.82 77.67 ± 7.06 67.77 ± 6.15

Bowing 84.11 ± 2.97 86.87 ± 4.77 86.13 ± 4.99

Crouching 96.04 ± 2.58 94.07 ± 3.58 89.67 ± 5.27

Punching 75.53 ± 3.2 50.78 ± 7.27 35.38 ± 5.82

Kicking 85.9 ± 2.81 63.65 ± 7.78 38.4 ± 5.9

Average 84.3 ± 1.43 77.41 ± 1.91 73.86 ± 1.69

Number in bold shows the best performance.

TABLE 9 | Wilcoxon signed-rank test results for 10 kinds of actions.

Method 1 Method 2 Z **p

LSTM CTLSTM −2.803 0.005

MTRNN CTLSTM −2.803 0.005

MTRNN LSTM −2.803 0.005

The classification performance of CTLSTM can be seen to have a significant improvement

in the comparison (**p < 0.01).

two centimeters in joint positions. When recording the data,
volunteers are free to do the specified action instances arbitrary
number of times during the 1,000 frames. The parameters chosen
for our dataset are the same with MRC12. The classification
results are shown in Table 8. Table 9 shows the results of
Wilcoxon signed-rank test and it can be seen that CTLSTM
outperforms LSTM and MTRNN significantly. Figure 15 shows
the classification accuracy of the training. The error curve of
the training process is shown in Figure 16. Similar to Figures 8,
9, CTLSTM always converges faster than LSTM and Supervised

FIGURE 16 | Classification error decreasing curve of CTLSTM, LSTM, and

MTRNN for 10 kinds of actions.

FIGURE 15 | Classification accuracy (true positive) curve of CTLSTM, LSTM, and MTRNN for 10 kinds of actions.
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TABLE 10 | Dataset description for five kinds of intentions.

Train and test sequences

Intention classes Actions included Training set Test set Total

Having a meal Eating + drinking 10 10 20

Fitness exercise Standing + crouching 10 10 20

Appreciate Clapping + bowing 10 10 20

Seeking attention Raising hand + pointing 10 10 20

Aggression Kicking + punching 10 10 20

TABLE 11 | Comparison between human action and intention understanding

datasets.

Dataset property Human action Intention understanding

dataset dataset

Sequence length in each class 1,000 2,000

Frames per second 30 30

Sequence duration of each class

in seconds

33.33 66.66

MTRNN with the same block number and learning rate. As
shown in Table 6, CTLSTM can be seen to perform well even
in the case of longer sequences and outperforms the Supervised
MTRNN and LSTM baseline models.

Intention Understanding Dataset
We also perform the experiment using an intention
understanding dataset collected by us. This dataset is more
challenging and requires more capability to handle longer
sequences because unlike the human action dataset described in
the previous experiment, which consists of a single action in each
class, this dataset consists of long sequences of multiple human
actions in each intention class. The conditions of collecting
the data are the same as the previous experiment. The data are
collected using 10 volunteers performing two kinds of actions
each for five different intention classes. The dataset includes
100 sequences and 200,000 frames. Each sequence lasts for
about 2,000 frames. The sequences used for training and test
are listed in Table 10. We compare the sequence length of the
human action dataset and the intention understanding dataset
in Table 11. As we can observe from the tables, in the intention
understanding dataset, the sequence length of each class as well
as the time duration of each class is double the human action
dataset. The longer sequence data need a model which can
capture the context well for longer period of time for intention
understanding.

We use 150 fast and 50 slow blocks for our CTLSTM model
with a time constant of 40 for the slow blocks. In order to
compare our model with the baseline, we train a two layer
LSTM model with (150 + 50) blocks with one cell each. We
set the learning rate for both LSTM and CTLSTM to 0.00001.
The classification decision in both the models use max pooling.
We omit the comparison results of Supervised MTRNN in this

TABLE 12 | Online classification results for 5 kinds of intentions.

Real-time classification accuracy in %

Intention classes CTLSTM LSTM

Having a meal 82.2 ± 4.86 71.94 ± 4.98

Fitness exercise 87.53 ± 5.21 84.65 ± 6.18

Appreciate 75.88 ± 5.11 75.67 ± 6.76

Seeking attention 77.67 ± 5.94 62.59 ± 4.27

Aggression 66.22 ± 4.86 52.02 ± 6.67

Average 77.9 ± 2.22 69.37 ± 1.99

Number in bold shows the best performance.

FIGURE 17 | Classification accuracy (true positive) curve of CTLSTM and

LSTM for 5 kinds of intentions.

experiment because Supervised MTRNN did not converge even
after 1,000 epochs of training. The classification results of the
two models are shown in Table 12 and the classification accuracy
curve is shown in Figure 17. The error decreasing curve of the
training is shown in Figure 18. Table 13 shows the results of
Wilcoxon signed-rank test to compare the performance between
CTLSTM and LSTM. As the results illustrate, the performance
of CTLSTM is consistent with the previous experiments as it
converges faster compared to the LSTM model. The results
also show that with the help of the timescales in the CTLSTM
model to capture the dynamic context from the longer sequences
efficiently, it is able to outperform the existing models, thereby
making it the most suitable model for intention understanding
tasks.

CONCLUSION AND DISCUSSION

We developed the Continuous Timescale LSTM (CTLSTM)
model inspired by the CTRNN and LSTM. Our proposed
CTLSTM model benefits from the multiple timescales and is
equipped to assign different work on different layers. CTLSTM
is proved to have better performance on multiple classification
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FIGURE 18 | Classification error decreasing curve of CTLSTM and LSTM for 5

kinds of intentions.

TABLE 13 | Wilcoxon signed-rank test results for 5 kinds of intentions.

Method 1 Method 2 Z **p

LSTM CTLSTM −2.803 0.005

The classification performance of CTLSTM is significantly better than LSTM in the

comparison (**p < 0.01).

tasks. We have shown the effectiveness of our proposed model
in longer sequence understanding tasks and we argue that
our model will be suitable for human behavior and intention
understanding using deep learning techniques.

It should be noted that our model is quite different from
the hierarchical multiscale RNN (Chung et al., 2017) and Multi-
Timescale Long Short-TermMemory Neural Network (Liu et al.,
2015). In their work, they define slow LSTM layer as a normal
LSTM layer but with just a slower input rate. That is, not every
frame is used as the input to the slow LSTM layer. In this case, the
input of the slow LSTM layer is very important and the fast LSTM
cells should capture the useful information and make sure the
key information is transferred to the slow LSTM layer as inputs.
Unlike their work, we define slow LSTM layer using an additional
CTRNN activation where each frame is as the input of the slow
LSTM layer.

The multiple timescales structure gives CTLSTM more
capability to hold the information by improving the organization
of the architecture and focusing on different task at different
levels. LSTM has a special cell/block structure, which is able
to hold important information for a long time if the forget

gate is always closed. However, the gate opening time is still
determined by BPTT. But BPTT itself may not have much ability
to decide the temporal scale of the blocks in order to focus on
different contexts. Thus CTLSTM, with the ability to guide the
fast and slow blocks for different contexts is able to handle longer
sequences efficiently compared to LSTMmodels.

The capacity of CTLSTM is highly correlated with the
timescale constants. Theoretically, we can make one block (a
very slow block) fire for longer period by assigning a large time
constant (for example, 1,000). But a block with a large time
constant would be difficult for training. Due to the restriction
of Equation (23) large time constant would decrease the ∂E

∂stc
. If

∂E
∂stc

≈ 0, then ∂E
∂utc

, ∂E
∂utφ

and ∂E
∂ut

l

would also approach 0. So the

weights would not be updated due to:

∂E

∂wij
=

∂E

∂uj
yi (24)

This brings difficulty for slow neurons to get features from
the input or other neurons. In our experiments, the timescale
constant of the CTLSTM is set to 20 or 40 based on the dataset.
In the future, we aim to solve this difficulty of setting the
timescale constants by developing an adaptive mechanism for the
timescales during the training process.

Fortunately, memory of RNN, which aims to further enhance
the memory ability of RNN, already have been on focus in recent
times (Sukhbaatar et al., 2015; Graves et al., 2017). We wish to
make use of the advantages of timescales on the memory of RNN
in our future work.
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