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Abstract: Thyroid Nodules (TN) are frequent but mostly benign, and postoperative rate of benign
TN attains the values from 70% to 90%. Therefore, there is an urgent need for identification of reliable
preoperative diagnosis markers for patients with indeterminate thyroid cytology. In this study, an
earlier unexplored design of research on preoperative biomarkers for thyroid malignancies was
proposed. Evaluation of reported results of studies addressing the links of thyroid cancer to the
circadian clockwork dysfunctions and abnormal activities of Thyroid-Stimulating Hormone (TSH)
and its receptor (TSH-R) suggested diagnostic significance of such links. However, there is still a gap in
studies of interrelationships between diurnal profiles of expression of circadian clock genes and TSH-
R in indeterminate thyroid tissue exposed to different concentrations of TSH. These interrelationships
might be investigated in future in vitro experiments on benign and malignant thyrocytes cultivated
under normal and challenged TSH levels. Their design requires simultaneous measurement of diurnal
profiles of expression of both circadian clock genes and TSH-R. Experimental results might help to
bridge previous studies of preoperative biomarkers for thyroid carcinoma exploring diagnostic value
of diurnal profiles of serum TSH levels, expression of TSH-R, and expression of circadian clock genes.

Keywords: thyroid cancer; thyroid nodules; circadian clockwork; TSH; TSH-R; circadian clock genes

1. Introduction

Thyroid cancer is a common endocrine malignancy that accounts for about 1% of all
human malignancies [1–3]. It usually presents as Thyroid Nodules (TN) defined as any
discrete mass in the thyroid gland. Although such nodules are frequent, most of them are
benign and only about 5% are cancerous [4,5]. Such a low rate of cancerous TN suggests the
risks of unnecessary surgeries for asymptomatic benign TN and delays of diagnostic and
treatment of asymptomatic cancerous TN. Therefore, it is crucial to establish an adequate
differential preoperative diagnosis for thyroid carcinoma [6].

There are five main histological types of thyroid cancers: papillary, follicular, poorly
differentiated, undifferentiated/anaplastic (this is the most aggressive form), and medullary
thyroid cells (unlike other types, they arise from neuroendocrine C cells) [7]. Papillary and
follicular types are considered to be differentiated. The majority of thyroid tumors are
classified as well differentiated (85%) [8]. The prognosis of patients with differentiated type
cancer is optimistic because they are usually curable with surgery and radioactive iodine
therapy [9–11]. Poorly differentiated carcinomas are characterized by an incomplete tumor
capsule with expansive growth. Only a small proportion of thyroid tumors (about 5–7%)
lose their features of cell origin and they are classified as either poorly differentiated or
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undifferentiated/anaplastic [8]. The undifferentiated form has no chance of cure, and it is
associated with rapid progression and a high risk of mortality [12].

Routine diagnosis of thyroid nodules usually relies on Fine Needle Aspiration (FNA)
biopsy, which served until recently as the most accurate and safe tool for clinical evaluation
of non-secreting TN [5]. FNA improves the quality of life for patients with TN by allowing
prevention of unnecessary surgery in patients with benign lesions and provides better
managing of malignancies in patients with the lesions of undetermined significance and the
lesions diagnosed as suspicious for a follicular neoplasm [13,14]. Surgery is recommended
only after the evaluation of the FNA results aimed on identification of thyroid malignancies.
Despite the applying of FNA, a high rate of unnecessary surgery was revealed. Postopera-
tively, 70–90% of thyroid FNA cases are benign [15]. For instance, the distinction between
benign and malignant nodules based on cytological features is impossible for approxi-
mately 30% of cases that are lacking the morphological features needed for providing
definitive classification [14,16,17].

Due to the difficulties of distinguishing benign TN from malignant non-functional TN,
the diagnostic approach to thyroid cancer has become one of the most challenging issues in
oncology of the thyroid system [18]. The development of preoperative markers for thyroid
carcinoma plays a critical role in the efforts to reduce the rate of unnecessary surgery.
Despite intensive research aimed on uncovering reliable biomarkers for thyroid carcinoma
(e.g., [19–27]), the examinations of various previously proposed immunohistochemical and
genetic markers of thyroid malignancy led to the conclusion that many of them failed to
provide accurate distinguishing between follicular adenoma and carcinoma (e.g., [28]).

The diagnostic and management of cancer patients has been recently revolutionized
by the introduction of liquid biopsy and molecular testing platforms [18,29–37]. Liquid
biopsy provided a possibility of elimination of the invasive procedures needed to obtain
tissue samples. It detects and analyzes biological samples released from the tumor into the
bloodstream [18,29–32]. Therefore, such biopsy can be repeatedly performed in a noninva-
sive way, at lower cost and without the risks associated with classic tissue biopsy [32]. As a
non-invasive approach for the detection of diagnostic biomarkers for early tumor diagnosis,
prognosis, and disease monitoring, liquid biopsy appears to be more beneficial than FNA
biopsy [18]. The molecular testing platforms present another recently introduced option
for improving the presurgical diagnosis in indeterminate TN [33]. These molecular tests
have been developed for reducing the avoidable treatment of benign TN and optimization
of surgical management. Since these platforms are now frequently used as an integral part
of the cytologic evaluation in conjunction with FNA to provide more definitive guidance
for the decision making in clinic including the decision to avoid unnecessary surgical
interventions [33–37].

The testing of molecular biomarkers for cancer patient stratification become mandatory
in the recent years [18], and, therefore, it is critical to intensify research on preoperative
biomarkers for thyroid carcinoma [37–39].

This perspective article was inspired by the findings pointing out the involvement
of the circadian clockwork dysfunctions into malignant transformation of thyroid tissue
(e.g., [39]) that are in line with one of the earlier findings suggesting the involvement of
the clock-regulated thyroid hormone in thyroid cancer (e.g., [40]). These studies provided
evidence for the associations of thyroid cancer with both these dysfunctions and abnormal
characteristics of this hormone activity. Therefore, the present perspective article is arguing
for the plausibility of aiming future studies of preoperative biomarkers for thyroid cancer
on testing both the circadian clockwork and activity of this hormone receptor in benign
and malignant thyrocytes.

2. Results

Since the circadian clock machinery is of great importance for an organism, it is nat-
ural to expect that its abnormal functioning can serve as a specific marker for thyroid
carcinoma. Evidence for the importance of the circadian clock machinery for most multi-
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cell organisms was proved by the discovery that each cell in almost each tissue of the
organism contains a set of genes for generating its own circadian clocks with a near 24-h
(circadian) period [41,42]. These so-called circadian clock genes also allow the establish-
ment of circadian clocks with a similar molecular makeup at any of the higher (multicell)
hierarchical levels, e.g., peripheral clocks of various tissues, organs, physiological and
endocrine systems, and the central clocks of the whole organism [43,44]. The circadian
clocks control the expression of almost half of the protein coding genes for coordinating
diurnal rhythmicity of different biochemical, physiologic, and behavioral functions in the
organism [45,46]. The reports suggesting the modulating influence of the cellular circadian
clocks on gene expression, cell division, DNA repair, apoptosis control, inflammation, etc.
(e.g., [47]) gave rise to the hypotheses that the dysfunction of these clocks may have such a
serious pathological effect as cancer [48–56]. Indeed, accumulating fundings indicate that
the disruptions of circadian rhythms are often linked to cancer [57–63]. Therefore, several
research groups suggested a possibility to establish a relationship between thyroid cancer
and circadian clockwork dysfunctions (e.g., [2,39,64,65]).

2.1. One of Hormonal Markers of the Circadian Clockwork in Thyroid Carcinoma

Among several hormones secreted by the thyroid gland, only thyrotropin (Thyroid-
Stimulating Hormone or TSH) exhibits a clear diurnal rhythmicity of secretion, stimulates
the thyroid gland to produce thyroxine (T3) and triiodothyronine (T4), but, in contrast, the
concentrations of free T3 and T4 remain relatively stable throughout a day. Due to the diur-
nal variation in TSH concentration in blood, the 24-h profile of this hormone in serum serves
as one of most robust markers of the circadian clockwork of the human organism [66–70]. It
is known that the central clocks in the suprachiasmatic nuclei exert their influence on TSH
via neuronal and humoral signals but the peripheral tissues containing similar circadian
clock proteins are also involved in its regulation [71,72]. The disruptions of TSH levels in
serum have been associated with shift work, jet lag, and chronic sleep disorders (see [70]
for review).

TSH plays a pivotal role in controlling the hypothalamic–pituitary–thyroid axis and
serves as the most reliable physiologic marker of thyroid hormones activity [2]. Results
of intensive testing of TSH concentrations in serum suggested the increase of the risk of
malignancy in thyroid nodules in parallel with the increase of these concentrations [73].
The results of published studies suggested that the likelihood of thyroid cancer increased
with increase of serum TSH concentrations [74], that patients with high serum TSH levels
had a significantly higher risk of differentiated carcinoma than patients with low levels [75],
that higher TSH concentrations, even within the normal range, were associated with a
subsequent diagnosis of thyroid cancer in individuals with thyroid abnormalities [76], that
the levels of serum TSH in the group with differentiated thyroid cancer was significantly
increased compared with that in the benign TN group [77], and that TSH levels in patients of
stage 3 were significantly higher than those in patients in stages 2 and 1 [78], etc. Therefore,
it was concluded that levels of this hormone in serum might have a diagnostic value in the
preoperational management of thyroid carcinoma [79–86].

However, it is important to note that, when serum TSH levels in a group with thyroid
cancer were reported to be significantly higher than those in a benign TN group, they often
remained within a normal range for healthy people. Due to the huge overlap and the small
difference in median serum TSH levels between patients with benign and malignant TN,
median serum TSH levels cannot be considered the biomarker of choice for thyroid cancer
in a clinical setting [87]. Moreover, it was noted that preoperative concentrations of TSH
in serum might be measured for prediction of risk of differentiated thyroid cancers, but
they failed to be a good risk predictor at an early stage of this cancer development (in
microcarcinomas) [88]. Therefore, it is necessary to conclude that the measurement of serum
TSH levels represents an easily performed but only additional tool for decision-making in
patients with indeterminate cytological findings [89–91].
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Overall, the results suggesting significant association between thyroid cancer and
increased TSH levels in serum [73–86] pointed at an important but not very high diagnostic
value of these levels in the preoperative management of thyroid carcinoma [89–91].

Moreover, the dependency upon TSH levels was demonstrated for thyroid-cell pro-
liferation, and an association between higher TSH levels and a postoperative diagnosis
of differentiated thyroid cancer was reported. The results of such experimental studies
were enriched by clinical observations thus providing the rationale for the implicating TSH
suppression into postoperative management of thyroid function in differentiated thyroid
cancer [92–96].

2.2. Expression of Circadian Clock Genes in Thyroid Carcinoma

In the mammalian cells, the circadian clocks are regulated by a transcriptional-
translational feedback loop [97]. Firstly, the heterodimers are formed by BMAL1 and
CLOCK or by BMAL1 and NPAS2. Secondly, these heterodimers activate the expression
of CRY and PER (PER1, PER2, and PER3) genes. Thirdly, these genes are acting via E-box
elements as transcription factors directed to the promoters of CRY and PER. Fourthly, that
completes the feedback loop, and PER and CRY proteins form heterodimers suppressing
activity of BMAL1/CLOCK or BMAL1/NPAS2. The circadian expression of BMAL1 and
NPAS2 is additionally influenced by such nuclear receptors as RORα and REV-ERBα. They
regulate the expression of BMAL1 and NPAS2 by targeting a ROR-response element in the
promoters of BMAL1 and NPAS2 genes [97,98]. The function of these regulators is not lim-
ited to the control each other’s expression. They additionally drive rhythmic expression of
thousands of target genes by binding cis-regulatory sites or through downstream transcrip-
tional regulators. Circadian transcription factors also interact with a number of coactivators,
corepressors, and chromatin-associated factors that read, write, or erase chromatin histone
modification marks for activating or repressing transcription. The transcriptional activity
of cellular circadian clocks enables a set of transcriptional regulators to temporally couple
their activity with the synchronous rhythmic expression of thousands of genes with peak
expression at distinct times of the day [99–102].

Accumulated fundings revealed some abnormalities in expression profiles of circadian
clock genes in well-differentiated thyroid cancer but not in the benign TN [2,39,70,103]. For
example, Mannic et al. [39] discovered the alternation of the circadian clock machinery in
the thyroid tissue during malignant transformation. They found up-regulation of BMAL1
and the downregulation of CRY2 in tissues sampled from well-differentiated thyroid cancer.
Importantly, they also observed the drastic changes in the expression of these circadian
clock genes in poorly differentiated thyroid carcinoma [39].

It has to be noted that this study [39] provided the results of additional comparisons
of the diurnal profiles of expression of several circadian clock genes in samples collected
at different time of the day (i.e., during surgery performed in the time window between
8:00 AM and 2:00 PM) that were then synchronized in primary thyrocytes cultured in vitro
for 7 days and harvested every 6 h during 36 h. It was found that the thyrocytes from
healthy and benign TN perfectly kept their circadian properties (i.e., the endogenous clock
gene expressions in these TN exhibited the circadian oscillatory patterns in synchronized
thyrocytes). However, when these primary cultured thyrocytes were diagnosed as papil-
lary and poorly differentiated thyroid carcinomas, the alternated circadian profiles were
detected [39].

The results suggesting the upregulation of BMAL1 (ARNTL) and the downregulation
of CRY2 [39] were supported by Lou et al. [64]. They found that, as compared to benign and
healthy TN groups, malignant TN group showed higher expression levels of three circadian
clock genes (CLOCK, BMAL1, and PER2) and lower expression levels of one such gene
(CRY2). Significant alterations in the expression levels of BMAL1 were also confirmed by
Chitikova et al. [63] in their study of patients with papillary thyroid carcinoma. Expression
of BMAL1 (ARNTL) in TN was also tested by Sadowski et al. [103] in FNA samples obtained
preoperatively from patients with papillary thyroid carcinoma. They found that in samples
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from these patients, as compared to samples of benign TN, expression of this circadian
clock gene was upregulated [103].

Overall, these and several other studies provided evidence for a plausibility of im-
provement of preoperative diagnosis of thyroid cancer by testing the thyroid clock machin-
ery in benign or malignant tissues [2,63,64,70,103–105].

2.3. One of the Thyroid-Specific Hormone Receptors in Thyroid Carcinoma

TSH directly bound to its receptor (TSH-R), and this receptor is mostly (but not exclu-
sively) expressed in the thyroid cells [106]. TSH-R proteins in the membrane of thyrocyte
are quite stable and the receptor signaling in the thyrocyte’s membrane is controlled mainly
through TSH levels circulating in thyroid tissue [107].

This thyroid-specific TSH-R molecule was found to be involved in the pathogenesis of
thyroid diseases including thyroid cancer [107–109]. Research suggested that activation
of TSH-R may play a pro-oncogenic and growth-promoting role in differentiated thyroid
cancer [110–112]. In turn, TSH, acting through its receptor, has the potential of stimulating
the growth of differentiated thyroid cancer [113]. Under the TSH suppressive condition,
a poorer outcome in patients was found to be strongly related to low expression of TSH-
R gene in thyroid tissue [114]. Moreover, the studies of properties of this receptor in
normal and pathological human thyroid tissues revealed that the number of binding sites
was reduced in the pathological tissues [115], that levels of TSH-R gene expression were
significantly lower in carcinoma tissues than in normal tissues [109,116], that expression
of TSH-R was persistently maintained and, sometimes, TSH-R was hyperactivated in
differentiated thyroid tissues and tumors, but this expression was lost in undifferentiated
thyroid cancer [117,118], etc. Therefore, it was hypothesized that TSH-R can serve as one
of markers of thyroid differentiation [119]. Moreover, based on the observation that most
thyroid cancers still express the TSH-R [116], its messenger RiboNucleic Acid (mRNA) has
been used as a highly sensitive and specific marker for detecting thyroid cancer cells in
peripheral blood [120,121].

Overall, it was concluded that the levels of expression of TSH-R gene and its mRNA
might have an important diagnostic value [114–121]. In particular, TSH receptor might be
persistently expressed in all differentiated thyroid tissues and tumors but lost in undiffer-
entiated carcinomas [118].

Moreover, TSH-R expression might play an important role in clarifying the onset,
evolution, and results of therapy of thyroid cancer [117]. As it was mentioned in the first
section of Results, TSH suppression was implicated into postoperative management of
thyroid function in differentiated thyroid cancer [91–95]. Additionally, it was shown that
thyroid cancer cells in primary culture respond to TSH stimulation by activating the cyclic-
AMP cascade that promotes cell growth [122,123]. In contrast, expression of the TSH-R is
markedly decreased in poorly differentiated thyroid cancers [119,124,125]. However, TSH
responsiveness could render some thyroid cancer cells less susceptible to manipulation of
TSH concentrations [126,127].

Overall, stimulation of TSH production can predict enhanced growth of well-differentiated
thyroid cancer cells [122–125].

2.4. Remaining Questions of Studies of TSH, TSH-R, and Clock Genes in Thyroid Carcinoma

Considering the practical importance of uncovering the potential preoperative biomark-
ers for thyroid carcinoma, it is necessary to emphasize that the levels of TSH-R expression
(see Section 2.3) might be associated with the circadian clockwork (see Section 2.2) and the
levels of TSH in thyroid tissue (see Section 2.1). For instance, the circadian clocks might
determine or, conversely, might be dependent upon the regulation of TSH-R responses
to the administration of different concentrations of TSH and other thyroid hormones [2].
Therefore, it is reasonable to expect to find a significant link between thyroid cancer and
abnormalities of diurnal profile and mean daily levels of activation of TSH-R. However,
there were no studies designed to evaluate the responses of TSH-R to administering
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TSH or recombinant human TSH (rhTSH) into tissues containing of benign or malignant
thyrocytes. This gap contrasts with the results of intensive research on TSH levels in
serum [73–86,89–91], circadian clock genes expression [2,39,64,70,103–105] in thyrocytes,
and TSH-R gene activation at thyrocytes’ membrane [107–112,114–119] (Table 1).

Table 1. Evidence for potential clock-associated preoperative biomarkers for thyroid carcinoma.

Marker Was Evidence Provided? References

TSH concentration in serum
High or low levels of marker It was provided [73–86,89–91]

Its circadian rhythmicity It was insufficient [128]

Circadian clock genes’ expression in thyrocytes
High or low levels of marker It was provided [2,39,64,70,103–105]

Its circadian rhythmicity One study provided [39]

TSH-R gene’s expression in thyrocytes
High or low levels of marker It was provided [107–112,114–119]

Its circadian rhythmicity Remains to be provided -

TSH-R protein response to TSH or rhTSH levels in thyroid tissue
High or low levels of marker Remains to be provided -

Its circadian rhythmicity Remains to be provided -

TSH-R & Circadian clock genes’ expression in thyrocytes
High or low levels of marker Remains to be provided -

Its circadian rhythmicity Remains to be provided -
Notes: TSH: Thyroid-Stimulating Hormone or thyrotropin; rhTSH: recombinant human TSH; TSH-R: TSH receptor
gene; Circadian clock genes: a set of genes (including BMAL1 and CRY2) involved in a transcriptional-translational
feedback loop regulating the circadian clocks in the vast majority of mammalian cells; TSH-R & Circadian clock
genes: A proposed study involving multiple measurements of expression of TSH-R and several Circadian clock
genes (BMAL1, CRY2, etc.).

Another underexplored issue in such research is testing the effects of TSH simulation
on expression of various circadian clock genes in thyroid cancer. Moreover, the circadian
characteristics of responses to such simulation remains to be explored. Finally, the diurnal
profiles of circadian clock genes’ expression in benign or malignant thyrocytes require
further investigation (Table 1). For instance, the circadian rhythmicity in cultured human
primary thyrocytes from benign and malignant tissue was described only in one of reviewed
study [39].

Overall, the evaluation of research findings in the previous three sections of Results
reveled a lack of studies addressing interrelationships between TSH, its receptor, and
circadian clock genes in patients with indeterminate thyroid cytology.

Therefore, a systematic search of the PubMed database was performed to identify
publications that might be relevant to the exploration of these interrelationships. Only
three publications remained eligible after applying the ineligibility criteria for initially
identified publications (see their description and other details of this search in Table S1).
The search confirmed that addressing the interrelationships between TSH, its receptor, and
circadian clock genes remained unexplored issue of the studies involving patients with
thyroid cancer.

3. Discussion

Here, the findings of studies of the links of thyroid cancer to the circadian clockwork
dysfunctions and abnormal activities of TSH and its receptor were evaluated. They sug-
gested a plausibility of such links. However, it was also found that studies aimed on
exploration of the interrelationships between these dysfunctions and abnormal activities in
patients with indeterminate thyroid cytology are lacking. These unexplored issues might
be addressed in future studies aimed on detecting, in the framework of this single study,
the abnormalities in diurnal profiles of expression of circadian clock genes and TSH-R
and the abnormalities in responses of these profiles to administration of TSH or rhTSH
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(Table 1). For such a combined study of TSH-R and circadian click gene expression, in vitro
experiments with cultured benign and malignant thyrocytes might be performed in a
similar way to that applied in the Mannic et al. study [39]. Thus far, the samples of cultured
normal and malignant thyrocytes have not been examined in in vitro experiments designed
to determine whether the manipulations with the levels of TSH or rhTSH administered
to thyroid tissue can lead to changes in the diurnal profile of activation of this receptor in
parallel with some other changes, e.g., in levels and diurnal profiles of expression of several
circadian clock genes (Table 1).

Results of the proposed studies might answer some important questions such as:
are benign and malignant thyrocytes different not only in levels and diurnal profiles of
expression of circadian clock genes, but also in the diurnal profiles of responses of TSH-
R to TSH administration to thyroid tissue? Are the circadian clockwork abnormalities
linked to up- or down-regulation of expression of TSH receptor? Can the changes in the
levels of administered TSH change the mean levels and diurnal profiles of expression of
TSH-R and circadian clock genes? Can these changes in diurnal profiles of expression of
TSH-R and circadian clock genes be interrelated? The accounting for circadian rhythmicity
of expressions of TSH-R and clock genes can span the three directions of a search for
potential preoperative biomarkers for thyroid carcinoma including and provide evidence
for diagnostic value of simultaneous examination of TSH, TSH-R, and circadian clock genes
(Table 1).

However, it has to be noted that performing the proposed study might be delayed due
to the necessity to apply a more complex (and costly) experimental procedure in comparison
to the procedures previously applied in the studies of serum TSH concentrations and
expression of TSH-R. For instance, it would be necessary to cultivate many samples for
many days including, at least, a three-day interval of multiple measurements (at different
clock times) of the effects of varying (e.g., normal, and elevated) TSH or rhTSH levels
on the diurnal profiles of expression of this receptor and several circadian clock genes.
Nevertheless, now we are witnessing a very rapid development of molecular-genetics
research technology that gives us hope that, in the near future, the cost-efficient methods
for the screening of a large number of samples will be available for the proposed study.
In particular, such research would require multiple testing on a 24-h interval, but such
possibility has been permitted by the recent development of the methodologies for the
diagnosis of thyroid cancer. Thyroid tissue might be cultured for many days, and, in the
absence of such tissue, liquid biopsy can be repeatedly performed at different clock times
in a noninvasive way.

4. Materials and Methods

A systematic search of the PubMed database was performed to identify the publica-
tions relevant to several associations that remained unexplored in the studies involving
patients with thyroid cancer. These are the associations of circadian disruptions with
(1) serum TSH levels, (2) TSH suppression, (3) TSH stimulation, (4) expression of TSH-
R, and the associations of TSH-R expression with (5) TSH levels and TSH suppression,
(6) TSH levels and TSH stimulation, and (7) TSH suppression and TSH stimulation.

The search strategy included the applying several ineligibility criteria for initially
identified publications: (1) patients with other diseases, (2) less than 6 patients, (3) non-
patients, (4) measurements of serum TSH or expression of TSH-R are not reported, (5) the
interval of measurement of serum TSH is limited to night and/or morning subintervals
of the 24-h cycle, (6) review, and (7) not in English. The results of this search are briefly
reported in Results and described in more details in Table S1.

5. Conclusions

The preoperative examination of samples of thyroid tissue obtained in a search for
preoperative markers for thyroid carcinoma plays a critical role in diagnostic of this disease
and in avoiding unnecessary surgeries and treatment of asymptomatic cancerous TN.
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However, postoperatively, 70–90% of thyroid FNA cases are found to be benign. Therefore,
preoperative markers for thyroid carcinoma play a critical role for the attempts to avoid
unnecessary surgery and delays with the treatment of this disease. Evaluation of results
of earlier and more recent studies provided evidence for the links of thyroid cancer to
the circadian clockwork dysfunctions and abnormal activity of TSH and TSH-R. The
links of thyroid cancer to the properties of TSH-R and circadian clocks genes might be
further clarified in in vitro experiments on cultured benign and malignant thyrocytes. The
design of these experiments might require the simultaneous testing the diurnal profiles of
expression of TSH-R and circadian clock genes under both normal and challenged TSH
levels. These experiments would also require multiple testing throughout the day, but the
recently developed methodologies for the diagnosis of thyroid cancer permits a possibility
of such testing.
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//www.mdpi.com/article/10.3390/ijms232012208/s1. References [111,114,127,128] are cited in the
supplementary materials.
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