
SHORT COMMUNICATION

The search for molecular mimicry in proteins carried by extracellular vesicles 
secreted by cells infected with Plasmodium falciparum
Vinicio Armijos-Jaramillo a,b, Andrea Mosqueraa, Brian Rojasa, and Eduardo Tejera a,b

aCarrera de Ingeniería en Biotecnología, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador; bGrupo de 
Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador

ABSTRACT
Red blood cells infected with Plasmodium falciparum secrete extracellular vesicles in order to 
facilitate the survival and infection of human cells. Various researchers have studied the composi-
tion of these extracellular vesicles and identified the proteins contained inside. In this work, we 
used that information to detect potential P. falciparum molecules that could be imitating host 
proteins. We carried out several searches to detect sequences and structural similarities between 
the parasite and host. Additionally, the possibility of functional mimicry was explored in line with 
the potential role that each candidate can perform for the parasite inside the host. Lastly, we 
determined a set of eight sequences (mainly moonlighting proteins) with a remarkable resem-
blance to human proteins. Due to the resemblance observed, this study proposes the possibility 
that certain P. falciparum molecules carried by extracellular vesicles could be imitating human 
proteins to manipulate the host cell’s physiology.

ARTICLE HISTORY
Received 27 April 2021  
Revised 18 August 2021  
Accepted 20 August 2021  

KEYWORDS
Plasmodium falciparum; 
molecular mimicry; 
extracellular vesicles; in-silico 
analysis; structural 
resemblance; moonlighting 
protein

Introduction

Malaria is a tropical disease that has a huge impact on 
the world, with a point estimation of 409,000 deaths 
worldwide in 2019 [1]. The sickness is transmitted via 
an infectious bite from a female Anopheles mosquito. 
This insect carries the Plasmodium spp. and infects the 
host through a bite that releases the parasite into the 
bloodstream [2]. Six species have the ability to infect 
humans and produce malaria: Plasmodium falciparum, 
Plasmodium vivax, Plasmodium ovale wallickeri, 
Plasmodium ovale curtisi, Plasmodium malariae, and 
Plasmodium knowlesi. Of these, P. falciparum causes 
the more deadly forms of malaria [3].

The parasite-infected red blood cells (iRBC) secrete 
nanometric particles known as extracellular vesicles 
that facilitate their survival and at the same time allow 
cellular infection. This is mainly through the immuno-
modulation produced in the host and the communica-
tion facilitated between parasites [4]. Extracellular 
vesicles (EVs) can also be found in normal cellular 
processes, as they are fragments that detach almost 
spontaneously from the plasma membrane vials [5]. 
Pathogens manipulate the cells into releasing EVs in 
order to modulate the host’s immune system to pro-
mote survival. This release increases when cells are 

subjected to a variety of stress conditions [6]. EVs 
have the ability to transfer biological information 
between donor and recipient cells, either closely or 
remotely, and are therefore considered vehicles capable 
of protecting and delivering information through 
cells [7].

Studies conducted on EVs during P. falciparum 
infection show that they are capable of promoting 
different alterations in the host, such as neutrophil 
activation, secretion of anti-inflammatory and pro- 
inflammatory cytokines, induction of gametogenesis, 
and the incorporation of DNA plasmids. Studies also 
show that the protozoon uses EVs for parasite-to- 
parasite and host-to-parasite communication [8]. 
Based on these findings, the presence of EVs was sug-
gested as a potential marker for the presence of 
P. falciparum inside the host. Additionally, a recent 
proteomic analysis identified several proteins that may 
be involved in red-blood-cell invasion by the molecular 
mimicking of host molecules, specifically the PEXEL 
peptide, which is exported by Plasmodium, and also 
the ring-exported protein 2 (Rex2). Both show molecu-
lar similarity to the RAC2 protein family of Homo 
sapiens [9].
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The ability of a molecule to resemble another in 
structure or function is known as molecular mimicry 
[10]. In the case of species whose changes toward 
mimicry increase their fitness or the sequence conser-
vation among distantly related species, the similarity 
between two molecules could be produced by adapta-
tion (adaptive mimicry). Another case of similarity 
could be obtained through convergent evolution, 
a phenomenon called consequential mimicry [11]. 
A typical example of this kind of event occurs when 
molecules – usually proteins, carbohydrates or deoxyr-
ibonucleic acid – shared between the pathogen and the 
host cause a cross-reaction in the presence of an active 
immune response [12].

In this work, we explore the potential of 
P. falciparum proteins (carried by EVs during 
a malaria infection) to imitate human molecules. To 
the best of our knowledge, this is the first time that 
these kinds of proteins have been tested for mimetic 
ability. To achieve this goal, several steps of searches 
and filters were applied to find the most plausible 
candidates. A molecular mimicry scenario could unveil 
several aspects of the Plasmodium invasion, such as the 
immune evasion or intercellular communication per-
formed by the parasites. Additionally, molecular mimi-
cry scenarios could be responsible for producing some 
of the rare post-infection effects, like post-malaria neu-
rological syndrome [13]. This was observed in a similar 
way in the Guillain-Barré syndrome produced follow-
ing a Campylobacter jejuni infection [14].

Methods

Extracellular vesicle proteins: search and 
downloading

A literature search was carried out to determine 
reported proteins of Plasmodium falciparum in extra-
cellular vesicles. The search criteria focused on biblio-
graphic sources, where proteomics of extracellular 
vesicles from infected human blood cells had been 
performed. We retrieved all PubMed (https://pubmed. 
ncbi.nlm.nih.gov/) articles fulfilling the following 
search criteria: (plasmodium falciparum) AND (extra-
cellular vesicles) AND (proteomic). All articles written 
up to January 2021 were included. With these criteria, 
only 7 manuscripts were found (Correa et al [9]., Jiang 
et al [15]., Tiberti et al [16]., Antwi-Baffour et al [17]., 
Sampaio et al [18]., Abdi et al [19]., and Mantel et al 
[4].). Each article discovered was manually analyzed 

and the following was observed. 1) In Correa et al 
[9]., the proteomic comparison was made between 
EVs with low and high parasitemia; no raw data of 
proteomic analysis was published. 2) In Jiang et al 
[15]., no proteomic analysis was carried out. 3) In 
Tiberti et al [16]., the analysis was not performed 
with Plasmodium falciparum but Plasmodium 
Berghei. 4) In Antwi-Baffour et al [17]., a proteomic 
analysis was carried out and a list of proteins was 
provided but no raw data was presented, nor was 
there any information regarding the confidence of the 
annotated proteins. Considering these aspects only 
three manuscripts were further considered in the ana-
lysis: Sampaio et al [18]., Abdi et al [19]., and Mantel 
et al [4].

In order to homogenize information and confidence 
from the raw data of selected studies, from the already 
significant proteins identified we only included those 
with a minimum value of unique peptide count higher 
than 3. Then, we identified the sequences shared by two 
or more publications in order to determine P. falciparum 
proteins observed in human vesicles by independent 
authors (Figure 1). All these sequences were downloaded 
from the UniProt (https://www.uniprot.org/) database. 
In addition, the human proteome (GRCh38 version) 
was downloaded from NCBI to perform BLASTp 
searches, as described in the section below.

BLAST searches and tertiary structure recovery

To detect similarities between human proteins and the 
P. falciparum sequences observed in vesicles, we per-
formed a BLASTp search [20] using the human pro-
teome (GRCh38) as a database and sequences from 
Supplementary Table 2 as a query. The results were 
filtered by selecting query proteins with a percentage 
of identity greater than at least 40% and a coverage of 
70%. The sequences that passed this filter were consid-
ered for the following steps. Moreover, pairs of 
sequences (putative imitator and imitated) were aligned 
using MAFFT [21]. The domains and motif prediction 
for the candidates’ sequences was performed with 
InterProScan [22].

The tertiary structure was downloaded from the 
PDB (Protein Data Bank) [23] database (https://www. 
rcsb.org/). For the sequences without crystalized struc-
tures in PDB, the tool Phyre2 [24] (http://www.sbg.bio. 
ic.ac.uk/phyre2/) was used to predict the tertiary 
structures.
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Structural comparisons

The pairs of 3D structures (P. falciparum – human 
proteins) were superimposed using Pymol 2.4 [25]. 
The same program was used to calculate the root- 
mean-square deviation (RMSD) between structures 
and quantify the structural similarities of each protein 
pair. In order to detect structural similarities between 
candidates and proteins deposited in the PDB, we 
used the DALI server [26] (http://ekhidna2.biocenter. 
helsinki.fi/dali/).

Phylogenetic tree reconstruction

In order to determine whether the candidate proteins 
of P. falciparum came from horizontal transfer events, 
phylogenetic trees were reconstructed to clarify their 
evolutionary origin. BLAST searches were performed to 
detect putative homologue sequences. For that purpose, 
we used the human and P. falciparum candidate pro-
teins as a query to perform a BLASTp search vs the 
NCBI’ NR database. Then, we collected the 20 best 
results and deleted duplicate sequences (pairs of 
sequences with 100% of identity and coverage). With 
these sequences, multiple sequence alignments were 
formed with MAFFT (default options) and then the 
trees were reconstructed using MEGA X [27]. For the 
three reconstructions, we used the tool included in 
MEGA to find the best protein model for each align-
ment and then employed this information to recon-
struct the trees through the maximum likelihood 
algorithm.

Results
We searched for studies that identified Plasmodium 
proteins inside human vesicles during the parasite 
infection. Three articles were selected according to the 
aforementioned criteria [4,18,19]. Supplementary 
Table 1 shows the gene names that correspond to the 
sequences recovered from each study. This information 
was used to make a Venn diagram (Figure 1) to deter-
mine which proteins coincided among the studies. The 
study of Adbi et al [19]. reported the largest number of 
proteins (52), followed by Mantel et al [4]. (38), and 
Sampaio et al [18]. (32). In all three experiments, simi-
lar procedures were utilized for vesicle isolation and all 
of them used a nano-LC as a chromatographic method 
for peptide separations after trypsin digestion. In 
Mantel et al [4]., the mass spectrometer was 
a Q-Exactive compared to Orbitrap in the other two 
studies. Two important differences between the studies 
are as follows. 1) In Abdi et al [19]., the plasmodium 
was extracted from a patient with cerebral malaria. 
Once isolated, it was adapted to in vitro culture and 
grown over a short period of time (70 cycles). This is 
a different approach to other studies where the 3D7 
isolate was used. 2) In Sampaio et al. [18], only the 
topmost intense ion was further fragmented in contrast 
to the top 12 or 15 ions in the other two studies. These 
differences could possibly be related to the greater 
similarity between Abdi et al. [19] and Mantel et al 
[4]., as opposed to Sampaio et al [18].

We observed nine proteins identified by three inde-
pendent research teams, so these were considered the 
most likely molecules to travel in vesicles during 

Figure 1. Venn diagram of Plasmodium falciparum 3D7 proteins reported in extracellular vesicles during parasite infection according 
to several authors.
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malaria development. Twenty further sequences were 
detected in two of the three studies (Supplementary 
Table 2). The 29 proteins found at the intersections of 
the Venn diagram were chosen as candidates for this 
study. The proteins found in at least two of three 
studies were further considered for analysis.

From these 29 sequences, nine showed similarities with 
human proteins (more than 40% of similarity and 70% of 
query coverage – Supplementary Table 3). Additionally, we 
decide to analyze two sequences (PF3D7_0818900 and 
PF3D7_0708400) with a low coverage but high similarity 
as potential candidates of partial mimicry. Given this simi-
larity, we considered all these sequences to be the most 
plausible candidates for performing molecular mimicry in 
humans. Then, we obtained the structure of these 11 
sequences and their most similar pairs in humans (see 
Methods). We performed a superimposition between each 
pair of structures and then calculated the RMSD, the data 
for which is displayed in Supplementary Table 4. We noted 
that three of the five proteins with predicted structures 
(PF3D7_0818900, PF3D7_1117700, and PF3D7_0917900) 
were calculated with their human counterpart protein 
structure as a template for the tertiary reconstruction. For 
that reason, a direct comparison through RMSD is unreli-
able. We focused on the candidates with crystallized struc-
tures and on PF3D7_1357100 and PF3D7_0818200, the 
latter of which does not use human proteins as templates 
for the tertiary reconstruction (Figure 2). With the remain-
ing sequences of P. falciparum (PF3D7_1462800, 
PF3D7_1357100, PF3D7_0818200, PF3D7_1246200, 
PF3D7_0727400, PF3D7_0708400, PF3D7_1444800, and 
PF3D7_1465900), we used the DALI web server to perform 
a search in PDB and recover the most similar structural 
results available for humans in the database. We expected to 
find the same proteins observed in the BLAST searches, but 
only in PF3D7_1444800 and PF3D7_0818200 did the best 
result in PDB coincide with the best BLAST result (Table 1).

In the phylogenetic analysis, none of the recon-
structed trees showed evidence of horizontal gene 
transfer for the candidates (Supplementary Figures 1– 
8). These analyses also helped to determine the con-
servation level of the protein families of each candidate. 
In the six phylogenies reconstructed, a species tree-like 
topology was observed, suggesting a high level of con-
servation for each family.

Discussion

In this work, we explored the hypothesis that 
P. falciparum proteins carried through extracellular 
vesicles (EVs) could have a mimetic role that is 

potentially relevant for the development of malaria 
infection. In order to find the most plausible candidates 
to achieve this role, we explored and applied several 
steps of search and comparison in proteins found in 
EVs during P. falciparum infection in human blood 
cells. As a result, we propose eight proteins of 
P. falciparum with molecular mimicry potential.

We found three studies that identified P. falciparum 
proteins inside EVs by experimental procedures 
[4,18,19]. From these, we selected only sequences iden-
tified by at least two independent experiments. With 
this criterion, we guaranteed molecules transported by 
EVs during the parasite infection. The Venn diagram 
indicates that from 84 proteins, 29 were found in at 
least two studies.

With the chosen proteins, we decided to test the pos-
sibility of adaptive mimicry through sequence similarity 
(BLAST searches) and phylogenetic reconstructions. 
BLAST searches against human proteome exposed several 
proteins with high similarities to their human pairs. 
However, the phylogenetic analysis did not reveal any 
sign of horizontal transference origin; instead, species 
tree-like topologies were observed. Adaptive molecular 
mimicry can be achieved among distantly related species 
by sequence conservation or by horizontal gene transfer 
[11]. Moreover, sequence conservation could also imply 
the functional constraint of a sequence in both species. 
Reinforcing this possibility, we found shared motifs and 
domains by putative imitator and imitated candidates 
(Supplementary Table 5). Nevertheless, without func-
tional experimental, it is hard to distinguish between the 
two alternatives for our candidates.

Several cases of molecular mimicry have been 
reported in the past without sequence similarities but 
with structural resemblances [28,29]. To test this pos-
sibility, we compared the 3D conformation of our can-
didates in order to determine the level of structural 
similarity between potential imitated and imitating 
molecules. The structural similarities can be observed 
in Figure 2 and for all the candidates, the superimposi-
tions are remarkable. Said similarities alone do not 
imply functional molecular mimicry; other factors like 
subcellular space co-localization with the imitated 
molecule or the correct expression timing should be 
considered [30]. For the candidates, the opportunity to 
be carried by EVs makes them able to locate in several 
subcellular compartments at different times, allowing 
them to imitate several molecules. In addition to struc-
tural similarities and colocation, the function of the 
candidates should be analyzed to predict their potential 
role as mimetic molecules.
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Figure 2. Superimposition of candidate proteins. (a) Heat shock protein 90, 6CEO (Homo sapiens) with 3K60 (P. falciparum). (b) 
Glyceraldehyde-3-phosphate dehydrogenase, 3GPD (Homo sapiens) with 1YWG (P. falciparum). (c) Elongation factor 1-alpha, 3C5J 
(Homo sapiens) with the homology predicted structure for (P. falciparum). (d) Fructose-aldose bisphosphate, 5LN3 (Homo sapiens) 
with 6MUX (P. falciparum). (e) Actin-1, 5 JLH (Homo sapiens) with 6I4K (P. falciparum). (f) Proteasome subunit alpha, 6REY (Homo 
sapiens) with 6MUW (P. falciparum). (g) 14-3-3 proteins, 3UVW (Homo sapiens) with the homology predicted structure for 
P. falciparum. (h) 40S ribosomal protein S3, 6YBS chain K (Homo sapiens) with 6OKK chain D (P. falciparum). The human proteins 
are represented in green and the P. falciparum proteins in light brown.

Table 1. Dali best results for P. falciparum molecular mimicry candidates vs human proteins.
Predicted function UniProt gene name P. falciparum PDB ID P. falciparum Best DALI result in humans % of identity RMSD

Glyceraldehyde-3-phosphate dehydrogenase PF3D7_1462800 1YWG 6YND 64 0.8
Elongation factor 1-alpha PF3D7_1357100 Predicted structure 3J5Y 37 5.5
Actin-1 PF3D7_1246200 6I4K 4FO0 22 2.0
Proteasome subunit alpha type PF3D7_0727400 6MUW 6RGQ 46 1.5
Heat shock protein 90 PF3D7_0708400 3K60 6CEO 72 1.7
14-3-3 protein I PF3D7_0818200 Predicted structure 3UBW 60 1.2
Fructose-bisphosphate aldolase PF3D7_1444800 2PC4 1XFB 57 1.1
40S ribosomal protein S3 PF3D7_1465900 6OKK 5UBA 13 3.6
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The candidate annotated as actin-1 
(PF3D7_1246200) is part of a conserved group of pro-
teins in Apicomplexa that has marked differences to 
mammals. This protein in Plasmodium spp. has been 
associated with the invasion of red blood cells, but also 
with endocytosis, secretion, and antigenic variation 
[31]. The role of actin in vesicular trafficking is widely 
known [32], but could this function explain the pre-
sence of P. falciparum actin inside human EVs? Does 
P. falciparum actin-1 help in EV trafficking during 
malaria infection? The structural resemblances with 
human actin are remarkable but they are not identical. 
However, PF3D7_1246200 is also similar to the actin- 
related protein Arp8 (PDB id. 4FO0), which is in agree-
ment with the DALI search (Table 1). Arp8 proteins 
play a role in DNA repairing [33]. Our experiments 
have not elucidated the potential function and potenti-
ality of a mimetic role, but rather have opened up an 
interesting field that could be investigated further with 
the intriguing presence of this molecule inside EVs.

Glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) has different functions in addition to its 
role in glycolysis. This molecule can take part in mem-
brane transport and fusion, microtubule assembly, 
nuclear RNA export, translation control, and DNA 
replication and repair, among other tasks. These func-
tions depend on its location and posttranslational mod-
ifications [34]. GAPDH is one of the molecules that has 
been denominated as moonlighting proteins because of 
its ability to perform more than one physiologically 
relevant biochemical or biophysical function [35]. The 
GAPDH found in our candidates (PF3D7_1462800) is 
remarkably similar to its human pair, and its location 
inside an EV gives it the opportunity to locate in several 
human subcellular spaces. Can the P. falciparum 
GAPDH interfere with the physiology of human cells? 
The plasticity of these kinds of molecules makes this 
hypothesis plausible.

Fructose-bisphosphate aldolase is a central enzyme 
of glycolysis, but it may perform other non-related 
functions, and in that sense, this enzyme can be con-
sidered a moonlighting protein. In Plasmodium spp., it 
can connect the actin filaments to thrombospondin- 
related anonymous protein (TRAP) in order to conduct 
the motor force through the Plasmodium surface [36]. 
Our study uncovered a fructose-bisphosphate aldolase 
(PF3D7_1444800) that was highly similar in structure 
to the human aldolase 1XFB. In humans, alongside its 
role in glycolysis, aldolase has been reported in the 
interaction between the sperm head and the zona pel-
lucida [37]. Despite the structural similarities between 

aldolases in both species and the multifunctionality of 
the molecule, the role of PF3D7_1444800 in EVs is not 
evident and its ability to perform molecular mimicry 
remains uncertain.

A third moonlighting protein was identified in the 
list of mimetic candidates (PF3D7_0708400): heat- 
shock protein 90 (HSP90). These kinds of molecules 
have several functions, for example they facilitate pro-
tein maturation, keeping proteins in functional confor-
mations, and check for misfolded proteins [38]. In 
Plasmodium, HSP90 has a role in transporting proteins 
from the parasite cytoplasm to erythrocyte [39]. 
Additionally, in P. falciparum, HSP90 is coupled with 
R2TP to drive several cellular processes, such as cell 
division [40]. However, the role of this molecule in EVs 
is unknown. In animals, HSP90 transported by EVs was 
detected in mice with alcoholic liver disease, mediating 
the activation of macrophages [41]. The structural simi-
larities between 3K60 and 6CEO (P. falciparum and 
H. sapiens HSP90 PDB ids) are noteworthy and raise 
the question of whether P. falciparum HSP90 can 
manipulate cellular processes in human cells.

Elongation factor 1-alpha (EF-1α) is also considered 
a multifunctional (moonlighting) protein. EF-1α is 
involved in targeting and binding aminoacyl tRNA to 
the A-site of the ribosome and is involved in regulating 
cytoskeletal rearrangements [42]. Plasmodium EF-1α is 
transported by EVs and has immunosuppressive activ-
ities due to the inhibition of the CD4 + T cells’ 
response to antigen presentation [43]. In Leishmania 
donovani, secreted EF-1α and fructose-bisphosphate 
aldolase cause the activation of host macrophage pro-
tein tyrosine phosphatase and decrease the activity of 
these cells [44,45]. Whether or not EF-1α transported 
by EVs has additional roles is still unknown, and the 
lack of a crystallized structure makes it difficult to 
determine this molecule’s capacity to perform 
a mimetic role inside human cells.

The proteasome is a large multi-catalytic complex 
responsible for the degradation of intracellular proteins. 
The central core of the complex is the 20s proteasome, 
which is composed of alpha and beta subunits [46]. 
Among our candidates, we found a proteasome subunit 
alpha type (PF3D7_0727400) with structural resem-
blance to the same subunit type in humans. 
A potential explanation for this observation is that an 
entire proteasome is traveling through EVs to degrade 
Plasmodium proteins. This hypothesis is supported by 
the discovery of three proteins annotated as proteasome 
subunit beta (PF3D7_1470900, PF3D7_0803800, and 
PF3D7_1328100) in EVs, which is in line with 
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Sampaio et al. [18] (Supplementary Table 1). The pre-
sence and role of the proteasome (or at least part of 
them) traveling through EVs raises an intriguing issue. 
Another exciting scenario is the possibility that 
P. falciparum proteasome is capable of directly degrad-
ing human proteins, although so far, no report suggest-
ing this possibility has been published. In any case, 
despite the structural similarities between alpha subu-
nits of P. falciparum and humans, it is hard to imagine 
the possibility of functional mimicry for this molecule, 
and a more plausible state of affairs is that convergent 
evolution has been acting to resemble both structures.

The family of 14-3-3 adaptor and chaperon proteins 
interact with signal-transduction molecules to change 
their activity and the subcellular localization. This kind 
of molecule participates in the regulation of several 
cellular pathways [47]. The P. falciparum protein 14- 
3-3 (PF3D7_0818200) has been observed interacting 
with PfCDPK1 and was proposed as a target for malaria 
treatment [48]. However, our primary and tertiary ana-
lyses for this protein show a high resemblance with the 
14-3-3 orthologue in humans (Figure 2, Supplementary 
Table 3). These observations discourage the use of 
PF3D7_0818200 as a direct target, because the similar-
ity with human molecules could lead to a cross-reaction 
with a potential drug based on this molecule. The 
structural similarity deduced for this molecule renders 
PF3D7_0818200 a good candidate for performing func-
tional mimicry.

Ribosomal protein S3 (RPS3) is part of the 40S small 
ribosomal subunit; surprisingly, we found remarkable 
similarities between this kind of protein in 
P. falciparum (PF3D7_1465900) and Homo sapiens. If 
we observe the structural similarities (Figure 2), the 
human RPS3 is larger and both structures coincide 
only in the beta sheets section and one of the several 
alpha helix of the human protein. Alongside the struc-
tural similarities, the question that emerges here is why 
a subunit of the ribosome is carried by EVs. In humans, 
more functions for RPS3 have been reported in addi-
tion to the ribosomal ones. For example, RPS3 was 
identified as part of the p65-p50 heterodimer DNA- 
binding complexes of the NF-kappaB transcription fac-
tor [49]. Other functions of RPS3 include the induction 
of apoptosis, interaction with the scanning factor 
DHX29, and repairing the excision damage of DNA 
[50]. Given that RPS3 is directly involved in DNA 
translation, expression, and inclusive repairing, the 
function for this molecule inside the ERVs is difficult 
to deduce without specific functional experiments.

In this work, we detected and filtered a set of pro-
teins of P. falciparum found in EVs during parasite cell 
infection in order to detect potential mimetic mole-
cules. To do that, we considered only complete 
sequences; we did not analyze epitopes or protein frac-
tions. Furthermore, we based our search upon sequence 
similarities and then (only for the best results) upon 
structural similarities with human proteins. This 
approximation is limited since it can only detect 
mimetic proteins produced by sequence conservation 
or horizontal gene transfer but in the initial filter steps, 
it excludes the cases produced by convergent evolution. 
The lack of several structures of P. falciparum proteins 
makes it difficult to analyze both sequence and struc-
ture at the same time for all the candidates. At the end 
of all those analyses, we found that several moonlight-
ing proteins are carried by EVs, and these have the 
potential to manipulate the host cells. With the meth-
odology used in this research, we could not determine 
with precision if one or more of these proteins are 
performing functional mimicry. However, we raised 
several questions about the usability of moonlighting 
proteins of P. falciparum in communicating with and 
colonizing new cells throughout the parasite life cycle. 
We expect in the future that the proteins highlighted in 
this study can shed some light on the complex interac-
tion between P. falciparum and humans.
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