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Gene functionality is closely connected to its expression specificity across tissues and cell types. RNA-Seq is
a powerful quantitative tool to explore genome wide expression. The aim of this study is to provide a
comprehensive RNA-Seq dataset across the same 13 tissues for mouse and rat, two of the most relevant
species for biomedical research. The dataset provides the transcriptome across tissues from three male
C57BL6 mice and three male Han Wistar rats. We also describe our bioinformatics pipeline to process and
technically validate the data. Principal component analysis shows that tissue samples from both species
cluster similarly. We show by comparative genomics that many genes with high sequence identity with
respect to their human orthologues also have a highly correlated tissue distribution profile and are in
agreement with manually curated literature data for human. In summary, the present study provides a
unique resource for comparative genomics and will facilitate the analysis of tissue specificity and cross-
species conservation in higher organisms.

Design Type(s) species comparison design • organism part comparison design

Measurement Type(s) transcription profiling assay

Technology Type(s) RNA sequencing

Factor Type(s) Species • animal body part

Sample Characteristic(s)
Mus musculus • Rattus norvegicus • brain • colon • duodenum •
esophagus • heart • ileum • jejunum • kidney • liver • pancreas •
quadriceps femoris • stomach • thymus
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Background & Summary
Biological cells have multiple functions within the body: They may act as small reactors transforming and
exchanging energy and organic compounds within their compartments and tissue environment. They
transmit or modulate biochemical and physical signals and provide structural integrity. These functions
are determined by the abundance and activity of co-expression networks. Despite the progress of protein
quantification techniques including mass spectrometry and other methods1, there are still major
limitations which hamper proteome wide quantification. Factors include sensitivity (i.e., detection of low
abundant proteins) and scope (i.e., large proteins, separation of protein complexes and detection of
posttranslational modifications2). This is reflected by the observation that public repositories of
proteomics data are underused by the scientific community3 compared to the RNA field. In contrast,
RNA resources, for example the Gene Expression Omnibus (GEO) and ArrayExpress, are widely used
resources for end users as well as for some powerful public tools like the Expression Atlas (https://www.
ebi.ac.uk/gxa/home), or commercial tools like the nextbio BaseSpace Correlation Engine (https://www.
nextbio.com), Genevestigator (https://www.genevestigator.com) or Genestack (https://www.genestack.
com).

Although DNA microarrays are still widely used, RNA-Seq by next generation sequencing (NGS) is
now the technology of choice for ‘transcriptome wide’ gene expression quantification. A wide range of
protocols allows RNA-Seq of dissected samples from complex tissues, body fluids, cell-type enriched
biosamples and single cells. Depending on the type of RNA preparation (i.e., mRNA, total RNA, etc.),
sequencing protocol and sequencing depth, this method allows a full spectrum of transcriptome related
read-outs and bioinformatics applications beyond gene expression i.e., inferring strand-, isoform- and
sequence variant-specific information which is a unique feature of this technology compared to DNA
microarrays or real-time polymerase chain reaction (rPCR) based methods4.

A number of important RNA-Seq projects for human tissues have been established which allow in
depth exploration of the human transcriptome across a wide range of tissues and cell types5–7. However,
to our knowledge there is no homogenous RNA-Seq dataset for both mouse and rat. Existing studies that
are published rather focus on a single species on specific aspects such as ageing and development8, on a
few organs9 or are based on alternative technologies e.g., genome wide microarrays10. Thus a scientist
wanting to compare in depth features of genes across species in the same tissue would be only left with
the option of performing a meta-analysis across datasets generated in different labs under different
conditions.

The present study provides access to a normal tissue gene expression atlas for male C57BL6 mice and
male Han Wistar rats. Each tissue atlas is represented by 13 aligned normal tissues (see Table 1). Samples
have been dissected from three animals each within a single experiment thus avoiding potential batch
effects. Isolated RNA has been sequenced on an Illumina HiSeq2000 with a 50 bp single end read length
at a sequencing depth of approximately 20 million reads per sample. The raw data has been processed
and analyzed by our automated bioinformatics pipeline which is described in detail in the methods
section. Sequenced reads were processed with a mean unique exonic mapping rate of 59% per sample.
Within the same species and tissue there is a very high sample-to-sample correlation of the normalized
gene expression data. Principal component analysis showed a strong clustering by tissue and a relatively
good agreement between mouse and rat tissue specific sample clusters. Consequently, we conclude that
the expression variability between samples from the same tissue across different animals is low compared

Tissue N Male BL/6J mice (C57BL/6J) N Male Wistar Han rats (Crl:WI(Han))

Brain 13, 26, 39 52, 65, 78

Kidney 8, 21, 34 47, 60, 73

Heart 24, 37 50, 63, 76

Thymus 10, 23, 36 49, 62, 75

Pancreas 1, 14, 27 40, 53, 66

Esophagus 12, 25, 38 51, 64, 77

Stomach 3, 16, 29 42, 55, 68

Duodenum 4, 17, 30 43, 56, 69

Jejunum 5, 18, 31 44, 57, 70

Ileum 6, 19, 32 45, 58, 71

Colon 7, 20, 33 46, 59, 72

Liver 2, 15, 28 41, 54, 67

Muscle Quadriceps 9, 22, 35 48, 61, 74

Total 38 39

Table 1. Tissues and corresponding mouse and rat sample ids. All data files are available at Data
Citation 1.
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to the expression variability across different tissues from the same animal. We also compared the tissue
specific expression patterns between mouse and rat for a subset of genes with high sequence conservation
with respect to human. Accordingly, many highly conserved genes also have highly correlated gene
expression patterns. In addition, the observed tissue specificity of most of these genes was also confirmed
by manually curated literature data provided by the UniProt/Swiss-Prot database.

Methods
Animal study
Male Wistar Han rats (Crl:WI(Han)) and male BL/6J mice (C57BL/6J) were obtained from Charles River
Laboratories (Germany). Experimental protocols concerning the use of laboratory animals were reviewed
by a German Federal Ethics Committee and approved by German governmental authorities. Animals
were housed in groups of three on a 12-h light/dark cycle and fed ad libitum a standard pelleted rodent
diet (Diet No. 3438, Provimi Kliba Switzerland) with free access to water. Rats with a body weight of
160–180 g and mice at the age of 7–8 weeks were used for tissue sampling. Animals (n= 3 for each
species) were sacrificed thereafter by intraperitoneal injection of pentobarbital (rats) or cervical
dislocation (mice) and tissues (esophagus, stomach, duodenum, jejunum, ileum, colon, pancreas, liver,
thymus, kidney, heart, brain, quadriceps muscle) were harvested and transferred immediately to RNA
Later at 4 °C.

RNA extraction, illumina library preparation and sequencing
Total RNAs were individually extracted using the Ambion Magmax™-96 total RNA isolation kit (Life
Sciences) according to the manufacturer’s instructions. Briefly, 5 mg of tissue was placed in the lysis
solution and homogenized in Qiagen Tissuelyzer™ for a period of 30 s. Nucleic acids were captured onto
magnetic beads, washed and treated with DNase. Total RNA was then eluted in 50 μl elution buffer. RNA
quality and concentration was measured using an RNA Pico chip on an Agilent Bioanalyzer.

The Sequencing library preparation has been done using 200 ng of total RNA input with the TrueSeq
RNA Sample Prep Kit v2-Set B (RS-122–2002, Illumina Inc, San Diego, CA) producing a 275 bp fragment
including adapters in average size. In the final step before sequencing, eight individual libraries were
normalized and pooled together using the adapter indices supplied by the manufacturer. Pooled libraries
have then been clustered on the cBot Instrument from Illumina using the TruSeq SR Cluster Kit
v3—cBot—HS(GD-401–3001, Illumina Inc, San Diego, CA) sequencing was then performed as 50 bp,
single reads and 7 bases index read on an Illumina HiSeq2000 instrument using the TruSeq SBS Kit HS-
v3 (50-cycle) (FC-401–3002, Illumina Inc, San Diego, CA).

mRNA-Seq bioinformatics analysis
The processing pipeline is described in detail below. One sample could not be processed due to technical
issues (mouse_11_heart). For all remaining samples, RNA-Seq reads from rat and mouse samples were
aligned to the rat and mouse genomes respectively using the STAR Aligner v2.5.2a11 with their
corresponding Ensembl 84 reference genomes (http://www.ensembl.org). Sequenced read quality was
checked with FastQC v0.11.2 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) and alignment
quality metrics were calculated using the RNASeQC v1.1812. Following read alignment, duplication rates
of the RNA-Seq samples were computed with bamUtil v1.0.11 to mark duplicate reads and the dupRadar
v1.4 Bioconductor R package for assessment13. The gene expression profiles were quantified using
Cufflinks software version 2.2.114 to get the Reads Per Kilobase of transcript per Million mapped reads
(RPKM) as well as read counts from the feature counts software package15. The matrix of read counts and
the design file were imported to R, normalization factors calculated using trimmed mean of M-values
(TMM) and subsequently voom normalized, before subjected to downstream descriptive statistics
analysis.

Step-by-step mRNA-Seq pipeline
Before running the execution steps mentioned above, one has to prepare target organism alignment
indices for the STAR aligner. For mouse this is done as follows:

STAR --runMode genomeGenerate \
--genomeDir mouse84.STARIndex/ \
--genomeFastaFiles Mus_musculus.GRCm38.dna.primary_assembly.fa \
--sjdbGTFfile Mus_musculus.GRCm38.84.gtf \
--sjdbOverhang 49 \
--runThreadN 16

For rat this has to be adopted accordingly. After the genome index is prepared, all samples from each
species are processed individually. In all subsequent commands osample_id> corresponds to the sample
name (for example 199_1 for the first mouse sample from the pancreas).

Make a sample output directory, where all the outputs from each step will be stored:

mkdir osample_id>

Check sequenced read qualities with FastQC v0.11.2:
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fastqc --outdir= osample_id>/ osample_id> &> osample_id>/osam-
ple_id>.fastqc.log

Align reads using the STAR aligner v2.5.2a:

STAR --genomeDir mouse84.STARIndex/ \
--readFilesIn osample_id>.fastq.gz \
--outFileNamePrefix osample_id>/osample_id>.fastq.gz. \
--runThreadN 8 \
--limitBAMsortRAM 60000000000 \
--outSAMattrRGline ID:osample_id>.fastq.gz SM:osample_id>.fastq.

gz \
--outBAMsortingThreadN 8 \
--outSAMtype BAM SortedByCoordinate \
--outSAMunmapped Within \
--outSAMstrandField intronMotif \
--readFilesCommand zcat \
--chimSegmentMin 20 \
--genomeLoad NoSharedMemory

Create BAM file index (*.bai) using samtools v0.1.18:

samtools index osample_id>/osample_id>.fastq.gz.Aligned.sorted-
ByCoord.out.bam

Mark Duplicates using BamUtils v1.0.11 ‘dedup’ step:

bam dedup --in osample_id>/osample_id>.fastq.gz.Aligned.sortedBy-
Coord.out.bam \

--log osample_id>/osample_id>.fastq.gz.Aligned.out.dupmark.log \
--out osample_id>/osample_id>.fastq.gz.Aligned.out.dupmark.bam \
--noPhoneHome
samtools index osample_id>/osample_id>.fastq.gz.Aligned.out.dup-

mark.bam

Run DupRadar v1.4 on the duplicate marked bam:

mkdir osample_id>/dupradar
dupRadar.sh --bam= osample_id>/osample_id>.fastq.gz.Aligned.out.

dupmark.bam \
--gtf=Mus_musculus.GRCm38.84.gtf \
--stranded=no \
--paired=no \
--outdir= osample_id>/dupradar \
--threads=16

Gene/Transcript quantification with Cufflinks v.2.2.1 to get RPKMs:

cufflinks -u -p 8 -o osample_id>/cufflinks \
--max-bundle-frags 1000000000 \
--no-effective-length-correction \
--compatible-hits-norm \
-G Mus_musculus.GRCm38.84.gtf \
osample_id>/osample_id>.fastq.gz.out.dupmark.bam

Run featureCounts to generate read counts:

featureCounts -a Mus_musculus.GRCm38.84.gtf \
-o osample_id>/osample_id>.fastq.gz.featureCounts.ensembl.txt \
-T 3 osample_id>/osample_id>.fastq.gz.Aligned.out.markdup.bam

RNA quality control:

java -Xmx20g -jar RNA-SeQC_v1.1.8.jar \
-t Mus_musculus.GRCm38.84.gtf \
-r Mus_musculus.GRCm38.dna.primary_assembly.fa \
-o osample_id>/rnaqc -singleEnd -ttype 2 \
-s osample_id>|osample_id>.fastq.gz.Aligned.out.dupmark.bam|Notes

All per sample output is finally merged into the read count (ospecies>_counts.txt), RPKM
(ospecies>_rpkm.txt), and technical QC (ospecies>_rnaqc.txt) tabular output files. The graphics in
Supplementary S1 summarize the results of RNA quality control for all mouse and rat samples.
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Figure 1. Explained variance by principal components. The line plots show percentage of explained variance

for the first ten principal components for the mouse (a) and rat (b) samples.

Figure 2. Principal component analyses (PCA). Scatter plot of the dimensions24 PC1 versus PC2 and PC1

versus PC3 (mouse: a,c; rat: b,d). Samples are colored by tissue and the numbers in brackets correspond to the

proportion of variance explained by the respective principal component.
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Downstream analysis of mouse and Rat RNA-Seq datasets
After preprocessing the raw mouse and rat data independently, the subsequent downstream analysis has
been applied to the merged data tables using the R-code provided in Supplementary S2. In brief, both
datasets were imported into a common working environment and several descriptive analyses were

Figure 3. Hierarchical clustering. Hierarchical clustering of mouse (a) and rat samples (b). Dendrograms

visualizing the result of hierarchical clustering based on voom-transformed log(counts per million). Euclidean

distance between samples and the complete linkage method were used for clustering.

Figure 4. Expression variability across tissues. Squared coefficient of variation for mouse (a) and rat (b)

genes versus their log10(mean_RPKM) colored by tissue to visualize intra- and inter-tissue variation17. The

smoothing function used is gam (generalized additive models with integrated smoothness estimation), thus

standard errors based on the posterior distribution of the model coefficients are shown.
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performed. A principal component analysis (Figs 1 and 2) and hierarchical clustering (Fig. 3) were done
on limma16 voom-transformed log(counts per million). Intra- and inter-tissue variation was assessed
based on RPKM expression values (Fig. 4). For the orthology analyses (Fig. 4) both datasets were limited
to protein coding genes which have a one-to-one homology relationship to human genes and between
mouse and rat and vice versa. The homology information and gene biotype annotations were obtained
from Ensembl Version 84.

Data Records
A complete list of the 77 tissue samples with sample ids is given in Table 1. The fastq files with the
sequencing raw data and all metadata needed to run the R code have been deposited to ArrayExpress
(Data Citation 1).

Technical Validation
Data QC from the pipeline with PCA
Total number of reads varied between 20 and 30 million per sample. The 50 bp single-end reads were
processed with a unique exonic mapping rate of 67% for mouse and 52% for rat. The difference of 15%
between the two species probably reflects the level of annotation and curation completeness of both
reference genomes. For technical validation we analyzed both datasets independently at the sample level
by principal component analysis, hierarchical clustering and by investigating the distribution of
expression values. We also compared the overall expression variability and the transcriptomic profiles of
both species and used sequence homology information to link the data to human.

The high dimensionality of the datasets is reflected by the results from the principal component
analysis. Although most variance is explained by the first three dimensions there is only a moderate
decline in the fraction of explained variance at higher dimensions in both datasets (see also Fig. 1). In the
first two dimensions, PC1 and PC2, one can observe a consistent clustering of the samples by tissue (see
Fig. 2a,b). In both species, brain samples form the most distinct cluster along PC1. A second cluster is
composed of the samples from heart and skeletal muscle (top right) followed by central clusters of liver,
pancreas, kidney, stomach and esophagus samples. All samples from the gastrointestinal (GI) tract (i.e.,
duodenum, jejunum, ileum and colon) and from thymus cluster in the lower part of the two plots. In PC1
versus PC3 (see Fig. 2c,d). Thymus and pancreas samples show the strongest separation from all other
tissues.

The predominance of inter-tissue versus inter-animal variance is also confirmed by hierarchical
clustering (see Fig. 3). Only samples from the GI tract, specifically the small intestine, show a mixed
clustering with respect to their origin from the gut (duodenum, jejunum and ileum). In mouse, the

Figure 5. Tissue specific expression versus gene sequence conservation. Mean sequence identity of mouse

and rat to their human orthologue versus Pearson’s correlation coefficient (a) and fold change distance between

rodent gene expression profiles (b).
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samples from the upper small intestine (duodenum and jejunum) are mixed up and for both species one
sample from the jejunum ends up in the corresponding ileum cluster. However, all GI tract samples,
including those from stomach, form a supercluster in each species which is separated from the remaining
tissue clusters and has thymus as closest neighboring tissue cluster.

Expression variability across tissues
The intra-tissue variability of gene expression has been investigated by comparing the squared coefficient
of variation (standard deviation divided by mean) versus the mean log10 tissue RPKM (see also
CummeRbund plots17 in Fig. 4). This visualization reveals some common features for mouse and rat. The
variation per tissue is relatively high at low and at high mean expression values. For almost all tissues, the
mean squared coefficient of variation is decreasing with increasing absolute expression to a minimum
value between 0.05 and 0.2 in the interval between 1 and 4 mean RPKM. At lower and at higher mean
expression values also the spread of the variation coefficient per tissue is increasing. The order of tissues
with highest versus lowest variation is mostly conserved over the dynamic range of absolute expression
levels and also similar between mouse and rat, i.e., with pancreas and ileum corresponding to the two
tissues with largest variation at higher expression values. However, there is a somewhat lower absolute
variance observed for mouse versus rat tissue samples and in rat there is a more pronounced difference
between pancreas and ileum and the other tissues.

The tissue samples investigated in the present study correspond to dissected samples from complex
organs. Consequently, the gene expression signal from each gene and sample is superimposed by signals
that originate from the individual cell types which make up the corresponding organ. Eventually this
might explain the observed inverse bell shape distribution of the variation coefficient versus absolute
expression. Some cell types express a significant amount of very specific genes because this is an inherent
feature of their function. The pancreas, for example, is composed of functionally different cell types
implying distinct sets of highly active genes. Insulin is exclusively expressed by beta cells at very high
levels. However, pancreatic beta cells only represent a minor fraction of the whole pancreas.
Consequently, bulk samples from the pancreas contain a variable composition of different cell types
which will contribute to a high expression variability of cell type specific genes like Insulin. INS1 gene
expression, for example, shows a relatively wide spread of 389.7, 1449.0 and 4020.8 RPKM in the three rat
samples of the present study. Although this is a very strong signal (there are less than 50 genes with a
higher median expression in the pancreas samples) it is at least two orders of magnitude lower compared
to levels in isolated pancreatic islets (see e.g., mouse islet data from18). Consequently, cell type specific

Gene Max Tissue Mouse, Rat Human tissue specificity according to UniProtKB/Swiss-Prot

PAFAH1B2 Brain, Brain Ubiquitous

TRA2B Thymus, Thymus Highest expression in heart, skeletal muscle and pancreas

TUBB Thymus, Thymus Ubiquitously expressed with highest levels in spleen, thymus and immature brain

DPYSL2 Brain, Brain Ubiquitous

SNRNP200 Thymus, Thymus Widely expressed

RAB3A Brain, Brain Specifically expressed in brain

ARL8A Brain, Brain Ubiquitously expressed

SF3A3 Thymus, Thymus Ubiquitous

UBE2Q1 Thymus, Thymus Widely expressed

MTPN Brain, Brain Ubiquitous

YWHAG Brain, Brain Highly expressed in brain, skeletal muscle, and heart

DERL2 Liver, Liver Ubiquitous

YWHAQ Brain, Brain Abundantly expressed in brain, heart and pancreas, and at lower levels in kidney and placenta

FGF9 Brain, Brain Glial cells

PTBP2 Brain, Brain Mainly expressed in brain although also detected in other tissues like heart and skeletal muscle

MAGOH Thymus, Thymus Ubiquitous

CDC42SE2 Thymus, Thymus Widely expressed

HNRNPH1 Thymus, Thymus Expressed ubiquitously

DYRK1A Thymus, Thymus Ubiquitous

RUVBL2 Thymus, Thymus Ubiquitously expressed

Table 2. Top20 validated super-conserved genes. Genes were selected based on high correlation of tissue
distribution, high sequence conservation versus human and the availability of curated tissue specificity
information from the UniProt/Swissprot database.
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dissection, purification and sequencing protocols can largely improve our understanding of cell type
specific expression.

In general, the results from the present study are in line with other large RNA-Seq datasets showing
that the inter-tissue variability of gene expression is much larger compared to gene expression variability
across individuals19. An additional argument along this line is the fact that we are looking at individual
animals from inbred rodent strains which exhibit a low genetic variability by nature. Thus, we assume
that a single controlled experiment on expression in normal tissues at steady state conditions gives a
reasonably good estimate of genome wide tissue specific expression at a relatively small sample size.

Mouse-to-rat correlation
For further technical validation we compared the tissue specific expression between the mouse and rat
data in the context of sequence conservation assuming that highly conserved genes also exhibit higher
correlation of tissue specificity. Figure 5a shows a scatter plot of the gene-wise correlation coefficients
between mouse and rat expression profiles in relation to the mean protein sequence identity to the
human gene product. Although there are some genes with low sequence identity and high correlation
(and vice versa), the majority of all ~17,000 protein coding genes with a 1:1 homology relationship in
mouse versus rat versus human cluster at high correlation coefficients and high sequence conservation.
As an aside, there are only a few hundred genes with a negative correlation coefficient. We have
investigated some of those genes more in detail. In many of these cases, the expression in one species is
quite ubiquitous whereas it is very low or absent in the second species. In most other cases, the expression
is restricted to a few tissues but different ones in mouse compared to rat. More in-depth investigations of
these differences might help to improve the genome annotations for both rodent strains and to improve
our understanding of gene expression variability. However, these aspects are beyond the scope of the
present paper.

As an alternative approach for species comparison we normalized the mean gene expression in each
tissue by the mean expression in all other tissues and refer to this relative gene expression hereafter as a
measure of tissue specificity. For a pair of orthologous genes from mouse and rat we then calculated the

a

b

Figure 6. Electronic northern blot of the super-conserved gene Tubb5. Expression numbers on the X-axis

correspond to RPKM values for mouse (a) and rat (b) samples. The size of the blue bar and lower and upper

error bars correspond to the mean, min and max value in the corresponding tissue group, respectively.

Numbers in brackets correspond to numbers of replicates per group.
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Manhattan distance of the two tissue specificity vectors as a measure for tissue specificity similarity
between the two species. As shown in Fig. 5b, most genes with a small tissue specificity distance
correspond to genes with a high sequence identity with respect to human (i.e., conserved genes). In
contrast, the pairwise tissue specificity distance of orthologous genes strongly increases for genes with low
sequence conservation in human.

Inferring conserved genes
By combining the two approaches described in the previous section we selected ultra-conserved genes
(sequence identity versus human≥ 90%) which are highly correlated (rp≥ 0.9) for further examination
(see Supplementary S3). Gene set enrichment at MSigDB20 (GSE) using canonical pathways from
BIOCARTA, KEGG, and REACTOME revealed a highly significant enrichment of genes involved in
transcript splicing and RNA processing (FDRo10− 15) as well as neuronal genes (FDRo10− 7) and
genes involved in the immune system (FDRo10− 7). Although those gene categories are also found
enriched in studies of evolutionary divergence21 one should keep in mind that the underlying biological
processes are essential for development and homeostasis. Thus, mutations observed in the corresponding
human genes are often pathologic22,23. Consequently, there is a strong enrichment of genes involved in
the immune system (FDRo10− 52) and neuronal genes (FDRo10− 36) among the set of known human
disease genes according to the Online Mendelian Inheritance in Man (OMIM).

To further evaluate the observed expression of these genes we compiled curated information on
human tissue specificity from UniProtKB/Swiss-Prot, the manually curated subset of UniProtKB. Table 2
shows the results for the top 20 genes where this information is available. As a first observation there are
very high correlation coefficients between mouse and rat expression profiles and the tissue with the
highest expression is identical for all pairs of genes. Interestingly, most of these ultra-conserved genes are
ubiquitously expressed and / or have the highest expression in brain or thymus. The similarity between
the rat and mouse expression profiles for those genes is striking as shown exemplified for TUBB in Fig. 6.
The observed distribution in mouse and rat shows a ubiquitous tissue profile with the highest expression
in thymus, followed by brain. Furthermore, this pattern matches the manually curated tissue specificity
for the corresponding human homolog protein entry (Data Citation 2, see also other examples listed in
Table 2).

One should bear in mind that the abundance of a transcript is not always predictive for the abundance
of the corresponding protein and there are a number of studies which have investigated this in detail5.
However, according to the central dogma in molecular biology, the information on a coding gene is
transferred from DNA to mRNA and from mRNAs to Protein. Under steady-state conditions in normal
tissues, the mean abundance of a protein should correlate well with the mean abundance of the
corresponding mRNA transcript, but it is beyond the scope of the present study to investigate possible
exceptions from this rule.

Despite the emerging attention of the academic community to non-coding RNAs we focused on
mRNA for the present study, because the described RNA and sequencing protocol as well as the data
analysis pipeline are optimized for protein coding genes.

In summary, the present study provides access to genome wide gene expression data across complex
organs from C57BL6 mice and Han Wistar rats which belong to the most relevant animal model species
for biomedical research. Technical quality control and data analysis show a consistent pattern of sample
clustering and intra-versus-inter tissue variation of gene expression. We also demonstrate that the present
dataset can facilitate a better understanding and awareness of gene function across different species.
Comparative genomics and transcriptomics may also help to translate preclinical data into human by
confirming cross-species conservation of drug target genes or—the other way round—by predicting
potential issues with species selectivity.

Usage Notes
The R source code to perform the data analysis and to generate the figures of the manuscript is provided
in Supplementary S2.
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