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ABSTRACT
Monoclonal antibodies (mAbs) have become a major class of protein therapeutics that target a spectrum
of diseases ranging from cancers to infectious diseases. Similar to any protein molecule, mAbs are
susceptible to chemical modifications during the manufacturing process, long-term storage, and in vivo
circulation that can impair their potency. One such modification is the oxidation of methionine residues.
Chemical modifications that occur in the complementarity-determining regions (CDRs) of mAbs can lead
to the abrogation of antigen binding and reduce the drug’s potency and efficacy. Thus, it is highly
desirable to identify and eliminate any chemically unstable residues in the CDRs during the therapeutic
antibody discovery process. To provide increased throughput over experimental methods, we extracted
features from the mAbs’ sequences, structures, and dynamics, used random forests to identify important
features and develop a quantitative and highly predictive in silico methionine oxidation model.
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Introduction

Protein-based therapeutics are widely recognized for their
potential1,2 in treating a range of diseases, with almost a
quarter of the biopharmaceutical product approvals in the
past 20 years being monoclonal antibodies (mAbs).3 In addi-
tion to possessing the desired antigen affinity and specificity,
the successful therapeutic antibody development candidate
needs to meet favorable developability criteria,4 such as an
optimal in vivo clearance profile, low aggregation propensity,
and high levels of physical (thermal/pH) and chemical
stability.5 The absence of a favorable profile can cause attri-
tion or delay in development of a therapeutic mAb candidate;
thus, in silico prediction of chemical liabilities in mAbs early
in the drug discovery process provides beneficial resource
management, and has attracted considerable attention.

Substantial progress has been made in computational predic-
tion of thermal/pH stability,6 aggregation propensity,7,8 viscosity-
9,10 and in-vivo clearance of mAbs.9,11 Other antibody liabilities
due to chemical stress in the manufacturing process include the
deamidation of asparagine (Asn), isomerization of aspartic acid
(Asp) and oxidation of methionine (Met) and tryptophan (Trp)
residues. To this end, studies on prediction models for Asn
deamidation,12,13 Asp isomerization12 and Trp oxidation9 have
been reported.

Oxidation of Met in proteins can result from the con-
version of Met to methionine sulfoxide (MetO) by reactive
oxygen species (ROS) over a broad pH range.14 Protection

against Met oxidation can only be found in certain tissues
and immune cells where this effect can be reversed by
enzymes known as methionine sulfoxide reductases,
which can reduce MetO back to Met via a thioredoxin-
dependent reaction.15,16 It is believed that this reversible
oxidation of Met plays a key role in the regulation of
many enzymes and peptide hormones.17 Oxidized forms
of proteins have been shown to exhibit decreased chemical
and physical stability when compared to the unoxidized
form,18,19 thereby possibly affecting their biological activ-
ity. In the case of mAbs, oxidation may interfere with the
mAbs’ ability to bind to its target, especially if the oxida-
tion occurs within the complementarity-determining
region (CDR), thereby decreasing its efficacy.

Previous studies on predicting Met oxidation in
proteins20-25 and antibodies26,27 have shown that measures
of solvent exposure, degree of water coordination, and
spatial distance between the Met sulfur atom and the
closest aromatic residue28 are indicative of the oxidative
susceptibility. However, these studies either considered a
limited set of features, notably excluding dynamics fea-
tures, or relied on expensive and time-consuming mole-
cular dynamics (MD) simulations to obtain dynamics
features, resulting in small sets of proteins.

Here, we extracted dynamic features from a relatively
large number of mAbs using the more efficient coarse-
grained elastic network models, and, along with features
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extracted from the primary sequence and predicted ter-
tiary structure obtained using homology modeling, con-
structed a random forest (RF)-based machine learning
model to quantitatively predict the risk of Met oxidation
in the CDRs of mAbs. The model was generated using a
benchmark dataset containing an experimentally deter-
mined susceptibility to Met oxidation of 172 Met residues
in CDRs of 122 distinct mAbs, and was further validated
on an independent hold-out set of 17 Met residues in 12
mAbs and a validation set of 121 clinical stage mAbs. We
describe the experimental approach in identifying antibo-
dies with methionine oxidation liability, how the various
features used in the RF model were obtained, how the
model was built, and the performance of the model.

The quantitative prediction model performs remarkably well
according to the conventional performance metrics, suggesting
that simple features extracted from the structure and dynamics of
the molecule can quickly inform us about the stability of potential
Met liabilities in the CDRs of mAbs. Our approach is different
from previous work in that the analysis is performed over a larger
dataset of antibodies, takes into consideration dynamics features
using coarse-grained elastic network models that are much less
expensive compared to MD, and adopts a rigorous machine-
learning framework to develop a predictive regression model.

Results

Prediction of methionine oxidation risk using a random
forest model

Susceptibility to oxidation upon 2,2ʹ-azobis(2-amidinopro-
pane) dihydrochloride (AAPH) stress was measured as the
relative change in percentage of oxidized Met species
(with respect to control) for a set of 172 Met residues
across 122 mAbs (Table S1) as described in Materials
and Methods. Of the 172 Met in the training set, 18
were identified as ‘liable’ (positive class) to Met oxidation
whereas 154 were identified as ‘non-liable’ (negative class).

RFs29 are one of the most popular machine learning (ML)
methods for classification or regression because of their

effectiveness, especially when the number of cases available
for training is small. RFs belong to a class of ML methods
known as ensemble methods; namely they use a combination
of multiple regression trees and typically deliver better per-
formance than individual regression trees alone by averaging
the predictions of each tree.30 In addition, RFs offer two
specific advantages: 1) they automatically provide an unbiased
‘out-of-bag’ (OOB) performance measure (all data points were
predicted only using an ensemble of trees that were not
generated using that data point) without the need to explicitly
divide the dataset into training and test sets,31 and 2) they
provide a reliable measure of the predictive power of each
feature.

A RF regression model was trained to predict the relative
change in percentage of oxidized species upon AAPH treat-
ment on 172 Met residues using 4 (of a total of 18 considered)
numeric descriptors (Table 1) extracted from the predicted
structure and dynamics of the mAbs (see Materials and
Methods for details and outlined protocol in Figure 1).
Rather than using expensive MD simulations as in most pre-
vious works, we relied on coarse-grained representations of
proteins, namely elastic network models to model the protein
dynamics.

The value of each feature for the 172 Met residues, as well
as the experimental and predicted values, can be found in
Table S2. Figure 2 shows a scatterplot of the predicted vs.
experimental values of the relative changes in oxidized spe-
cies. The correlation between the predicted and experimental
values, R = 0.77 and the root mean square error (RMSE) of
the predictions was 11.39. The standard deviation of the
errors, σ was 10.08.

The predictions from the regression model were then used
to construct an implicit classifier model to annotate whether
the change in percentage of oxidized species is above or below
a specific threshold (25%). When the relative change in oxi-
dized species is above 25%, the residue is classified as ‘Liable’
and otherwise as ‘Non-liable’. The model was able to discri-
minate between liable and non-liable residues well (see con-
fusion matrix in Table 2). There were six mispredictions, 3
false positives and 3 false negatives. Interestingly, all mis-

Table 1. List of descriptors investigated in this study.

No. Descriptor Name Explanation Source In Final Model?

1 NoverlResa Number of overlaps between atoms of Met residue with spatial neighbors Structure Yes
2 TotSasaResa Total solvent accessible surface area of Met residue Structure Yes
3 anmFluca Mean square fluctuation of Met Cα atom based on Anisotropic Network Model Dynamics Yes
4 hnmFluca Mean square fluctuation of Met Cα atom based on Hinsen’s Network Model Dynamics Yes
5 PhobSasaResa Hydrophobic partition of the solvent accessible surface area of Met residue Structure No
6 PhilSasaResa Hydrophilic partition of the solvent accessible surface area of Met residue Structure No
7 cdrLength Length of CDR in which Met is located Sequence No
8 Centeredness Location of Met with respect to center of CDR Sequence No
9 cdrLocation CDR in which Met is located (CDR-H1/H2/H3/L1/L2/L3) Sequence No
10 IgGType IgG type of the antibody Sequence No
11 lcFramework Germline family of the light chain Sequence No
12 hcFramework Germline family of the heavy chain Sequence No
13 QSasaResa Ratio of exposed-to-total solvent accessible surface area of Met residue Structure No
14 dipoleMoment Magnitude of the dipole Moment of the mAb Structure No
15 energyInt Energy of interaction between VH and VL Structure No
16 protpI3D 3D structure-based pI of the protein Structure No
17 chargeAtpH5 Net charge of the mAb at pH 5.0 Structure No
18 chargeAtpH7 Net charge of the mAb at pH 7.0 Structure No

aThese descriptors were also calculated for the (N-1) th and (N + 1)th residues; but not identified to be useful; where N is the index of the Met residue.
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predicted Met except one (M92, the only case in the CDR-L3
region) were located in the CDR-H3 region. Moreover, these
mispredicted cases in the CDR-H3 region are also located on
very long loops (length given in brackets): M97 (11), M100b
(13), M100h (16), M100i (19) and M100* (20). This suggested
that the failure of the model in these cases was most likely due
to uncertainty in the CDR-H3 modeling,32,33 which would
affect the features extracted from these structures.

This implicit classifier model offers a high accuracy of 0.96
and a high specificity of 0.98. Sensitivity and precision are
both at 0.83. Since the majority of the Met are not susceptible
to oxidative stress, this is an unbalanced dataset. We thus also
calculated the Matthews Correlation Coefficient (MCC),
which was 0.81. In addition, we wanted to know how the
predictions change if the cutoff for liability is changed. To
understand this, we subjected the predictions to a receiver-
operating characteristic (ROC) curve analysis (Figure S1) by
plotting the true positive rate against the false positive rate for
different cutoffs. The model gave a remarkable area under the
curve (AUC) of 0.96, suggesting that it is very robust.

Identification of features important in determining
liability of a met residue to oxidation

As described above, one of the advantages of using a RF model
is the ability to estimate the importance of each of the extracted
features in terms of its predictive power. Variable importance
was estimated using the two measures as described in the

Materials and Methods section, and the results based on a
model of 8 descriptors are shown in Figure S2.

From a logical perspective, the set of important descriptors
can be divided into three main categories: 1) descriptors that
relate to the residue interactions; 2) descriptors that relate to the
intrinsic dynamics of the residues; and 3) descriptors that relate
to the solvent exposure of the residues. As can be seen from
Figure S2, the set of the most important descriptors include the
number of contacts the residue makes with its spatial neighbors
(‘NoverlRes’) and the mean square fluctuation from the coarse-
grained elastic network models (‘anmFluc’ and ‘hnmFluc’). The
second set of important variables includes the ‘TotSasaRes’ and
‘PhobSasaRes’ of the residues, representing the total and the
hydrophobic partition of the solvent accessible surface areas
(SASA) of the residues, respectively.

When the distributions of ‘NoverlRes’ of liable versus
non-liable methionines is visualized (Figure 3), it becomes
increasingly apparent that this feature is indeed very
powerful in discriminating between liable and non-liable
residues. The scatterplot also highlights the mispredictions
by the binary classifier model (M92, M97, M100b, M100h,
M100i, M100*). It can be clearly seen that the false posi-
tives have a very high SASA compared to non-liable resi-
dues and the false-negatives have a very low SASA
compared to liable residues. The separation of the two
classes based on the solvent-accessible surface area of the
residue (‘TotSasaRes’) (Figure 3) is less evident, although
significant.

Figure 1. Schematic workflow of the methodology. Antibody sequences are obtained from an in-house database and the Fv regions for each structure modeled
using MOE protocols. Features are extracted from the sequence, structure and dynamics of the mAb Fv regions and used to implement a random forest-based
predictor in R. The performance of the model is assessed using the standard metrics of correlation and root mean square error for regressor model and accuracy,
precision, sensitivity and specificity for the implicit classifier model.
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A complete list of descriptors investigated in this study is
shown in Table 1. Many of these descriptors were eliminated
based on the fact that their importance was ascertained to be
much less compared to that of the 8 descriptors examined here,
4 of which were used to construct the final model.

Hold-out validation of the prediction model

To evaluate the model in a real-life scenario, we tested the perfor-
mance on an independent validation set of 17 Met residues across
12 mAbs that went through the same oxidative stress and mea-
surement as the training set. One of the 17 Met residues was
‘liable’ and 16 were non-liable. A summary of the dataset is
provided in Table S3. Features for each mAb were also extracted
as described in Materials and Methods (Table S4). Predictions
from regression model gave a correlation of 0.94 and an RMSE of
8.18 (Figure S3). The standard deviation of the errors was 6.35.
These values suggested that the model was robust, in accordance
with the OOB performancemeasures obtained on the training set.

Notably, there was one outlier prediction with an error of more
than 3σ (M30).

It is also important to note that the level of performance
offered by the RFs is better than that of simpler models like
multiple linear regression (MLR). For example, a MLR model
trained using the same set of descriptors on the same training set
and tested on these 17 cases gave an R of 0.82 and an RMSE of
10.62, further reinforcing the fact that RFs are superior at
descriptor selection, especially when applied to small datasets.

We then tested the RF classifier (by applying a cutoff of
25% on the regression predictions) on this test set. The con-
fusion matrix of the results is shown in Table S5. The model
performed well with no mis-predictions. Even the outlier
prediction M30 was correctly predicted to be liable (i.e., a
relative oxidation of > 25%), further demonstrating the
robustness of the model developed in this work.

Comparison of the prediction model with other methods
on an independent test dataset

In order to obtain an unbiased estimate of the performance of
the model, it is important to understand how well the model

Figure 2. Scatterplot showing the predicted vs experimental % change in
oxidized species for 172 Met residues. Abscissae represent the experimentally
measured % change in oxidized species upon AAPH treatment whereas the
ordinates represent the predicted values from the random forest regressor
model. Residues with relative change < 25% (‘Non-liable’) as identified by
experiment are colored in blue, while liable residues are colored in red.
Outliers (having a prediction error > 3σ) which are mispredicted according to
the classifier scheme are shown with a ‘+’ sign; and correct predictions as hollow
circles. Non-outliers which are correctly predicted are shown as filled circles, and
mispredicted ones with a ⊕ sign. The line of best fit (excluding outliers) is
shown as a green line.

Table 2. Performance measures of the random forest classifier on the training dataset of 172 Met residues.

Experimental ‘Liable’ Experimental ‘Non-liable’

Predicted ‘Liable’ 15 (TP) 3 (FP) Precision = 0.83 TP/(TP+ FP)
Predicted ‘Non-liable’ 3 (FN) 151 (TN)

Recall/Sensitivity = 0.83
TP/(TP+ FN)

Specificity = 0.98
TN/(TN+ FP)

Accuracy = 0.96
(TP+ TN)/Total

Matthew’s Correlation Coefficient (MCC) = TP�TN�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TPþFNð Þ TPþFPð Þ TNþFPð Þ TNþFNð Þ
p = 0.81

TP = True Positive, TN = True Negative, FP = False Positive, FN = False Negative
All predictions are ‘out-of-bag’ (OOB); that is predictions on each data point were made only using the trees not generated using that point.

Figure 3. Scatterplot showing the distribution of important features for liable
versus non-liable Met residues. The number of overlaps of the Met residue with
atoms of spatial neighbors (the feature ‘NoverlRes’) is shown along the x-axis
and the total solvent accessible surface area of the residue (the feature
‘TotSasaRes’) along the y-axis. Liable Met residues are shown in red and non-
liable Met residues in blue. Outliers (having a prediction error > 3σ) which are
mispredicted according to the classifier scheme are shown with a ‘+’ sign; and
correct predictions as hollow circles in their respective colors. Non-outliers which
are correctly predicted are shown as filled circles, and mispredicted ones with a
⊕ sign.
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performs on an independent set. For this, we used a bench-
mark dataset of 121 clinical stage antibodies with experimen-
tally characterized Met liability data from Adimab.26 We
compared the performance of our model on this dataset
with that of their machine-learning based SASA prediction
model26 and another independent method called Methionine
Oxidation Predictive Model (MOPM) developed by Aledo
et al.28 using non-antibody proteins’ Met oxidation data.

The Adimab dataset is organized differently from our
dataset. Instead of reporting oxidation status of each methio-
nine residue as we did, the Adimab dataset reports the total
number of methionine residues oxidized in the whole anti-
body, including both CDR and non-CDR frameworks, with-
out specific oxidation status for each methionine residue. To
facilitate comparisons between our method and other meth-
ods on this dataset, we converted our predictions into oxida-
tion states as follows. First, we predict the relative percentages
of oxidation for each Met residue in the heavy and light
chains of the mAbs using our regression model. Then, we
determined for each mAb, the number of Met residues that
were classified as liable using different percentage cutoffs as
thresholds (from 0% to 100%). If there was at least one liable
Met in the mAb, then it was considered ‘Liable’ and otherwise
‘Non-liable’. These predictions were matched with the experi-
mental data (similarly converted into binary class informa-
tion). Thus, for each cutoff, the true positive rate (TPR) was
plotted against the false positive rate (FPR) to construct the
ROC curve (Figure 4), and the AUC (area under the curve)
determined. Comparisons based on AUC also served the
additional purpose of eliminating any bias introduced
through the use of arbitrary cutoffs by the different methods
for liability classification.

Based on the AUC analysis (Figure 4), our prediction
model (AUC = 0.88) performed better than the MOPM
model (AUC = 0.85) in being able to correctly classify
whether the mAbs had liability or not, but the Adimab
method (AUC = 0.95) outperformed both of these methods
on the dataset. However, we would like to emphasize four
ways in which the data is different from our in-house data.
First, the stress conditions are different. The Adimab dataset
was characterized under hydrogen peroxide induced stress,
whereas ours was under AAPH stress. Interestingly, although
our model is trained using AAPH stress data, and the MOPM
model is trained using H2O2 stress data (the same as the
Adimab dataset), our model still outperforms the MOPM
model, illustrating the importance of developing antibody-
specific models. Second, the criteria to determine Met oxida-
tion state is different. Third, the Adimab dataset includes Met
in both CDRs and framework regions, while our model was
trained using experimental data generated for Met in CDRs
only. Finally, the Adimab dataset only contains the Met oxi-
dation state for each chain, i.e., the number of oxidized Met in
each chain and not residue-wise liability information.

Given these major differences, an AUC of 0.88 was quite
encouraging. A different choice of stress condition or criteria
to define whether a residue is liable or not could have resulted
in an even better performance of our model. The Adimab
method in fact uses SASA only for prediction, and we have
shown in our dataset that our model outperforms prediction
using SASA only. In an ideal scenario, a fairer comparison
could be achieved by using another large and independent
dataset.

Distribution of liable and non-liable residues on the mAb
primary sequence

The available dataset also provided an opportunity to investi-
gate whether there are any particular locations on the primary
sequence of the mAbs where liable residues are more likely to
be found. Figure 5 shows a mapping of the liable and non-
liable residues in the training dataset onto the Kabat sequence
of the mAbs. Our dataset contains Met residues present in
CDR-L1 (M29, M30, M32, M33), CDR-L3 (M89, M92, M96),
CDR-H1 (M34), CDR-H2 (M50, M51, M53, M57, M58, M62,
M63, M64, M77, M78) and CDR-H3 (M96, M97, M100,
M100a, M100b, M100c, M100d, M100e, M100f, M100h,
M100i and M100*), all of which (except CDR-H1 where all
Met residues are at M34 and non-liable) contain at least one
liable Met residue and one non-liable residue. In addition,
there are positions in the dataset at which Mets were identi-
fied experimentally to be both liable and non-liable (M100b),
emphasizing the unbiased nature of the dataset, and the need
for a prediction tool to interpret the dataset.

In order to investigate whether there are certain positions
that are naturally more susceptible than others, we analyzed
the natural frequency of occurrence of Met in human34 and
mouse35 antibody repertoires. The naturally observed prob-
ability of Met at the different Kabat positions in the dataset is
shown in Table S6. Our analysis showed that the natural
propensity of occurrence of Met at liable positions is not
significantly different from that at non-liable positions at a

Figure 4. Comparison of Receiver operating characteristic (ROC) curves for
different methods on the benchmark clinical mAb dataset. Plot of the true
positive rate (TPR) against the false positive rate (FPR) for our random forest-
based prediction model (green) in comparison with that of Adimab (red) and
MOPM (blue).
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95% confidence level (Wilcoxon rank-sum test; see p-values in
Table S7). This lends further support to our observations that
susceptibility to Met oxidation is structure-mediated rather
than evolution-governed; thereby requiring a prediction
model like the one presented here.

Discussion

In this work, we developed a quantitative predictor for Met
oxidation liability in mAbs by analyzing a large dataset, based
on a RF machine learning model. The quantitative regressor
can potentially be used across the industry, where different
cutoff values can be applied. We find that simple features
extracted from the structure of the molecule, as well as flex-
ibility information from coarse-grained representation of the
mAb, are sufficient to identify oxidative susceptibility of Met
residues in mAbs. The number of contacts with neighboring
residues, average fluctuations of the Met residue and solvent-
accessible surface area were identified as the primary features
to predict percent oxidation of a Met residue, suggesting that
a higher solvent exposure and higher fluctuation at a Met
residue accentuate its susceptibility to oxidation. Notably,
coarse-grained elastic network-based calculations for estimat-
ing residue fluctuations used in this study are significantly less
expensive compared to MD or Monte Carlo simulations.

The remarkable accuracy of the prediction model sheds
light on the mechanism of Met oxidation and susceptibility
of the residues to various ROS. The important descriptors in
the model are in a way related to each other. For example,
residues with fewer spatial contacts with neighbors are likely
more exposed to the solvent, and this property has been
measured in some studies as the water coordination number
(WCN).27 In turn, these residues will exhibit higher average
fluctuations. Increased fluctuation of the Met residue (partly

arising from exposure to solvent) will also contribute to
increased susceptibility to oxidation as manifested by the
importance of the features ‘anmFluc’ and ‘hnmFluc’. Fewer
residue contacts, larger fluctuations and a larger solvent expo-
sure results in a higher chance of the residue coming in
contact with ROS. The observation that the hydrophobic
partition of SASA (‘PhobSasaRes’) is more important than
the hydrophilic partition (‘PhilSasaRes’) can be explained by
the fact that the oxidation process results in the energetically
favorable conversion of an exposed hydrophobic patch on
Met to a hydrophilic patch in contact with water. The RF
model is a perfect framework to dissociate the contributions
of these descriptors and offers robust predictions.

Although SASA has been found to be predictive of Met
oxidation in previous studies,26 we examined the performance
of using SASA only and found that the RF model is superior.
For example, in the training set, a linear model of oxidation
percentage vs. SASA only gave an R of 0.68 and RSME of
13.18 (see predictions in Table S2), compared to an OOB R of
0.77 and RSME of 11.48 for the RF model. As for the hold-out
test set, the linear model of oxidation percentage vs. SASA
gave an R of 0.91 and RMSE of 8.31 (see predictions in
Table S4), compared to R of 0.96 and RSME of 7.74 for RF
model. The corresponding SASA-only implicit classification
model using 25% relative oxidation as a cutoff gave reduced
sensitivity of 0.72, precision of 0.81 and MCC of 0.74 (Table
S8) compared to sensitivity and precision both of 0.83 and
MCC of 0.81 for the RF model using the 4 features. The
reduced sensitivity is especially of concern, as increased false
negatives would mean higher probability of encountering a
previously predicted non-liable molecule tested as liable at a
later stage, a costly event that should be avoided even if rare.

Another important point is that our model has been
trained specifically on antibodies. In addition to the

Figure 5. Map of liable and non-liable Met residues on the variable region of the antibodies. Histogram showing the frequencies of Met in the experimental dataset
of 122 mAbs at various positions identified to be liable (red bars) and non-liable (green bars) based on Kabat numbering in different complementarity-determining
regions of the heavy (left panel) and light chains (right panel). M100b is observed to be liable in one mAb and non-liable in another and there shows a green + red
bar.
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independent dataset, the MOPM model also gave a lower
correlation with the experimental data (R = 0.69) compared
to our model (OOB R = 0.77) on our training dataset of
172 Met. In terms of the classifier model, MOPM also gave
a much higher number of mispredictions (8 false negatives
and 2 false positives) compared to our model (3 false nega-
tives and 3 false positives). Again, the higher number of false-
negatives is of concern. The improved performance of our
model over the MOPM model suggests that training the
models specifically on antibodies can provide gains in the
ability to identify these liabilities.

In addition to RFs, support vector machines (SVM) and
neural networks (NN) are the other popular ML methods. We
also compared the performance of our RF-based model with
SVMs and NNs (using the same four features). While the
methods were able to perform slightly better on the training
dataset based on cross-validated performance (Table S9); the
RF model outperformed the other two on the independent
benchmark test dataset (Table S10). Hence, we have presented
results with the RF-based model only.

Another question is the applicability of the various predic-
tion models to different datasets. The behaviors of Met resi-
dues under different oxidative stress conditions (e.g., thermal,
light, numerous chemical reagents) can be different,36 but the
protocol presented in the paper can be easily adapted to
develop stress-specific prediction models, and it would be
interesting to compare prediction models trained under dif-
ferent stress conditions to determine if they are similar or how
they differ from each other. For example, the performance of
our model on the Adimab benchmark dataset may have been
better if a different threshold was chosen for identifying liable
residues, or if the experiments were performed under a dif-
ferent oxidative stress condition. These issues will be
addressed in future studies.

Our highly predictive Met oxidation model now offers early
in silicomolecular assessment that enables prioritization of can-
didate mAbs for lead selection, or allows engineering efforts to
substitute the liable Met residues prior to experimental confir-
mation of chemical liability. Both strategies expedite and stream-
line resource utilization in the development process. The
regression nature of the model also allows potential wide use
across the industry, where each company or institute can deter-
mine their own cutoff value as liability threshold.

One caveat is that our model depends on the quality of the
input 3D structure used for extracting the features. This becomes
especially important for long CDR-H3 loops, where even state-
of-the art models still lack reliability.32,33 It is also worth noting
that predictive power is directly influenced by dataset size; there-
fore, the current model can be further improved (especially to
minimize the number of false positives), with increased dataset
size (specifically, liable Met) in the future. Some studies have
shown that residues that fall outside of the traditionally defined
CDRs can also be important to antigen binding,37 which suggests
that molecular assessment studies may need to be further
extended to these residues.

Another important consideration is the chemical environment
around the Met residues. Previous works have shown that the
differential rates of oxidation of various Met on the same protein
can be attributed to differences in interactions with the residues in

the structural environments or with the solvent.38–40 For example,
a previous study showed that oxidized Met residues were located
in closer proximity to phosphorylation sites than non-oxidized
ones.41 In addition, Met residues are often located in spatial
proximity to aromatic rings, contributing to protein stability
through the hydrophobic effect.42 The oxidation of such Met
residues can lead to conformational changes that result in the
exposure of previously unexposed hydrophobic residues.43,44 In
other words, the oxidation of different Met residues on a protein
may not be independent of each other. However, a detailed under-
standing of the mechanisms behind such correlations is still lack-
ing. Improvement of existing methods could focus on capturing
such aspects of the Met residues in the context of the overall
structure.

Materials and methods

Experimental identification of met liabilities

To determine oxidative liability, mAbs were oxidatively
stressed by AAPH45 and evaluated using peptide mapping
LC/MS techniques as previously described.36,46 Briefly, control
and oxidatively stressed samples were tryptically digested; and
the digested peptides were subsequently separated using LC or
UHPLC, detected using an Orbitrap mass spectrometer and
identified by accurate mass (MS1), and sequence and modifi-
cation locations were verified from fragmentation patterns
(MS2). For peptides containing methionine, extracted ion
chromatograms (XICs) of MS1 mass–to-charge ratios (m=z)
for the most abundant charge states for the non-oxidized, the
mono-oxidized (plus 15.9944 Da) and the double-oxidized
species (plus 31.9893 Da) were created for each peptide for
both the control and stressed samples. Peaks from the XICs
were integrated and areas were used to determine the percent
relative oxidation for each methionine of interest. The relative
percent oxidation for a site of interest was calculated by taking
the sum of the areas of the oxidized species, dividing by the
sum of the areas of the non-oxidized and oxidized species,
and multiplying by 100. The relative percent oxidation for
each methionine site was then compared for the control and
oxidatively stressed samples. A methionine site having a rela-
tive percentage above a historically determined threshold
(25%) was considered to be an oxidation liability.

Sequence based feature extraction

Several features were extracted from the primary sequence
of the mAbs. The CDR definition was broadened to
ensure sufficient representation of the antigen-binding
site on the various mAbs. Therefore, Chothia, Kabat
CDR definitions, and Vernier zone47 were augmented to
provide the broader CDRs definition used in this study. In
order to facilitate comparisons between mAbs consistently,
Kabat numbering48 was used despite the use of modified
CDR definition described above (For purposes of this
study, residues 93 and 94 in the heavy chain are also
considered part of CDR-H3 in accordance with in-house
definitions). The location of the residue within the vari-
able fragment (Fv) is specified as: CDR-H1/H2/H3 or
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CDR-L1/L2/L3. The germline family of light chain or
heavy chain was obtained by aligning the corresponding
sequences to an in-house database of sequences obtained
from the IMGT database (http://www.imgt.org) where the
gene family with the highest similarity to the query
sequences was assigned.49 The length of the CDR in
which the residue is located, referred to as ‘cdrLength’,
was included as a feature. The ‘centeredness’ of the resi-
due within the CDR was measured as a value ranging
between 0 and 1 with 0 corresponding to either end of
the CDR and 1 to the center of the CDR loop. No mAb in
the dataset is identical to any other mAb in the dataset.
When CDRs are identical between any two mAbs, their
overall sequence identity is less than 94%. A detailed
summary of the frequencies of Met according to CDR
and IgG subtype is available in Table S1.

Structure-based feature extraction

The tertiary structures of the Fv regions in the mAbs panel were
modeled using the automated AutoFv/CCG3 protocol50 in
Molecular Operating Environment (MOE) obtained from the
Chemical Computing Group as described previously.50 The 3D
homology models of the Fv regions were used to extract several
features for machine learning, including the SASA at the residue
level. SASA values were calculated empirically using the POPS
software.51 In addition to using the total SASAof thewhole residue
(‘TotSasaRes’), the hydrophobic partition (‘PhobSasaRes’) and the
hydrophilic partition (‘PhilSasaRes’) of the SASA of each residue
in the context of the mAb structure were also measured. These
values were included under the assumption that high SASA values
indicate exposure to water and hence higher susceptibility to ROS
and oxidation. Another parameter ‘NoverlapRes’ (also obtained
from the POPS software) measures the total number of overlaps
between atoms in the queryMet residue and its proximal residues’
atoms in the Fv structure. Two atoms are considered to overlap if
the distance between them is more than the sum of their van der
Waals radii and two times the solvent radius. This parameter was
included under the assumption that higher number of overlaps
would mean a higher number of interactions and lesser chance of
interaction with ROS.

Dynamics-based feature extraction

In order to obtain a reliable measure of residue fluctuations in the
mAbs, we adopted the coarse-grainedmodels of protein dynamics
referred to as elastic network models (ENMs).52–54 In ENMs, the
molecules are represented in a simplified manner using a bead-
springmodel. Figuratively, in the case of proteins, the beads are the
C-alpha (Cα) atoms; with one bead per residue. Bead interactions
are assumed to be restricted to only nearby beads (within a
specified distance cutoff, here 13 Å). Interactions between beads
in themodel are simulated by springs.Despite their coarse-grained
nature, ENMs capture the overall geometry of proteins efficiently
and modes from ENMs have been shown to be significantly
accurate at reproducing experimental temperature factors for a
number of crystal structures.55–58 All the elastic network models
and fluctuations were implemented using the ‘bio3d’ package59 in
R. We specifically used two variations of elastic network models

implemented in the bio3d package: the anisotropic networkmodel
(ANM)60 and the Hinsen’s network model61 (referred to as HNM
in this paper). In the ANM, all springs between residue i and j are
assumed to have the same stiffness (spring constant γij ¼ 1)
whereas in the HNM, springs between sequentially adjacent Cα

atoms are represented as γij ¼ arij � b and those between non-

adjacent Cα atoms as γij ¼ cr�6
ij where rij is the distance between

residues i and j; and a; b and c are constants as previously
discussed.61 In both models, the potential energy of the system is
measured to be proportional to the sum of squares of displace-
ments of the beads from their equilibrium positions. The hessian
matrix of the double derivatives of the potential function is then
constructed and eigen-decomposed to derive the modes and their
frequencies (square root of the eigenvalues). For both network
models, themean square fluctuation of residues (Cα atoms) can be
obtained from the corresponding elements of the pseudo inverse
of the hessian matrix.

Random forest prediction model

RF model was implemented using the ‘randomForest’ package62

in R (available from the Comprehensive R Archive Network
(CRAN) repository), which is an implementation of Leo
Breiman’s algorithm.29 All adjustable parameters were set to
default values and all predictions shown on the training set are
OOB,31 equivalent to a cross-validated performance. The model
thus generated is validated by using it to predict the cases in the
independent test set and measuring the performance therein.

Assessing the importance of features

One of themain advantages of RFs is that they can easily provide a
measure of feature importance. The importance of a variable
(feature) can be measured directly from how the performance of
themodel is affected when values of this variable are perturbed, or
from how tightly the variable fits the data in the process of con-
structing the decision tree, as explained below. Accordingly, the
‘randomForest’ package provides two such measures: 1) ‘%
IncMSE’: the percentage increase in mean square error (MSE)
when the values on that feature are randomly permuted (averaged
across all trees); and 2) ‘IncNodePurity’: the percentage increase in
node purity of the descendant nodes with respect to the parent
nodes when split using that variable. Impurity at a node is mea-
sured as the residual sum of squares (deviations from the actual
experimental values) and the total decrease in node impurities
from splitting on that variable is averaged across all trees to obtain
the second measure.

Abbreviations

AAPH 2,2ʹ-Azobis(2-amidinopropane) dihydrochloride
ANM anisotropic network model
AUC area under the curve
CDR complementarity-determining region
ENM elastic network models
HNM Hinsen’s network model
LC liquid chromatography
mAb monoclonal antibody
MCC Matthews Correlation Coefficient
MDA mean decrease in accuracy
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MDG mean decrease in Gini
MetO methionine sulfoxide
MLR multiple linear regression
MOE Molecular Operating Environment
MS mass spectrometer
MSE mean square error
OOB ‘out-of-bag’
RF random forest
RMSE root mean square error
ROC receiver-operating characteristic
ROS reactive oxygen species
SASA solvent accessible surface area
UHPLC ultra-high performance liquid chromatography
XIC extracted ion chromatograms
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