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Abstract: Asiatic acid (AA), a natural triterpene found in Centalla asiatica, possesses polypharmaco-
logical properties that can contribute to the treatment and prophylaxis of various diseases. However,
its hydrophobic nature and rapid metabolic rate lead to poor bioavailability. The aim of this research
was to develop a thermoresponsive nanogel from hyaluronic acid (HA) for solubility and stability
enhancement of AA. Poly(N-isopropylacrylamide) (pNIPAM) was conjugated onto HA using a
carbodiimide reaction followed by 1H NMR characterization. pNIPAM-grafted HA (HA-pNIPAM)
nanogels were prepared with three concentrations of polymer, 0.1, 0.15 and 0.25% w/v, in water by
the sonication method. AA was loaded into the nanogel by the incubation method. Size, morphology,
AA loading capacity and encapsulation efficiency (EE) were analyzed. In vitro cytocompatibility
was evaluated in fibroblast L-929 cells using the PrestoBlue assay. Single-dose toxicity was studied
using rats. HA-pNIPAM nanogels at a 4.88% grafting degree showed reversible thermo-responsive
behavior. All nanogel formulations could significantly increase AA water solubility and the stability
was higher in nanogels prepared with high polymer concentrations over 180 days. The cell culture
study showed that 12.5 µM AA in nanogel formulations was considered non-toxic to the L-929
cells; however, a dose-dependent cytotoxic effect was observed at higher AA-loaded concentrations.
In vivo study proved the non-toxic effect of AA loaded in HA-pNIPAM nanogels compared with the
control. Taken together, HA-pNIPAM nanogel is a promising biocompatible delivery system both
in vitro and in vivo for hydrophobic AA molecules.

Keywords: asiatic acid; hyaluronic acid; poly(N-isopropylacrylamide); thermoresponsive nanogel;
stability study; cytotoxicity study; in vivo animal study

1. Introduction

Asiatic acid (AA) is one of the major bioactive triterpenes present in Centella asiatica,
whose common names are pennywort and gotu koka [1]. AA possesses anti-oxidative,
anti-inflammatory [2–5], anticancer [6–8], antifungal [9], antimicrobial [10,11], antidiabetic
and antihyperlipidemic activities [12]; and cardiac, renal, hepatic and neuroprotective
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effects [13–17]. It also has the potential to inhibit osteoporosis [18,19] and fibrotic dis-
eases [13,20,21], and to induce collagen synthesis and wound healing [22]. However, AA is
highly lipophilic (log p value, 5.7), poorly soluble in water (0.0598 mg/L at 25 ◦C) and un-
dergoes rapid metabolism by the liver. Although studies have demonstrated the therapeutic
activities of AA against many diseases, the limitations of poor bioavailability and rapid
metabolism hinder this compound from developing into therapeutic applications [23].

There are several approaches for delivery of insoluble drugs, such as the prodrug
strategy [24], pH modification using a pH modifier and salt form, co-solvency, surfactant
solubilization, amorphous formation, solid dispersions, cocrystals, nanoparticle deliv-
ery systems consisting of polymeric micelles, nanocrystals, nanosuspensions, solid lipid
nanoparticles, liposomes, microemulsions and self-emulsifying drug delivery systems [25]
and nanogels [26]. There are also several formulations intended to enhance water solu-
bility of AA [27–30]. Among the nanocarriers, nanogels are one of the promising drug
delivery systems.

Nanogels are physically or chemically crosslinked hydrogels in the form of nanopar-
ticles. Nanogels possess a large surface area and high water content. They can deliver
both hydrophilic and hydrophobic drugs [31]. Nanogels have the advantages of easy drug
loading, high loading capacity, physical stability and a stimuli-responsive nature. Drugs
can be loaded into the polymer matrix through electrostatic, van der Waals or hydrophobic
interactions resulting in the formation of stable nanoparticles [26,32]. The hydrophilic
polymer can be modified with hydrophobic groups to form an amphiphilic polymer, which
can self-assemble into nanogel in aqueous condition. Subsequently, the hydrophobic part
of the nanogel can encapsulate the hydrophobic drugs by hydrophobic interaction [33].

Hyaluronic acid (HA) is a natural linear polysaccharide derived from the β (1,4) and
β (1,3) glycosidic bonding of the two repeated disaccharide units D-glucoronic acid and
N-acetyl-D-glucosamine [34]. It is highly hydrophilic, biocompatible and biodegradable
and has three functional groups (hydroxyl-, carboxyl- and N-acetyl) available for chemical
modifications [35]. Thermoresponsive polymers such as poly(N-isopropylacrylamide)
(pNIPAM) and pluronic acid could interact with HA through chemical reaction and the
resulting modified HA could be physically crosslinked into hydrogel through hydrophobic
interaction [36,37].

pNIPAM is the most widely used thermoresponsive water-soluble polymer and has
various applications in the fields of drug delivery systems [36], scaffold in tissue engineer-
ing [38] and biosensors [39]. It has both hydrophilic amide (-CONH-) and hydrophobic
isoprophyl (-CH(CH3)2) functional groups in its structure and possesses a lower critical
solution temperature (LCST) of 32 ◦C, above which pNIPAM undergoes coil-to-globule
transition due to the dehydration of the polymer chain [40]. As the LCST is close to the
body temperature, it transforms into a gel state in the body. Modification of pNIPAM with
hydrophilic polymers such as chitosan and hyaluronic acid, or collagen and gelatin, could
alter LCST, enhance mechanical strength and improve biocompatibility [41].

pNIPAM has been conjugated to another polymer through amide bond linkages
through carbodiimide coupling interactions using 1-(3-dimethylaminopropyl)-3-ethylcarbo-
diimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as crosslinkers. The con-
jugated copolymers were used to prepare a hydrogel as a delivery system for controlled
release, improving solubility and as a cell carrier [36,41–43]. pNIPAM-grafted HA (HA-
pNIPAM) hydrogel and nanogels have been used in pharmaceutical applications such as tis-
sue adhesion prevention [44] and solubility enhancement of hydrophobic cyclosporin [45]
and curcumin [46], respectively.

In this study, an HA-pNIPAM nanogel delivery system was prepared with 0.1, 0.15
and 0.25% w/v polymer concentrations attempted for enhancing the solubility and stability
of AA and for evaluating the physicochemical properties of the three formulations. Fur-
thermore, a cytotoxicity study using in vitro fibroblast L-929 cells and in vivo study using
a rat strain, BrlHan:WIST@Jcl (GALAS), were carried out to analyze the biocompatibility
and toxicity of the nanogels.
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2. Materials and Methods
2.1. Materials

Asiatic acid (AA) (purity 95%) was obtained from SEPPIC, Normandie, France.
Sodium hyaluronate (HA) (MW = 47 kDa) was purchased from Dali company (Wuhan,
Hubei, China), amine-terminated poly(N-isopropylacrylamide) (pNIPAM) (Mn = 5.5 kDa)
from Sigma-Aldrich, St. Louis, MO, USA, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide
hydrochloride (EDC) from US Biological Life Sciences and N-hydroxysuccinimide (NHS)
from Acros Organics, Morris Plains, NJ, USA. Reagents required to prepare the mobile
phase such as acetonitrile and methanol were purchased from RCI Labscan, Bangkok,
Thailand, and 85% orthophosphoric acid (H3PO4) from Sigma-Aldrich, St. Louis, MO, USA.
All chemical reagents were of analytical grade and all solvents were of high-performance
liquid chromatography (HPLC) grade. For the cell culture experiment, mouse L-929 fibrob-
lasts were obtained from the Faculty of Engineering, Chulalongkorn University, Bangkok,
Thailand. Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS) and
penicillin-streptomycin (10,000 U/mL) were purchased from Gibco, Waltham, MA, USA.
PrestoBlueTM cell viability reagent was purchased from Invitrogen Corporation, San Diego,
CA, USA. For the animal study, rats, strain BrlHan:WIST@Jcl (GALAS), were bought from
Nomura Siam International, Bangkok, Thailand.

2.2. Synthesis of HA-pNIPAM Polymer

HA-pNIPAM polymer was prepared via EDC/NHS reaction following the method
from the previous study [42]. Amounts of 0.5 g of HA and 0.345 g of pNIPAM (1:0.05 HA:pNIPAM
molar ratio) were dissolved separately in 25 mL of water each and the two solutions were
mixed together. Subsequently, NHS and EDC were added into the mixture as catalysts in
a 4:1 excess molar ratio to the carboxyl group of HA. The pH was adjusted to 5.5 ± 0.2.
Following 1 h of stirring, the pH was raised to 7.2 ± 0.2 through 5 M NaOH addition.
The conjugating reaction was allowed for 48 h at room temperature before purifying by
dialyzing against demineralized water using regenerated cellulose dialysis tubes with
nominal MW cut-off of 8-14 kDa for 3 days. Products were freeze-dried and the degree
of functionalization was determined via 1H NMR (Bruker Fourier 300 NMR spectrometer,
US). Deuterium oxide (D2O) was used as the solvent for NMR sample preparation.

2.3. Preparation of Drug-Free and AA-Loaded HA-pNIPAM Nanogels

HA-pNIPAM nanogels were prepared by a simple sonication method in aqueous
solution from three concentrations of the polymer (0.1, 0.15, and 0.25% w/v). After sonicat-
ing for 1 h, the prepared nanogels were settled at 4 ◦C overnight before drug incubation.
Excess amount of AA from 10 mg/mL of ethanolic AA stock solution was added drop-
wise at a constant stir of 300 rpm using a magnetic stirrer (Glassco 710.DG.0, Glassco
Laboratory Equipments Pvt. Ltd., Haryana, India) into the nanogel solution in 1:10 v/v,
incubated at 25 ◦C for 6 h under light protection. The unloaded AA was discarded by
centrifugation at 3000× g for 10 min at 4 ◦C using a microcentrifuge (TOMY, MX-305,
Meditop Co., Ltd., Tokyo, Japan). The resulting AA-loaded nanogel formulations were
named AA-HA-pNIPAM 0.1, AA-HA-pNIPAM 0.15 and AA-HA-pNIPAM 0.25.

2.4. Lower Critical Solution Temperature (LCST) of HA-pNIPAM Nanogels

LCSTs of drug-free nanogels were analyzed by measuring the particle size in the
form of temperature trend by dynamic light scattering (DLS) using a Zetasizer (Malvern
Nano ZS, Malvern Instruments Ltd., Malvern, UK) with water as the dispersant. The
temperature-induced sol–gel transition of nanogels at LCST was observed by the dramatic
change in the size of the nanogel without the changes in overall viscosity. To examine
the reversible thermoresponse, Z-average sizes of the nanogels were measured without
dilution using an automatic controlled temperature program, increasing the temperature
from 25–40 ◦C, followed by decreasing temperature from 40–25 ◦C at 1 ◦C/min. The
temperature trends were measured by cumulative analysis using Malvern software.
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2.5. Particle Size and Morphology

The particle size distributions of drug-free and AA-loaded nanogels were measured
by DLS and by nanoparticle tracking analysis (NTA) using a NanoSight (Malvern NS300,
Malvern Instruments Ltd., Malvern, UK) at 25 ◦C. Blank nanogels were diluted 2.3 times
with ultrapure water (UPW) and AA-loaded nanogels 200 times prior to both size mea-
surements. Morphology of the particles was observed by transmission electron microscopy
(TEM) (JEM-1400, JEOL Ltd., Tokyo, Japan). In TEM sample preparation, blank nanogels
were not diluted but AA-loaded nanogels were diluted 100 times with UPW prior to
negative staining by 0.5% uranyl acetate.

2.6. Quantification of AA Using the HPLC Technique

AA quantification was performed by the HPLC technique using an Agilent 1260
Infinity II consisting of a liquid chromatography pump (quaternary pump, G7111A), UV-
VIS detector (G7115A), auto sampler (G7129A) (Agilent technologies Inc., Santa Clara,
CA, USA) with Chem Station software version E.02.02 and column Luna® C18 with a
250 × 4.5 mm2 ID and a C18 guard cartridge column of 4 × 10 mm2 (Phenomenex Inc.,
Torrance, CA, USA). HPLC conditions were isocratic mobile phase; acetonitrile 0.05%
H3PO4 in water (50:50 v/v); flow rate: 1 mL/min; column temperature: 25 ◦C; diode
array detector wavelength: 206 nm; injection volume: 20 µL; and run time: 10 min. The
retention time of AA was observed at 8.2 min. The HPLC method was validated by a linear
plot of AA concentrations from 1.25–25 µg/mL using diluent 70% methanol (70:30 v/v
MeOH: H2O). Moreover, the method was validated in terms of analytical procedures,
specificity, accuracy, intra-day and inter-day precisions, limit of detection (LOD) and limit
of quantification (LOQ).

2.7. Drug Loading of the Nanogel Formulations

Entrapment efficiency (EE) was studied by the direct method. The nanogel particles
and drug-free solution were separated through centrifugal ultrafiltration using a centrifugal
filter (Amicon® Ultra 0.5 mL 30 K, Merck Ltd., Darmstadt, Germany). Briefly, 400 µL of
AA-loaded nanogels were loaded into the filter and centrifuged at 14,000× g for 15 min.
The concentrates were completely collected by immediate reverse spin at 1000× g for 3 min
and thorough rinsing of the centrifuge filter using 60% MeOH. The recovered entrapped
drug content was diluted with 70% MeOH, filtered through a 0.22 µm filter and then
analyzed by HPLC.

The drug loading efficiency, loading capacity and EE of the nanogels were calculated
according to Equations (1)–(3):

Loading efficiency (%) = 100 × Amount of loaded drug
Amount of feeding drug

(1)

Loading capacity (%) = 100 × Mole of drug
Mole of polymer

(2)

EE (%) = 100 × Amount of entrapped drug
Total amount of drug

(3)

Therefore, loading efficiency reflects the utilization of drugs in the feed during the AA-
loaded nanogel preparation process, loading capacity reflects the capability of a polymer
to hold the drug as the ratio per its dry weight, while EE reflects how much the drug can
be encapsulated in the nanogel matrix.

2.8. Stability Study of Drug-Loaded Nanogels

After the preparation, AA-loaded nanogels were kept at temperatures of 4 ◦C and
25 ◦C for 180 days in 15 mL conical tubes under light protection. During that time, changes
in drug concentration in the nanogel solutions were examined using HPLC at 0, 3, 5, 10, 30,
90 and 180 days.
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2.9. Cell Culture Condition

L-929 fibroblasts were cultured in DMEM, supplemented with 10% FBS and 100 U/mL
penicillin and 100 U/mL streptomycin. The cells were cultivated at 37 ◦C in a humidified
atmosphere with 95% air/5% CO2.

2.10. Cell Viability Assay

A cell viability study was performed using the PrestoBlue assay. L-929 cells were
seeded on a 96-well plate at a density of 10,000 cells/well and incubated at 37 ◦C for 24 h.
Afterwards, the complete culture media were removed and the cells were gently washed
with phosphate buffer saline (PBS; pH 7.4). Next, blank nanogels (polymer concentration
from 0.1–0.3% w/v), different AA-loaded nanogel formulations and free AA in dimethyl
sulfoxide (DMSO) solution (AA concentrations from 12.5–400 µM) were added (50 µL/well)
to the wells in triplicate along with media (100 µL/well) and incubated for another 24 h.
Then, the tested solutions were removed. After washing with PBS, the cells were incubated
with 10% PrestoBlue reagent for 1 h at 37 ◦C. The cells without treatment were used as the
positive control, while the media containing 10% PrestoBlue reagent without cells were
used as the blank. Fluorescent intensity was measured at 560/590 nm (Ex/Em) using a
microplate reader (CLARIOstar, BMG LABTECH Ltd., Ortenberg, Germany). Viability (%)
was calculated according to Equation (4):

Viability (%) = 100 × Sample intensity − Blank intensity
Positive control intensity − Blank intensity

(4)

2.11. Single-Dose Toxicity Study in Rat Model
2.11.1. Experimental Animals

Single-dose oral acute toxicity study of HA-pNIPAM and AA-HA-pNIPAM was
performed with the dose of AA based on the cell viability trial. A total of 18 female
BrlHan:WIST@Jcl (GALAS) rats (approximately 10 weeks old and weighing 177–196 g) were
purchased from Nomura Siam International, Thailand, and housed at the Chulalongkorn
University Laboratory Animal Center (CULAC). Briefly, rats were kept under a 12 h light-
dark cycle at 22 ± 3 ◦C with 40–60% humidity for 1 week for adaptation with free access to
pellet food and water. Animal welfare and experimental procedures were carried out in
strict accordance with the OECD Guidelines for a single-dose acute oral toxicity study and
all experimental protocols were approved by the Chulalongkorn University Animal care
and Use Committee (CU-ACUC). The animals were randomly allocated into three groups
(n = 6 per group). Group 1 was the control and was administered with UPW, and Groups 2
and 3 were the experimental groups and were administered with HA-pNIPAM (0.5 mg/kg
body weight) and AA-HA-pNIPAM (0.5 mg HA-pNIPAM + 6 µg AA/ kg body weight) by
oral gavage, respectively.

2.11.2. Clinical Pathology

Blood samples for hematological and clinical chemistry analyses were taken from
animals at termination. For hematological analyses, blood samples were collected into K3
EDTA tubes (Vet and Vitro Lab Group, Bangkok, Thailand) and analyzed with a hematology
analyzer (Mindray, BC-5000 vet). Blood samples for biochemical studies were collected into
lithium heparin tubes and analyzed using a blood analyzer (Dirui, CS400). For biochemical
analyses, a comprehensive diagnostic profile and mammalian liver profile were performed.

2.11.3. Organ Weights and Histopathological Studies

The following organs were weighed at necropsy: brains, livers, kidneys, and spleens.
For histopathological studies, all rats were euthanized on day 14 by using CO2 and tissues
were surgically removed and stored in 10% formalin. For microscopic analysis, fixed
tissues were dehydrated by treating with 70%, 80%, and absolute alcohol and embedded
in paraffin block. Thin sections (5 µm) were made using a microtome (Thermo scientific,



Polymers 2021, 13, 4071 6 of 18

Shandon Finesse 325, Waltham, MA, USA) before staining with hematoxylin and eosin
(H&E) dye. The stained sections were observed with a light microscope (Nikon Eclipes
E600, Nikon, Tokyo, Japan) and imaged with a Nikon Digital Camera DXM 1200F (Nikon
Eclipes E600, Nikon, Tokyo, Japan).

2.12. Statistical Analysis

All experiments were repeated at least three times. Results are expressed as mean
± SD. Statistical analysis was performed for evaluating statistical differences in loading
amount, loading efficiency, loading capacity, entrapment efficiency, cell viability, % drug
loading in the stability study and in-vivo study by one-way ANOVA, while the size
measurement comparison was performed by paired t-test using SPSS 17 software. p value
< 0.05 was considered as the level of significance.

3. Results and Discussion
3.1. Preparation of Drug-Free and AA-Loaded Nanogels

The HA-pNIPAM copolymer was prepared by conjugating pNIPAM to the backbone
of the HA polymer. The nanogel particles were formed by sonication, introduction of
AA into the nanogel solution and subsequent centrifugation for removing insoluble AA.
The production of the grafted polymer was analyzed using 1H NMR. NMR spectra of
unmodified HA and pNIPAM from previous studies were used as references [45,47]. As
shown in Figure 1, the degree of grafting was calculated to be 4.88%. Polymer concentra-
tions of 0.1, 0.15 and 0.25% w/v were used to form nanogel formulations designated as
HA-pNIPAM 0.1, HA-pNIPAM 0.15 and HA-pNIPAM 0.25, respectively. Each formulation
was incubated with an excess amount of AA at 25 ◦C for 6 h followed by centrifugation.

Figure 1. 1H NMR spectrum of HApNIPAM copolymer showing 4.88% grafting of pNIPAM. The asterisk (1.1–1.7 ppm)
represents the peak of 3 protons from the acetyl group of HA and that of 1 proton from the pNIPAM chain, and the arrow
(1.7–2.1 ppm) represents the peak of 2 protons from the pNIPAM chain.

3.2. LCST Behavior

DLS was used to measure the LCST of the HA-pNIPAM nanogels using the tempera-
ture trend system. In our study, both HA-pNIPAM 0.1 and HA-pNIPAM 0.25 showed a
reversible thermoresponse as shown in Figure 2. The sizes of both were not significantly
different in the size range 600–750 nm below LCST. However, the size of HA-pNIPAM 0.25
became significantly higher than that of HA-pNIPAM 0.1 above the LCST (p = 0.000). This
shows that higher polymer concentrations had higher size changes above the LCST. This
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might be due to the greater availability of pNIPAM and HA concentrations responsible for
the higher degree of size changes.

Figure 2. Particle size (left y-axis) and light scattering intensity (in kcps, kilo count per second) (right y-axis) as a function of
temperature in DLS, (a,b) HA-pNIPAM 0.1 and HA-pNIPAM 0.25 when heating from 25 ◦C to 40 ◦C, (c,d) HA-pNIPAM
0.1 and HA-pNIPAM 0.25 when cooling from 40 ◦C to 25 ◦C, respectively (mean ± SD, n = 3). The first temperature point
showing the significant change in the size of the nanogels indicates LCST.

LCST values of HA-pNIPAM 0.1 and HA-pNIPAM 0.25 were 35 ◦C and 34 ◦C in the
heating cycle (25–40 ◦C) (Figure 2a,b). They are 3 ◦C and 2 ◦C higher than the original
LCST of pNIPAM (LCST = 32 ◦C). Therefore, hydrophilic HA polymer could increase
the LCST of pNIPAM. HA-pNIPAM polymer concentration has a significant influence on
the LCST in the sol to gel transition. A lower polymer concentration tends to have lower
availability of pNIPAM and vice versa. At a grafting degree of 4.88% of pNIPAM to HA,
low polymer concentration resulted in an LCST higher than the high polymer concentration.
It can be said that higher energy is required to transit sol to gel in a low pNIPAM content
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compared with a high HA concentration. This agrees with the statements that hydrophobic
components tend to decrease LCST [48] and hydrophilic comonomers could increase
LCST [49]. However, LCST in the cooling cycle was reduced to 32 ◦C in both nanogel
solutions (Figure 2c,d). This kind of phase transition also occurred in HA-grafted chitosan-
grafted pNIPAM polymer (HA-CPN) measured using a UV/Vis spectrophotometer. In
their study, the addition of HA resulted in a slightly higher LCST (30.3 ◦C) during gel
forming; however, there was a lower LCST (27.8 ◦C) during gel melting compared to
the LCST of pNIPAM-COOH and CPN polymers due to the hydrophilic groups such as
carboxylic acid (-COOH) and hydroxyl (–OH) groups. Compared with pNIPAM-COOH
and chitosan-grafted pNIPAM (CPN), gelation of more complicated molecules, HA-CPN,
might lead to more complicated physical entanglement resulting in a longer gel formation
time and more liquefaction time for high-molecule weight polymers to rearrange and
disentangle inter- and intra-molecular chains [41].

Moreover, DLS is a powerful tool for accessing the detailed information about the
size distribution of aggregates. The hydrodynamic size of the nanogel showed a lower
polydispersity index (PDI) value at and above LCST. In the heating cycle, HA-pNIPAM 0.1
has a PDI of 0.45 at 25 ◦C, 0.11 at 35 ◦C (LCST) and 0.06 at 40 ◦C. In addition, HA-pNIPAM
0.25 has a PDI of 0.58 at 25 ◦C, 0.19 at 34 ◦C (LCST) and 0.24 at 40 ◦C. In the cooling cycle,
the PDI is 0.67, 0.22 and 0.04 for HA-pNIPAM 0.1 and 0.58, 0.22 and 0.18 for HA-pNIPAM
0.25 at 25 ◦C, 32 ◦C (LCST) and 40 ◦C, respectively. The peak of scattered light intensity
increased at and above the LCST (Figure 2). Thus, it agrees with the Z-average size of
the nanogel. One hypothesis is that some HA-pNIPAM polymer could be released and
re-assembled into new nanoparticles along the temperature increase from LCST because of
the progressive hydrophobic transition of HA-pNIPAM in the nanogel formulation [50].
Therefore, the continuous increases of the scattered light intensity and the particle sizes
and the additional decrease in the size distribution at and above the LCST supported the
combinational events of the expansion of the nanogels and the formation of new particles
at and above the LCST.

However, in HA-pNIPAM 0.25, the scattered light intensity began to decrease when the
temperature reached 37 ◦C in the heating cycle and 35 ◦C in the cooling cycle (Figure 2b,d).
In HA-pNIPAM 0.1, the maximum size in the temperature trend is less than 1600 nm.
Compared to HA-pNIPAM 0.1, HA-pNIPAM 0.25 showed higher size changes.

3.3. Size and Morphology of the Nanogel Formulations

As shown in Figure 3, TEM images showed that the particles have well-defined spher-
ical shapes except the AA-HA-pNIPAM 0.1 nanogel with the rectangular shape. The sizes
are approximately 280–600 nm in the HA-pNIPAM nanogels (Figure 3a–c), 200–700 nm
in the AA-HA-pNIPAM 0.15 (Figure 3e) and 60–670 nm in the AA-HA-pNIPAM 0.25
(Figure 3f), while the AA-pNIPAM 0.1 nanogel showed extremely large (600–900 nm) and
small sizes (20–70 nm) (Figure 3d).

There are no size changes among HA-pNIPAM 0.1, 0.15 and 0.25 nanogel formulations
compared to both TEM analysis (Figure 3a–c) and DLS measurements (Table 1). The
size of the nanogels depends on several factors such as the degree of substitution of the
hydrophobic moiety in the polymer [51] and the solvent [52,53] for nanogel preparation.
Even though another study showed that the polymer concentration may have influences
on the particle size of the nanogel [54], such effect was not observed in our study. That
might be because the range of the polymer concentrations is narrow.
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Figure 3. TEM images of assembled nanogels. (a) HA-pNIPAM 0.1, (b) HA-pNIPAM 0.15, (c) HA-pNIPAM 0.25, (d) AA-
HA-pNIPAM 0.1 (4 ◦C), (e) AA-HA-pNIPAM 0.15 (4 ◦C) and (f) AA-HA-pNIPAM 0.25 (4 ◦C). Scale bars indicate 500 nm
except 1 µm for (d).

Table 1. The comparison of particle sizes of the nanogels using DLS and NTA at 25 ◦C (mean ± SD, n = 3).

Formulations
(Storage Temperature ◦C)

DLS (Intensity Based) NTA (Number Based)

Z-Average Particle (nm) PDI Mean Size (nm)

HA-pNIPAM 0.1 (4 ◦C) 667 ± 198 * 0.28 ± 0.17 443 ± 11

HA-pNIPAM 0.15 (4 ◦C) 567 ± 83 ** 0.34 ± 0.17 461 ± 14

HA-pNIPAM 0.25 (4 ◦C) 571 ± 61 0.29 ± 0.06 552 ± 27

AA-HA-pNIPAM 0.1 (4 ◦C) 785 ± 54 *** 0.27 ± 0.12 356 ± 33

AA-HA-pNIPAM 0.15 (4 ◦C) 653 ± 112 *** 0.26 ± 0.11 378 ± 37

AA-HA-pNIPAM 0.25 (4 ◦C) 626 ± 62 *** 0.25 ± 0.02 370 ± 19

AA-HA-pNIPAM 0.1 (25 ◦C) 808 ± 40 *** 0.41 ± 0.12 374 ± 14

AA-HA-pNIPAM 0.15 (25 ◦C) 806 ± 76 *** 0.38 ± 0.14 419 ± 57

AA-HA-pNIPAM 0.25 (25 ◦C) 637 ± 120 *** 0.19 ± 0.04 413 ± 10

* p < 0.05, ** p < 0.01, *** p < 0.001 vs. mean size from NTA measurement.

As shown in Table 1, the sizes of both drug-free and drug-loaded nanogels measured
by DLS were significantly different from those measured by NTA except in HA-pNIPAM
0.25. PDI of the nanogels was found to be 0.19–0.41 by DLS. The great variations in
particle size between Z-average size by DLS and mean size by NTA might be due to the
polydispersity of the nanoparticles. The presence of a few large particles could interfere
with the diameter size detection due to their contribution to a more scattered signal,
resulting in overestimation of the size. Close agreement of size based on NTA and DLS can
be achieved in monodispersed particles [55,56]. However, TEM data supported the size
range observed in both DLS and NTA.

Moreover, to obtain the optimal particle number for NTA and TEM analysis, AA-
loaded nanogels were diluted 200 and 100 times with UPW while drug-free nanogels
were only diluted 2.3 times and there was no dilution in NTA and TEM. Therefore, the
number of nanogel particles was obviously a lot higher in AA-loaded nanogels compared
with drug-free nanogels. The size, shape and the number of the nanogels are different
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after drug loading compared to TEM and NTA studies. This observation could be caused
by re-assembling of the polymer under mechanical force during drug incubation and
the formation of new particles after the introduction of hydrophobic AA molecules. The
hydrophobic interaction of AA with polymer chains could not only induce the aggregation
of the HA-pNIPAM polymer [57] resulting in newly formed particles but also make the
preformed nanogels more compact and smaller in size [45].

3.4. Drug Loading in Nanogels

As shown in Table 2, AA-HA-pNIPAM 0.15 and 0.25 nanogels had significantly higher
EE % than AA-HA-pNIPAM 0.1 nanogel. It was shown that EE % is likely to be higher
in nanoparticles prepared from a higher polymer concentration [58]. However, loading
amount, drug loading efficiency and loading capacity were significantly higher in the
nanogel assembled from lower polymer concentrations. As from the TEM analysis, AA
was not completely soluble in the AA-HA-pNIPAM 0.1 nanogel solution. The filaments are
dispersed and stabilized by the small nanogel particles. This could explain why a lower
polymer concentration has a higher drug loading in this study. The concentration of AA
loaded in water prepared from the same drug loading procedures as in the nanogel was
found to be 3.98 ± 0.14 µM. The nanogels could increase AA loading of approximately
400, 370 and 250 folds in AA-HA-pNIPAM 0.1, 0.15 and 0.25 nanogels, respectively. There-
fore, the nanogel formulations could improve the bioavailability of AA by increasing its
aqueous solubilization.

Table 2. Loading amount, loading efficiency, loading capacity and EE of the nanogel formulations (mean ± SD, n = 3) #.

AA Loaded Nanogels Loading Amount (mM) Loading Efficiency (%) Loading Capacity (%) EE (%)

AA-HA-pNIPAM 0.1 1.63 ± 0.08 a 79.65 ± 4.48 a 13048.24 ± 733.31 a 86.48 ± 4.79 a

AA-HA-pNIPAM 0.15 1.51 ± 0.04 b 73.61 ± 2.06 b 8039.06 ± 225.10 b 98.64 ± 3.94 b

AA-HA-pNIPAM 0.25 1.00 ± 0.19 c 49.10 ± 10.90 c 3206.26 ± 706.50 c 101.15 ± 9.34 b

The different superscript letters a,b,c refer to statistically significant differences between each set of data (p < 0.05). # The statistical analysis
of each parameter is demonstrated in Table S1 in the Supplementary Materials.

3.5. Stability Study

The stability study of AA-loaded nanogels was performed at two temperatures (4 ◦C
and 25 ◦C) as shown in Figure 4. AA-HA-pNIPAM 0.1 has significantly less % drug
loading than AA-HA-pNIPAM 0.25 at day 3, 5 and 10 at both temperatures. The same
event happens again at day 180 only at 25 ◦C where AA-HA-pNIPAM 0.1 has less % AA
loading than the other two formulations. Additionally, AA-HA-pNIPAM 0.1 at 4 ◦C has
% drug loading higher than that at 25 ◦C since day 90. This shows that nanogel prepared
from a lower polymer concentration is less stable compared with those prepared from a
higher polymer concentration. At the same time, the nanogels were more stable at 4 ◦C,
at which % of drug loading remains 78.29 ± 1.15 %, 88.06 ± 4.45% and 89.44 ± 8.01 %
in AA-HA-pNIPAM 0.1, 0.15 and 0.25 nanogels, respectively, after 180 days. Similar to
AA-HA-pNIPAM 0.1, AA-HA-pNIPAM 0.15 has significantly less % drug loading than
AA-HA-pNIPAM 0.25 at day 5 at both temperatures. Again, at day 180, AA-HA-pNIPAM
0.15 at 4 ◦C shows significantly higher % drug loading than that at 25 ◦C. The results gave
the same conclusion as described above. Furthermore, the stability profiles of the nanogels
are different. Lower polymer concentration at both temperatures resulted in the abrupt
decrease in % drug loading at the early days of storage (day 3, 5 and 10) followed by a
gradual decrease. Therefore, nanogels prepared from a low polymer concentration could
not tolerate short-term storage. From the visual analysis of the nanogel solutions, higher
polymer concentrations resulted in higher suspension of the polymer at the bottom of the
containers after 30 days of storage. The polymer suspension could be redispersed and
stable in the solution with no further precipitation for at least one month. However, drug
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loading was measured without prior shaking in all three formulations over the period of
180 days.

Figure 4. Analysis of % drug loading at (a) 4 ◦C and (b) 25 ◦C/60% RH, over six months (mean ± SD, n = 3). * p < 0.05,
** p < 0.01 vs. AA-HA-pNIPAM 0.1 (4 ◦C) in (a) and AA-HA-pNIPAM 0.1 (25 ◦C) in (b). # p < 0.01 vs. AA-HA-pNIPAM 0.15
(4 ◦C) in (a) and AA-HA-pNIPAM 0.15 (25 ◦C) in (b). ! p < 0.05, !! p < 0.01 vs. AA-HA-pNIPAM 0.1 (25 ◦C). $ p < 0.05 vs.
AA-HA-pNIPAM 0.15 (25 ◦C).

3.6. Cell Viability Study

A PrestoBlue viability assay was performed using drug-free nanogels, drug-loaded
nanogels and AA in DMSO solution and the results are shown in Figure 5. Cytotoxic effects
were not observed in nanogels without the drug (Figure 5a). AA concentration at 12.5 µM in
DMSO expressed cytotoxicity in L-929 cells; however, the same AA concentration loaded in
nanogels had no toxic effect to the cells (Figure 5b). This result suggested that the nanogels
could improve the biocompatibility of the AA towards L-929 cells at an AA concentration
of 12.5 µM. Meanwhile, dose-dependent cytotoxicity was observed in AA-loaded nanogels
when AA concentration was higher than 12.5 µM.

Figure 5. PrestoBlue assay showing the relative non-toxic effects of (a) drug-free nanogel, and (b) AA-loaded HA-pNIPAM
nanogels to L-929 cells (mean ± SD, n = 3). *** p < 0.001 vs. AA in DMSO.
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3.7. Single-Dose Toxicity Study in Rat Model
3.7.1. Body Weight

The animals were weighed on a day before the treatments, day 7 and day 14. A slight
body weight increase was observed in each group as shown in Figure 6. Statistical analysis
of animal body weights showed no significant differences between control (UPW) and
treatment groups (HA-pNIPAM and AA-HA-pNIPAM).

Figure 6. Effect of single-dose treatment on average body weight of rats (mean ± SD, n = 5 in control
and n = 6 in HA-pNIPAM and AA-HA-pNIPAM).

3.7.2. Clinical Pathology

We further investigated whether treatments cause a change in hematological parame-
ters, including white blood cells (WBCs), neutrophils, lymphocytes, monocytes, eosinophils,
red blood cells (RBCs), hemoglobin, hematocrit, mean cell hemoglobin (MCH), mean
corpuscular volume (MCV), mean corpuscular hemoglobin concentration (MCHC) and
platelets. Figure 7 demonstrates that there were no significant changes in such parameters
after treatments. Moreover, we further observed the important biochemical parameters,
including blood urea nitrogen (BUN), creatinine, alkaline phosphatase, alanine amino-
transferase (ALT) and aspartate aminotransferase (AST). Consistent with hematological
parameters, no significant alteration could be detected in the biochemical parameters of
the treatment groups (Figure 8). These results strongly support the safety of this platform.

3.7.3. Organ Weight and Histopathological Findings

Figure 9 shows no significant differences in the organ weights between control and
experimental groups. Figure 10 shows marked glycogen accumulation in the liver, and
Figure 11 shows mild congestion in the kidneys in all three groups. The histological scores,
classified into 0 (no change recorded), 1 (mild for <33% of tissues affected), 2 (moderate
for 33–66% of tissues affected) and 3 (marked for >66% of tissues affected), were not
significantly different among the three animal groups.
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Figure 7. Hematological changes in rats treated with control, HA-pNIPAM and AA-HA-pNIPAM. The hematological
parameters analyzed were (a) white blood cells (WBCs), (b) neutrophils, (c) lymphocytes, (d) monocytes, (e) eosinophils,
(f) red blood cells (RBCs), (g) hemoglobin, (h) hematocrit, (i) mean cell hemoglobin (MCH), (j) mean corpuscular volume
(MCV), (k) mean corpuscular hemoglobin concentration (MCHC) and (l) platelets.
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Figure 8. Biochemical analyses from the blood samples of rats after treatment with control, HA-pNIPAM and AA-HA-
pNIPAM. The biochemical parameters analyzed were (a) blood urea nitrogen (BUN), (b) creatinine, (c) alkaline phosphatase
(ALP), (d) alanine aminotransferase (ALT) and (e) aspartate aminotransferase (AST).

Figure 9. Organ weights of rats treated with control, HA-pNIPAM and AA-HA-pNIPAM. The organs weighed at necropsy
included (a) brains; (b) livers; (c) kidneys and (d) spleens.

To summarize, there were no significant differences in the body weight, organ weights,
hematological parameters, clinical chemistry values and histopathological examination
from the experimental groups as compared to the control group. Therefore, our in vivo
information suggested that HA-pNIPAM and AA-HA-pNIPAM were non-toxic to the
animals at the applied dose, supporting the safety of the nanogel system.
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Figure 10. Microscopic images of livers from rats treated with UPW, HA-pNIPAM and AA-HA-pNIPAM. Hematoxylin and
eosin (H&E) staining; 10× and 20× magnification.

Figure 11. Microscopic images of kidneys from rats treated with UPW, HA-pNIPAM and AA-HA-pNIPAM. Hematoxylin
and eosin (H&E) staining; 10× magnification.

4. Conclusions

Nanogels were formulated by a simple sonication method using a non-toxic and
biocompatible polymer at three concentrations (0.1, 0.15 and 0.25% w/v HA-pNIPAM
polymer) in water. In this study, an HA-pNIPAM nanogel system was developed to
overcome the poor solubility issue of a promising bioactive candidate, AA. The experiment
was designed to formulate an HA-based nanogel delivery system prepared from the
polymer, synthesized by the modification of HA with pNIPAM. The properties of the
nanogel prepared from different polymer concentrations on the drug loading and stability
were characterized. AA loading was higher in nanogels prepared from lower polymer
concentrations. However, the stability of the nanogel formulation was higher in AA-HA-
pNIPAM 0.25 according to % drug loading over 180 days. The cell viability assay proved
no cytotoxicity effect of drug-free nanogels. Additionally, drug-loaded nanogels were
cytocompatible up to 12.5 µM of AA. Furthermore, no evident toxicity was observed
in rats treated with both HA-pNIPAM (0.5 mg/kg body weight) and AA-HA-pNIPAM
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(HA-pNIPAM 0.5 mg and AA 6 µg/kg body weight). Therefore, this nanogel system has
great potential for improving water solubility and stability of poor-solubility drugs and its
biocompatibility ensures the safety of the nanogel.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/polym13234071/s1, Table S1: Statistical analysis of loading amount, loading efficiency, loading
capacity and entrapment efficiency of the nanogel formulations (mean ± SD, n = 3).
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