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The availability of high-dimensional molecular markers has allowed plant breeding
programs to maximize their efficiency through the genomic prediction of a phenotype
of interest. Yield is a complex quantitative trait whose expression is sensitive to
environmental stimuli. In this research, we investigated the potential of incorporating
soil texture information and its interaction with molecular markers via covariance structures
for enhancing predictive ability across breeding scenarios. A total of 797 soybean lines
derived from 367 unique bi-parental populations were genotyped using the Illumina
BARCSoySNP6K and tested for yield during 5 years in Tiptonville silt loam, Sharkey
clay, and Malden fine sand environments. Four statistical models were considered,
including the GBLUP model (M1), the reaction norm model (M2) including the
interaction between molecular markers and the environment (G×E), an extended
version of M2 that also includes soil type (S), and the interaction between soil type and
molecular markers (G×S) (M3), and a parsimonious version of M3 which discards the G×E
term (M4). Four cross-validation scenarios simulating progeny testing and line selection of
tested–untested genotypes (TG, UG) in observed–unobserved environments [OE, UE]
were implemented (CV2 [TG, OE], CV1 [UG, OE], CV0 [TG, UE], and CV00 [UG, UE]).
Across environments, the addition of G×S interaction in M3 decreased the amount of
variability captured by the environment (−30.4%) and residual (−39.2%) terms as
compared to M1. Within environments, the G×S term in M3 reduced the variability
captured by the residual term by 60 and 30% when compared to M1 and M2,
respectively. M3 outperformed all the other models in CV2 (0.577), CV1 (0.480), and
CV0 (0.488). In addition to the Pearson correlation, other measures were considered to
assess predictive ability and these showed that the addition of soil texture seems to
structure/dissect the environmental term revealing its components that could enhance or
hinder the predictability of a model, especially in the most complex prediction scenario
(CV00). Hence, the availability of soil texture information before the growing season could
be used to optimize the efficiency of a breeding program by allowing the reconsideration of
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field experimental design, allocation of resources, reduction of preliminary trials, and
shortening of the breeding cycle.

Keywords: genomic prediction/selection, genotype × environment G×E interaction, soil covariates, genetic gain,
soybean breeding

INTRODUCTION

Soybean [Glycine max (L.) Merr.] represents the largest and most
concentrated segment of global agricultural trade (Gale et al.,
2019). It is the crop that delivers the highest amount of protein
per hectare and accounts for over 60% of total global oilseed
production (United States Department of Agriculture, 2022).
Worldwide, Brazil (37%, 139,000 MT), United States (32%,
120,700 MT), and Argentina (12%, 46,500 MT) account for
over 80% of the soybean production (United States
Department of Agriculture, 2022). Over the last two decades
(2001/2002 to 2021/2022), soybean production has nearly
doubled from 182,830 to 363,860 MT (United States
Department of Agriculture, 2002; United States Department of
Agriculture, 2022). The substantial increase in soybean
production can be attributed to advances in agronomical
practices (Specht et al., 1999; Mourtzinis et al., 2018), faster
implementation of novel technologies in farming operations
(Liu et al., 2008; Ainsworth et al., 2012; Vieira and Chen,
2021), and the development of improved soybean cultivars
(Salado-Navarro et al., 1993; Voldeng et al., 1997; Specht
et al., 1999; Specht and Williams, 2015; Vieira and Chen,
2021), of which the availability of high dimensional genomic
(Song et al., 2013, 2020) and phenomic data (Moreira et al., 2019,
2020; Parmley et al., 2019; Zhou et al., 2022), as well as the
integration of environmental covariates (ECs) through predictive
analytics, have contributed to accelerated genetic gains (Jarquin
et al., 2014a; Jarquin et al., 2014b; Persa et al., 2020;Widener et al.,
2021).

Marker-assisted selection (MAS) has greatly contributed to the
improvement and selection of soybean traits regulated by major
effect genes, including biotic (Pham et al., 2013; Shi et al., 2015)
and abiotic tolerance (Pathan et al., 2007; Wu et al., 2020), as well
as seed composition–related traits (Pham et al., 2010; Patil et al.,
2017). On the other hand, yield is a highly complex quantitative
trait regulated by many genes with small effects, thus limited
success has been reported in applying MAS (Concibido et al.,
2003; Jarquin et al., 2014a). Bernardo (1994) was the first one who
proposed the use of genomic variants (RLFPs) for predicting trait
performance for selecting genotypes (genomic selection, GS),
back then, the number of these covariates was limited/reduced.
Later, Meuwissen et al. (2001) proposed a new methodology to
deal with the curse of the dimensionality problem (n < p; n is the
number of data points available for model fitting and p is the
number of genomic variants) and it is considered a landmark in
genomic research. The concept of GS revolves around using the
information of all molecular markers—large and small effects—to
develop prediction models for the phenotype of interest. The
major advantage of GS relies on the ability to predict the yield of
genotypes to allow the identification and selection of the most

promising individuals earlier in the breeding pipeline, which not
only reduce costs, time, and space but enhance the genetic gain by
reducing the length of the breeding cycle, increasing selection
intensity, as well as allowing the breeders to have a clear
knowledge of the genetics of the materials early in the pipeline
(Jarquin et al., 2014b; Crossa et al., 2017; Vieira and Chen, 2021;
Wartha and Lorenz, 2021).

In soybean, the first application of GS was reported by
Jarquin et al. (2014a). By using a standard G-BLUP model
including only additive effects and an extended version of
the G-BLUP model including additive-by-additive effects, a
prediction accuracy of 0.64 for grain yield and roughly 41%
of the phenotypic variance explained by the genotypic
component were reported using 301 lines of the University of
Nebraska soybean breeding program. Usually, different
response patterns in a set of genotypes are observed when
these are tested under different environmental conditions
complicating the selection of the most promising candidates
(Crossa et al., 2004). The presence of these changes in the
response pattern of the ranking of the genotypes is also
known as the genotype-by-environment interaction effect. To
allow the consideration of this interaction effect in prediction
models using weather data, Jarquin et al. (2014b) proposed a
reaction norm model that allows the incorporation of the main
and interaction effects of both high-dimensional molecular
markers and EC through covariance structures using data
from wheat cultivars tested in 340 environments. In the
cross-validation scenario that considers the prediction of the
performance of genotypes that have never been evaluated in
field trials (CV1), in comparison with the conventional main
effect genomic selection model, the reaction norm model
enhanced prediction accuracy by 35%, whereas in the cross-
validation scenario where all genotypes had at least one field
evaluation available (CV2), a 17% increase in predictive ability
was observed (Jarquin et al., 2014b). Using the soybean nested
association panel (SoyNAM), Xavier et al. (2016) investigated
the impacts of training population size, genotyping density, and
14 prediction models on the accuracy of genomic prediction.
These authors showed that the training population size was the
most impactful factor in the accuracy improvement. Ma et al.
(2016) used ridge regression best linear unbiased prediction
(rrBLUP) (Endelman, 2011) with fivefold cross-validation to
explore strategies of marker preselection. The prediction
accuracy based on markers selected with a haplotype block
analysis–based approach increased by approximately 4%
compared with random or equidistant marker sampling.
Stewart-Brown et al. (2019) investigated the effects of two
relatedness strategies among genotypes in overall prediction
accuracies and found both methods returned similar accuracies.
The first method was based on each bi-parental population and

Frontiers in Genetics | www.frontiersin.org September 2022 | Volume 13 | Article 9058242

Canella Vieira et al. Soil-Covariates Enhancing GS in Soybeans

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


utilized a training set of full-sibs of the validation set. The
second method utilized a training set of all remaining breeding
lines except for full-sibs of the validation set to predict across
populations. Persa et al. (2020) expanded the reaction norm
model proposed by Jarquin et al. (2014b) by incorporating the
interaction between genotypes’ families and the environment
under the premise that the differential responses of families to
environmental stimuli could be used for enhancing the selection
process in target environments. The most comprehensive model
improved the predictive ability by 41% (CV1) and 49% (CV2)
compared to the standard GBLUP, and roughly 17% as
compared to the conventional reaction norm model. Widener
et al. (2021) included three EC (mean minimum daily
temperature, mean maximum daily temperature, and mean
daily precipitation) interactions with molecular markers into
the reaction norm model and no substantial increase in
prediction accuracy was observed and resulted in more often
negative predictions although these authors were only interested
in assessing strategies to selecting sets of environments
for model training. These authors found that in predicting
the most dissimilar environment (based on phenotypes
and environmental covariates) a reduced set of environments
is adequate to optimize predictive ability while for the
most similar environment, as the number of environments in
the training set increased the predictive ability was
improved too.

The covariance structure proposed in the reaction norm
allows the borrowing of information between genotypes
based on environmental and genomic similarities. For
instance, in Jarquin et al. (2014b), the covariance matrices
describing the similarities between environmental conditions
and genetic information permit the borrowing of information
between environments and molecular markers, respectively.
The cross-validation scenario where untested genotypes are
being predicted in untested environments (CV00) is often the
challenge faced in the early stages of a breeding pipeline also
known as the progeny stage. In this situation, the environmental
conditions in upcoming growing seasons are often
unpredictable and distinct from what was used in the
model’s training dataset limiting the main advantage of the
approach based on conventional covariance structures only.
Soil-related information such as soil texture is generally
constant across years and readily available before the
growing season. Consequently, leveraging the information of
soil texture as the main effect as well as its interaction with
molecular markers could potentially increase predictive ability,
particularly in scenarios considering untested genotypes in
untested environments. Therefore, the objective of this study
was to investigate the potential of including soil-derived
covariates in the reaction norm model to enhance the
predictive ability under common plant breeding scenarios,
including the prediction of untested genotypes in untested
environments (progeny testing) as well as multiple
combinations of tested genotypes in tested and untested
environment simulating line selection. A set of 797 advanced
soybean breeding lines derived from unique 367 bi-parental
populations was used in this study. Lines were evaluated for

grain yield between 2017 and 2021 and genotyped using the
Illumina Infinium BARCSoySNP6K BeadChip.

MATERIALS AND METHODS

Plant Materials and Field Trials
A set of 797 advanced soybean breeding lines derived from 367
unique bi-parental populations developed by the University of
Missouri–Fisher Delta Research, Extension, and Education
Center (MU-FDREEC), soybean breeding program was used
in this study. The lines comprised 5 years (2017–2021) of
internal advanced yield trials at the MU-FDREEC. Five seeds
of each line were germinated in paper pouches for 3–4 days at
room temperature and seedlings were transplanted into
micropots filled with sterilized sandy loam soil. Genomic DNA
was extracted from lyophilized young trifoliate leaf tissue (V3)
(Fehr et al., 1971) using the Qiagen DNeasy Plant 96 kit
(QIAGEN, Valencia, CA, United States) and respective
protocol. DNA concentration was quantified using a
spectrophotometer (NanoDrop Technologies Inc., Centerville,
DE, United States) and normalized at 50 ng/μl. DNA samples
were genotyped in the USDA-ARS Soybean Genomics and
Improvement Laboratory using the Illumina Infinium
BARCSoySNP6K BeadChip (Song et al., 2020). The single
nucleotide polymorphism (SNP) alleles were called using the
Illumina Genome Studio Genotyping Module (Illumina, Inc., San
Diego, CA, United States).

Field trials were conducted for 5 years (2017–2021) at the Lee
Farm in Portageville, MO (36°23′44.2″N latitude and
89°36′52.3″W longitude) and the Rhodes Farm in Clarkton,
MO (36°29′14.8″N latitude and 89°57′39.0″W longitude) using
a three-replicate randomized complete block design. At the Lee
Farm, trials were conducted each year in four environments
consisting of two Tiptonville silt loam and two Sharkey clays.
Tiptonville silt loam consists of very deep, nearly level,
moderately well-drained soils formed in silty alluvium
(United States Department of Agriculture, 2018a), whereas
Sharkey clay is very deep, poorly drained, and very slowly
permeable in soils that is formed in clayey alluvium
(United States Department of Agriculture, 2013). At the
Rhodes farm, trials were conducted in one Malden fine sand
environment each year. This consists of very deep, excessively
drained soils formed in sandy alluvium (United States
Department of Agriculture, 2018b). Each plot consisted of four
rows 3.66 m long spaced 0.76 m apart. The two center rows of
each plot were harvested with a plot combined for seed yield
adjusted to 13% seed moisture.

Statistical Models
For assessing the effects of the soil type–derived covariates and
their interactions with environmental factors in genomic
prediction, four models were considered.

M1: E+L+G
This model allows the inclusion of the main effect of the
molecular markers via covariance structures. Suppose that the
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genomic effect gi of the ith line can be characterized by a linear
combination between p molecular markers xm (m � 1, 2, . . . , p)
and their corresponding effects bm such that gi � ∑p

m�1xmbm,
with bm ~ N(0, σ2b). If we include all the genomic effects into a
single vector, we have g � Xb. From results of the multivariate
normal density, the vector of genomic effects g �
{gi} ~ N(0,Gσ2g) with G � XX′

p , and σ2g � pσ2b as the
corresponding variance component. In this way, the linear
predictor becomes.

yij � μ + Ej + Li + gi + εij (1)
where the yield response yij of the ith genotype observed at the jth
environment can be modeled as the sum of a mean effect µ
common to all genotypes across environments, a random effect of
the ith line Li following an independent and identically
distributed (IID) normal density centered on zero and
variance σ2L such that Li ~ N(0, σ2L), a random environmental
effect of the jth environment Ej following IID normal densities
centered on zero and variance σ2E such that Ej ~ N(0, σ2E), and a
random effect ϵij addressing the unexplained variability by these
model terms such that ϵij ~ N(0, σ2ϵ).

M2: E+L+G+G×E
To consider the effect of the environmental stimuli on the
genomic responses, Jarquin et al. (2014b) proposed the
reaction norm model. Briefly, this model indirectly allows the
inclusion of the interaction between each molecular marker and
each environment or environmental covariate in prediction
models via covariance structures. Consider gEij as the random
effect explaining the genomic interaction between the ith
genotype and the jth environment such that the vector of
interaction effects gE � {gEij} ~ N(0,ZEZ′

E#ZLGZ′
Lσ

2
gE), where

ZL and ZE are the incidence matrices that connect phenotypes
with genotypes and environments, respectively, σ2gE is the
corresponding variance component, and “#” represents the
Hamadard product (cell-by-cell product) between two matrices
of the same dimensions. Adding this model term to M1 results in
the following linear predictor:

yij � μ + Ej + Li + gi + gEij + εij (2)
This model has shown significant improvements in predictive

ability compared with the conventional GS model (M1) when
predicting the yield of genotypes in already observed
environments. However, in more challenging scenarios like
those where no phenotypic records from the target
environment are available for any genotype, the advantage
becomes less pronounced likely due to the environmental
stimuli not being properly accounted for. Also, predicting
future environments poses an extra challenge since it is not
feasible to forecast the expected weather conditions in a
precise manner limiting the usefulness of M2 in these cases.

M3: E+L+S+G+G×E+G×S
An important component of the environmental stimuli that
genotypes are exposed to is the multiple soil conditions, of
which soil structures are factors that can be easily obtained in

advance during the planning stage of the experiments. The
current model attempts to leverage the information on the soil
structure in the prediction context. Consider Sk as the random
effect that represents the soil type where the soybean cultivars
were planted (k = 1, 2,. . ., K). Furthermore, if we assume these
effects as IID outcomes from a normal distribution centered on
zero and with a common variance σ2S we have Sk ~ N(0, σ2S ). This
model term allows the inclusion of the main effect of the soil type
in the prediction model. In principle, it is assumed that the effect
of soil type is the same for all genotypes planted in a given
experiment. Thus, this model term will not help to improve the
predictive ability because their effects are common to all
genotypes within the same experiment. For this reason, we
also considered the interaction between the molecular markers
and the soil type to permitting specific responses within
environments also allows the borrowing of information
between genotypes planted at different soil types. For this, we
used the same principles as in M2 such that gSik represents the
interaction effect of the ith genotyped at the kth soil type. If we
include these interaction effects in a vector we have
gS � {gSik} ~ N(0,ZLGZ′

L#ZSZ′
Sσ

2
gS), where ZS is the incidence

matrix that connects phenotypes with the soil type where the
genotypes are observed, and σ2gS represents the associated
variance component. Combining this model term with M3, we
have the resulting linear predictor.

yij � μ + Ej + Sk + Li + gi + gEij + gSik + εij (3)
where all of the remaining terms remain as previously defined.

M4: E+L+S+G+G×S
Finally, a fourth model (M4) results from dropping the G×E term
from M3. It is an attempt to have an intermediate
implementation between models M2 and M3. The resulting
model is as follows:

yij � μ + Ej + Sk + Li + gi + gSik + εij (4)
where all of the remaining terms remain as previously defined.

Cross-Validation Schemes
In this study, four cross-validation schemes that simulate realistic
prediction scenarios of interest for breeders for screening,
selecting, and advancing genotypes through the breeding
pipeline were implemented. The goal of considering these four
prediction scenarios is to evaluate if in any of these the integration
of soil-derived covariates accomplishes significant improvements
in predictive ability. Persa et al. (2020) provide a comprehensive
review of these four cross-validation scenarios and an extension
to balancing the sample sizes in training and testing sets across
cross-validation schemes.

The first prediction scenario is called CV2 (tested genotypes in
observed environments), and it refers to the problem of predicting
already tested genotypes in already observed environments. The
main purpose of this scheme is to assess the predictability of partial
field trials. Few genotypes have already been observed in some
environments but not in others and the interest is to predict their
performance in those environments where these genotypes were not
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observed. In this study, a fivefold cross-validation was considered
such that around 20% of the phenotypic values were assigned to the
testing set and the remaining 80% (or four folds) to the training set
which is used for model calibration. The model evaluation was
conducted by predicting each fold (one at a time) using the
remaining four folds for calibration, and this procedure was
repeated until all the five folds were completed. This previous
procedure was repeated 10 times.

The second prediction scenario is CV1 (untested genotypes in
observed environments), and it refers to the problem of
predicting untested genotypes in already observed
environments where other genotypes were already tested. This
prediction scenario mimics the problem of predicting (novel or
newly developed) genotypes that were not observed in any of the
environments; however, in these environments there is available
phenotypic information for other genotypes. Even though the
phenotypic information for these target genotypes of interest is
not available, it is possible to borrow information from other
genotypes via genomic data to allow the prediction of the
unobserved genotypes. Also, a fivefold cross-validation was
considered. In this CV, genotypes were assigned to folds
instead of phenotypes such that all phenotypic records from
the same genotype are encountered in the same fold. Under this
scenario, around 20% of the genotypes were used as validation or
testing set and the rest (~80% of the genotypes) were considered
for the model’s calibration. Similarly, to CV2, each fold was
predicted (one at a time) using the remaining four folds and this
procedure was repeated 10 times.

The CV0 (tested genotypes in unobserved environments)
cross-validation scheme considers the scenario of predicting
the performance of already observed genotypes in other
environments and the interest is to predict their performance
in an unobserved/novel environment. Under this scheme, the
genotypes’ mean performance is predicted in a hypothetical
unobserved environment. The training set includes phenotypic
records from all the genotypes in these already observed
environments. The validation is conducted by predicting the
performance of all the lines in one unobserved environment
(one at a time) using the information of the remaining
environments (training set). These steps are repeated for every
environment.

CV00 (untested genotypes in unobserved environments) is
perhaps the most interesting cross-validation scenario for
breeders but also it is the most challenging. It considers the
prediction of novel genotypes that have not been tested in any
environment yet, and breeders are interested in their performance
in an unobserved/novel environment. The strategy for estimating
untested genotypes in new environments consists of removing all
the phenotypic information from the target environment as well
as all the phenotypic information from the training set but
corresponding to only to those genotypes in the testing set
(unobserved environment).

Model Assessment
The predictive ability of the different models for the
different cross-validation schemes was calculated as the

within-environment correlation between the predicted and
observed values. These correlations provide an assessment of
the model’s predictive ability at the environment level which may
vary substantially across environments due to a large number of
unaccounted environmental conditions and sample sizes of the
environments.

A general assessment across environments predictability is
obtained by computing the weighted average correlation to
account for uncertainty and the sample size of the
environments as proposed by Tiezzi et al. (2017).

rw �
∑J

j�1
rj

V(rj)∑J
j�1

1
V(rj)

where V(rj) � 1−r2j
nj−2, rj represents the Pearson correlation

between predicted and observed records at the jth(w �
1, . . . , 50) environment; V(rj) and nj corresponds to the
sampling variance and number observations, respectively.

Variance Components
In general, the addition of model terms would result in a change
in the predictive ability. To assess the importance/contribution of
these terms, a full data analysis (i.e., non-missing values) was
conducted to compute the variance components and examine the
relative contribution of the different model components for each
model. For this, the proportion of explained variability from each
model term z is calculated as the ratio of the associated variance
component to the sum of all t variance components (z = 1, 2,..,t)
in the model multiplied by 100

⎛⎝ σ2
z∑t

z�1σ2z
× 100⎞⎠

RESULTS

Variance Components
The relative amount of phenotypic variability (percentage)
explained by the different model terms (across and within
environments) for the four models (M1–M4) is provided in
Table 1. Across environments, in M1; the environment
component (E) captured the largest amount of phenotypic
variability (65.7%) while the lines (L) and the main effect of
the markers (G) explained 1.2 and 7.3% respectively, and the
remaining non-explained variability addressed by the error term
(R) was 25.8%. The addition of model terms significantly reduced
the amount of variability captured by the E and R terms. Under
the most complex model (M3), the corresponding values were
reduced by 30.4% (45.7%) and 39.2% (15.7%), respectively.
Concerning the percentage of within environment variability
(after discarding the E term), the residual term R captured
75.2% with M1 while with M3, it was reduced by almost
threefold to 28.9%. The interaction between molecular markers
and environments (G×E) and between molecular markers and
soil type (G×S) explained 20 and 17.5% of the phenotypic
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variability, respectively. These results highlight the importance of
considering the interaction between molecular markers and
environmental descriptors (environments and soil type) with
the potential for improving predictive ability.

Predictive Ability
A very quick assessment of the ability of the different models for
performing predictions can be achieved by revising the within
environment mean average correlation between predicted and
observed values. Table 2 displays the mean average correlations
for the four cross-validation schemes (CV2, CV1, CV0, and
CV00) and to the four prediction models (M1–M4), and the
results of the best model are highlighted in boldface by columns.
Under the incomplete field trial scenario (CV2), the best model
was M3 (0.577) which improved the conventional genomic
selection model (M1) by 25.1% and was approximately 4%
superior to the reaction norm model including G×E (M2). For
the scenario of predicting newly developed lines in observed
environments (CV1), models M2 and M3 performed similarly
(~0.48), outperforming M1 by 34%. When predicting the yield of
already tested genotypes in novel environments (CV0), the
inclusion of G×E and G×S did not provide substantial
improvement in overall accuracy as observed in the other
cross-validation scenarios. In this case, the best model was M3
(0.488) which slightly outperformed M1 (0.461), M2 (0.459), and
M4 (0.484). Thus, an improvement of 6% in the predictive ability
was observed in M3 as compared to M1. In the most challenging

and interesting prediction scenario consisting of predicting new
genotypes in novel environments (CV00), the main effect model
M1 returned the highest average correlation (0.240), followed by
M4 (0.231), M3 (0.227), and M2 (0.192). In general, when
considering only the mean average correlation as the unique
criteria for selecting the best prediction model, M3 outperformed
the other models in CV2, CV1, and CV0, while under CV00 the
conventional main effect model M1 yielded the highest predictive
accuracy.

Within Environment Predictive Ability as a
Function of the Sample Size
Supplementary Figures S1, S2 in the Supplemental Section
display the within-environment average correlation (y-axis)
between predicted and observed values (10 replicates of
fivefold cross-validation) as a function of the sample size of
the environments (x-axis) under CV2 and CV1 prediction
scenarios for the four models (M1–M4). For CV0 and CV00,
since these do not involve a randomization process because each
environment is left out at a time, the correlation between
predicted and observed values are computed only once within
environments and their corresponding results are displayed in
Supplementary Figures S3, S4, respectively. For the four cross-
validation schemes, the correlations for each model-environment
are provided in Supplemental Section in Supplementary Tables
S1–S4.

Under the CV2 scenario, in Supplementary Figure S1
(Supplementary Table S1); we observed that as the number of
genotypes in the target environment increased the mean average
correlation also increased. Negative correlations were observed
with the M1 (panel A) model in 11 of the 50 environments, while
these negative values were observed with the M2, M3, and M4
models in only six, four, and four environments, respectively. For
the CV1 scenario, a similar trend to the previous prediction
scheme was observed. The main effect model M1 returned
negative values in eight environments, M2 returned negative
values in only five environments, M3 returned the lowest
number of environments with adverse outcomes (3), and the
intermediate model M4 resulted in five environments with
negative correlations (Supplementary Figure S2 and
Supplementary Table S2). In the CV0 scheme, the model M1
returned nine out of the 50 environments with negative
correlations while with M2 10 out of the 50 environments
resulted in negative correlations (Supplementary Figure S3

TABLE 1 | Percentage of phenotypic variability explained by the different model components across and within environments for the four models (M1–M4).

Model % Of across environment variability % Of within environment variability

Ea L S G G×E G×S R L S G G×E G×S R

M1: E+L+G 65.7 1.2 7.3 25.8 3.6 21.3 75.2
M2: E+L+G+G×E 65.7 1.6 6.0 12.7 14.0 4.5 17.5 37.1 40.9
M3: E+L+S+G+G×E+G×S 45.7 2.2 12.5 3.5 10.9 9.5 15.7 4.0 23.1 6.5 20.0 17.5 28.9
M4: E+L+S+G+G×S 64.0 1.5 0.0 4.2 9.5 20.8 4.2 11.6 26.4 57.8

aThe letters E, L, S, and G denote the mean effects of environments, genotypes, soil type, and molecular markers, respectively, whereas G×E and G×S reflect the interaction of each
molecular marker with environments and soil type, respectively. The residual variance is denoted by R.

TABLE 2 | Weighted mean average correlation across environments for four
cross-validation schemes and four models.

Modela CV2b CV1 CV0 CV00

M1: E+L+G 0.461 0.359 0.461 0.240c

M2: E+L+G+G×E 0.558 0.480 0.459 0.192
M3: E+L+S+G+G×E+G×S 0.577 0.480 0.488 0.227
M4: E+L+S+G+G×S 0.515 0.405 0.484 0.231

aE, L, S, and G constitute the main effect of the environments, genotypes, soil type, and
molecular markers; and G×E and G×S evoke the interaction between each molecular
marker with environments and soil type, respectively.
bCV2 considers the case of predicting incomplete field trials (i.e., some genotypes tested
in some environments but not others), whereas CV1 assessed the accuracy of predicting
newly developed genotypes. CV0 represents plant performance in novel environments of
previously studied genotypes. CV00 assesses new genotypes in novel environments. For
CV2 and CV1, 10 replicates of fivefold cross-validation were considered while for CV0
and CV00 the leave one environment out scheme was implemented.
cBolded numbers indicate the best model performance for each cross-validation
scheme.
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and Supplementary Table S3). The interaction models that
consider the soil type (M3 and M4) resulted in only five
environments with negative results. Regarding the most
complex prediction scenario CV00, the main effect model M1
returned negative results in nine out of the 50 environments, M2
resulted in 10 environments with adverse outcomes while M3 and
M4 returned only six and five environments with negative
correlations, respectively (Supplementary Figure S4 and
Supplementary Table S4).

Predictive Ability of Genotypes in
Environments
Another way to assess model predictive ability was introduced by
Jarquin et al. (2014b). These authors superimposed a grid on the
scatter plot between predicted and observed values with the grid's
vertical and horizontal lines represent the empirical percentiles
(20, 50, and 80%) of the predicted and observed values,
respectively. Also, within each rectangle of the grid, the
proportion of genotypes at each category in the y-axis
(observed values) conditional on the groups/categories defined
by the x-axis (predicted values) is displayed. Supplementary
Figures S5–S8 in Supplemental Section contain the
corresponding conditional plots for the four cross-validations
and the four models.

For CV2, among the top 20% (i.e., to the right from the
vertical line in the 80% mark on the x-axis) of the predicted
genotypes in environments with model M1 (top right panel A),
68% of these showed an observed performance among the top
20% (i.e., above the 80% of the horizontal line in the y-axis)
phenotypes in fields (Supplementary Figure S5). On the other
hand, out of the bottom 20% (i.e., to the left from the vertical
line in the 20% mark on the x-axis) of the genotypes predicted
to have the lowest performance in fields, 71% were among the
observed genotypes with the poorest performance. In addition,
a linear regression between the predicted and observed values
was performed, as well the mean squared error (MSE) and the
weighted average correlation across environments (Cor) were
added to the plot. An R-square (R2) of 0.66 resulted from
regressing the observed values on the predicted values, MSE =
94.1 and a Cor = 0.461.

Using the M2 model, 71% of the genotypes projected to have
superior performance in fields (i.e., among the top 20%) were
classified in the right category while 74% of those predicted with
the poorest performance were among the phenotypes with the
lowest performance. The resulting R2 was 0.72 for a MSE = 77.6
and a Cor = 0.558. The most complex model M3, returned
classification successes of the top and the worse genotypes in
fields of 71 and 76%, respectively, for an R2 = 0.73, MSE = 75.7,
and a Cor = 0.577. For the intermediate model M4, the
corresponding classification successes were 69% (top 20%)
and 74% (bottom 20%) with R2 = 0.69, MSE = 86.2, and a
Cor = 0.515.

For the CV1 cross-validation scheme, M1 (Supplementary
Figure S6) returned a classification success of 67% for the top
20% of the genotypes in fields and 70% for those with the
poorest performance, with an R2 = 0.64, MSE = 100.8, and a

Cor = 0.359. With M2 the corresponding classification
successes were 71 and 73%, with an R2 = 0.7, MSE = 84.7,
and Cor = 0.48. Similar values to those obtained with M2 were
obtained with M3 for all the mentioned criteria. Finally, with
M4 a slight reduction in the classification success was
observed for the top 20% (67%) and the lowest 20% (71%)
as compared to M2 and M3, with an R2 = 0.66, MSE = 95.1,
and Cor = 0.405.

When predicting already tested genotypes in untested
environments (CV0), M1 returned a low classification
success of the top and bottom 20% genotypes (25 and 29%,
respectively), with an R2 = 0.03, MSE = 291.8, and a Cor =
0.461. There, M2 and M3 returned similar results to those from
M1 with a slight decrease in the MSE and a slight improvement
of the weighted average correlation with M3 (0.488)
(Supplementary Figure S7). The most promising model in
this scenario was M4 which returned a classification success of
the top and bottom 20% of 34 and 36%, respectively. It also
returned the highest R2 (0.11) and the smallest MSE (251.9)
among all models leveraging the advantage of including soil
type in interaction with molecular markers in the prediction
models.

For the most complex prediction scenario CV00, the
classification success rate, R2, and Cor values were reduced
across all models while the MSE increased simultaneously. M1
returned a classification success rate of the top and bottom 20%
performing lines of 17 and 25%, respectively, with an R2 = 0,
MSE = 305, and a Cor = 0.24. In M2, M3, and M4, the average
weighted correlation was reduced to 0.192, 0.227, and 0.231,
respectively (Supplementary Figure S8). However, the
classification success of the top and bottom performing
lines was improved with M3, especially on the ability to
detect the top 20% genotypes. For this model, the
classification success was 29% for identifying the top 20%
genotypes while it was 26% for screening out the worst-
performing genotypes.

Overall Performance of Genotypes
Another approach used to assess the model performance was the
overall performance of the genotypes. For this, within each
environment, the phenotypic and predicted values of all
genotypes were adjusted by their corresponding environmental
mean (centered on zero) followed by the computation of the across
environment mean for all lines. Figures 1–4 display the
classification success of the adjusted genotypes (observed and
predicted values) marked by the advancement fate of each
genotype including the advanced yield trial (AYT, gray), USDA
Preliminary trials (USDA-UP, yellow), USDA Uniform trials
(USDA-UT, orange), and Commercial Release (Release, blue).
Detailed information on each stage of the breeding pipeline and
selection criteria for line advancement were reported in Vieira and
Chen (2021).

Figure 1 displays the results corresponding to the CV2
scenario. M1 returned a classification success of 76% for the
top 20% of the predicted (adjusted) genotypes, and 79% success
for the bottom 20% of the genotypes. In addition, the means of
the predictions corresponding to the different advancement fate
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aligns with their counterpart based on phenotypes. There, the
mean of the adjusted genotypes of the release (blue) group was
superior followed by USDA-UT (orange), USDA-UP (yellow),
and AYT (gray). Regarding M2 and M3, improvements in the
classification accuracy were observed as compared to M1. With
M3, a classification success of 76% was obtained for those
genotypes in the top 20 and 79% for those in the lowest 20%.
M4 returned intermediate results betweenM1 andM3 (Figure 1).

Similar to CV2, the corresponding results of CV1 are displayed
in Figure 2. As expected, predicting new genotypes resulted in a
significant reduction of the predictive ability of the models. With
M1, the classification success of the top and bottom 20% of the
predicted genotypes was 0.45, and 0.48, respectively. In this cross-
validation scheme, the best results were shown in M2 with a
classification success of 48% of the genotypes in the top 20 and
52% in the bottom 20%. Model M3 was the second-best model

FIGURE 1 | Genotypic means (BLUP-centered on zero within environments) of observed versus predicted cross-validation predictions of four models (M1–M4)
under the cross-validation scheme CV2, which mimics the incomplete field trial prediction scenario (predicting tested genotypes in observed environments). Models and
terms are described in detail in the Materials and Methods section (Eqs 1–4). Horizontal and vertical dashed lines indicate the 20, 50, and 80% empirical percentiles
corresponding to the genotypic means of observed and predicted values; the numbers inside the grid provide the conditional proportions observed on the y-axis for
the different percentiles on the x-axis (e.g., out of the top 20% of the predicted values with M3 (panel C), 79% [top right] of these correspond to genotypes that showed a
performance among the 20% across fields).
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with the corresponding values for top and bottom 20% of 48 and
51%, respectively.

Regarding the prediction of the overall performance of tested
genotypes in untested environments (CV0), M1 returned a
classification success of 51 and 52% for the top and bottom
20%, respectively. The best results predicting the top 20% of the
genotypes were obtained with M3 (55%), while M1 was the best
(52%) for the bottom 20%. Model 4 produced intermediated
results and it was the most stable across the diagonal in the grid

(i.e., including the other percentiles), whereas M2 returned the
poorest performance.

Finally, for the most complex prediction scenario CV00,
M1 returned a classification success of 35% for the top 20 and
36% for the bottom 20%. M1 was the most accurate model in
classifying genotypes with the poorest performance. M4
outperformed this model in the identification of the
superior genotypes with a success rate of 39%. The
remaining models underperformed M1 in identifying

FIGURE 2 | Genotypic means (BLUP-centered on zero within environments) of observed versus predicted cross-validation predictions of four models (M1–M4)
under the cross-validation scheme CV1, which mimics the prediction scenario of newly developed lines (predicting untested genotypes in observed environments).
Models and terms are described in detail in the Materials and Methods section (Eqs 1–4). Horizontal and vertical dashed lines indicate the 20, 50, and 80% empirical
percentiles corresponding to the observed and predicted values; the numbers inside the grid provide the conditional proportions observed on the y-axis for the
different percentiles on the x-axis (e.g., out of the top 20% of the predicted values with M3 (panel C), 48% [top right] of these correspond to phenotypes that showed a
performance among the 20% in fields).
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genotypes in both extremes, where M3 was slightly superior
to M4 in the bottom 20% (0.32 vs. 0.30).

DISCUSSION

As the fields of genomics and data analytics substantially
evolved over the past decade, the concept of genomic

selection applied to phenotypic prediction revolutionized
commercial and public breeding programs by allowing
plant breeders to predict the phenotype of interest in
untested genotypes (Crossa et al., 2017; Vieira and Chen,
2021; Wartha and Lorenz, 2021). Genomic selection has
covered multiple fronts of the breeder’s equation
maximizing the genetic gain in a given breeding cycle. For
instance, a large component of a breeding cycle is allocated to

FIGURE 3 | Genotypic means (BLUP-centered on zero within environments) of observed versus predicted cross-validation predictions of four models (M1–M4)
under the cross-validation scheme CV0, which mimics the prediction scenario of predicting in novel environments (predicting tested genotypes in unobserved
environments). Models and terms are described in detail in the Materials and Methods section (Eqs 1–4). Horizontal and vertical dashed lines indicate the 20, 50, and
80% empirical percentiles corresponding to the observed and predicted values; the numbers inside the grid provide the conditional proportions observed on the y-
axis for the different percentiles in the x-axis (e.g., out of the top 20% of the predicted values with M3 (panel C), 55% [top right] of these correspond to phenotypes that
showed a performance among the 20% in fields).
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progeny selection and preliminary yield trials of which the
main objective is to characterize the genetic diversity present
in a population of interest by evaluating a large number of
genotypes for yield and overall agronomic traits. Genomic
selection rises as a statistically powerful solution generating
predicted values for unobserved genotypes, allowing plant
breeders to shorten the breeding cycle and significantly
minimize the costs associated with extensive field trials

(Vieira and Chen, 2021; Wartha and Lorenz, 2021). Up to
this date, however, the wide and large-scale implementation
of genomic selection across plant breeding programs still
faces challenges and drawbacks.

It is well-known that the expression of a phenotype is a
function of the genotype, the environment, and the interaction
between the genotype and environment (G×E) providing the
relative performance of genotypes across different environments

FIGURE 4 | Genotypic means (BLUP-centered on zero within environments) of observed versus predicted cross-validation predictions of four models (M1–M4)
under the cross-validation scheme CV00, which mimics the prediction scenario of predicting newly developed lines in novel environments (predicting untested
genotypes in unobserved environments). Models and terms are described in detail in theMaterials and Methods section (Eqs 1–4). Horizontal and vertical dashed lines
indicate the 20, 50, and 80% empirical percentiles corresponding to the observed and predicted values; the numbers inside the grid provide the conditional
proportions observed on the y-axis for the different percentiles on the x-axis (e.g., out of the top 20% of the predicted values with M4 (panel D), 39% [top right] of these
correspond to phenotypes that showed a performance among the 20% in fields).
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(Kang, 1997; de Leon et al., 2016). The differential response of
genotypes across environments for a given phenotype of interest
guide critical decisions in a plant breeding program, including the
selection and advancement of genotypes as well as overall logistics
and allocation of resources for multi-environment trials (Hill,
1975; Cooper and DeLacy, 1994; Kang, 1997; de Leon et al., 2016).
Yield is a highly complex and quantitative trait regulated by
numerous large and small-effect genes, of which its expression is
immensely dependable on the genotype interaction with various
components of the environment including pathogens (Rincker
et al., 2017; Vieira et al., 2021), pests (Haile et al., 1998; Rocha
et al., 2015), weeds (Oerke, 2006; Soltani et al., 2017),
temperature, light, and precipitation (Runge and Odell, 1960;
Goldblum, 2009; Alsajri et al., 2020), and soil-derived factors
(Cox et al., 2003; Kaspar et al., 2004; Anthony et al., 2012). Thus, a
practical and accurate implementation of genomic selection for
yield relies on understanding and accounting for the interaction
of molecular markers with the environment and/or its multiple
components.

In this research, we aimed to expand the reaction norm model
initially proposed by Jarquin et al. (2014b) which accounts for the
interaction between molecular markers and the environment
through covariance structures. Here, we investigated the
potential of incorporating soil-derived covariates to enhance
the predictive ability of yield across multiple cross-validation
scenarios simulating progeny testing and line selection. A
straightforward approach to examine the relative contribution
of each model term is through the computation of variance
components. Across environments, we observed that the
addition of the G×S interaction in M3 substantially decreased
the amount of variability captured by both the environment
(−30.4%) and residual (−39.2%) terms as compared to the
conventional GBLUP model (M1). When compared to the
reaction norm model (M2), the addition of G×S equally
reduced the amount of variability captured by the
environment (−30.4%). Within environments, a larger
reduction in variability captured by the residual term was
observed in M3. Interestingly, the addition of the G×S term in
M3 reduced the variability captured by the residual term by
roughly 60 and 30% when compared to M1 and M2, respectively.
The addition of soil-derived covariates seems to structure/dissect
the environment term revealing components of the environment
that could potentially enhance or hinder the performance of a
model. This creates opportunities to explore more complex and
readily available environmental components, which through
covariance structures, could allow the borrowing of
information across environmental components enhancing the
predictive ability in challenging cross-validation scenarios. For
instance, the amount of variability explained by both G×E
(20.0%) and G×S (17.5%) in M3 shows that the inclusion of
these terms increases the proportion of variance accounted for by
the model, and therefore, it can enhance its predictive ability.

In regards to the predictive ability of each model across the
proposed cross-validation scenarios, M3 outperformed the other
models in CV2, CV1, and CV0. The conventional genomic
selection model (GBLUP, M1) was the best in CV00. In the
incomplete field trial scenario (CV2), M3 substantially

outperformed M1 (25.1%). The ability of the covariance
structures to borrow information from already observed
genotypes in tested environments increased the model’s
performance. In this case, the addition of G×S provides a
slight edge over the reaction norm model (M2, 4%),
highlighting the benefit of accounting for possible interactions
between markers and soil types in overall prediction accuracy. An
alternative methodology to assess the practical accuracy of the
model consisting of empirical percentiles of the predicted and
observed values was proposed by Jarquin et al. (2014b). Here, we
observed that with M3 the classification accuracy for the top and
bottom 20% percentile was 0.79 and 0.81, respectively. This
represents approximately a 4% increment in classification
accuracy as compared to M1. All four models flawlessly
avoided misclassifying a top 20% percentile genotype as a
bottom 20% percentile and vice versa, encouraging the
practical applications of genomic prediction for line selection
throughout the breeding pipeline. These results provide an
opportunity to reconsider the experimental design in field
trials, including the number of replications as well as overall
resource allocation in multi-environment field trials. The
prediction models can precisely discard inferior genotypes
with nearly full confidence reducing the need for extensive
preliminary field trials.

In CV1, M2 and M3 performed approximately 34% better
than M1. In this cross-validation scenario, the genotypes are
untested but the environment has been already observed with a
different set of genotypes. The covariance structures allow the
borrowing of information from previously observed
genotypes, especially the main effects of molecular markers
and the interaction between the markers and the environment.
However, the structuring of the environment through the
addition of G×S did not yield any advantages in prediction
accuracy as compared to M2. Jarquin et al. (2021) observed
similar results in CV1 when including the interactions using
only weather data. This was attributed to G×E sufficiently
capturing the similarities among pairs of environments leaving
limited variance left to be explained by G×S. In the cross-
validation scenario aiming to predict the yield of already tested
genotypes in unobserved environments (CV0), M3
outperformed M1 and M2 by roughly 6%. These results
provide an opportunity to explore alternative multi-
environment testing and resource allocation throughout line
selection in a breeding program. For instance, by leveraging
the information of molecular markers of a different set of
observed genotypes and known environments, plant breeders
may be able to simulate multiple yield trials in a given growing
season substantially increasing statistical power and
confidence in line selection and advancement without
necessarily increasing the investment in field operations.
Similarly, the results from CV0 support both the reduction
in the number of physical locations and the simulation of yield
trials across diverse untested environments. This can
substantially reduce the overall cost of a breeding pipeline
while simultaneously enhancing statistical power and
confidence in identifying genotypes with superior yield and
overall adaptability.
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In the most challenging cross-validation scenario considering
untested genotypes in unobserved environments (CV00), M3
substantially outperformed M2 (19%), whereas M4 slightly
outperformed M3 by 2%. Here, it highlighted the main
advantage of incorporating G×S and S in the model. As
previously discussed, the soil texture is generally constant
across years and readily available before the growing season
whereas the environment is often unfeasible to be accurately
predicted prior to the growing season. Therefore, the borrowing
of information from both soil covariate and molecular markers
(in interaction) resulted in higher prediction accuracies as
compared to M2. Although M1 yielded the highest prediction
accuracy among the four models, M4 showed superior
classification accuracy in the top 20% empirical percentiles
(12% advantage over M1). By considering the advancement
fate of the genotypes included in this analysis (AYT, USDA-
UP, USDA-UT, and Release), nearly all the genotypes
commercially released are concentrated in the top 20% and
50% observed and predicted empirical percentiles. This shows
that, although the model may misclassify the empirical
percentiles and/or show relatively low prediction accuracy, it
does not negatively affect the identification and selection of the
very best genotypes that will eventually be commercially released.
These results support the modernization of a conventional
breeding pipeline by precisely eliminating inferior genotypes
prior to any field testing. Nearly 2 years of a conventional
breeding pipeline is devoted to the assessment of the entire
pool of genotypes representing a breeding cycle (Vieira and
Chen, 2021). After reaching desired homozygosity (F4:5), a
large number of genotypes are tested in progeny rows to
visually evaluate their yield potential and overall agronomic
traits. Selected genotypes, often consisting of many inferior
genotypes mistakenly selected by subjective standards, are then
tested in preliminary multi-environment yield trials. As seemed
in CV00, the implementation of genomic selection has the
potential for eliminating 2 years of extensive field testing by
predicting the breeding values of untested genotypes. Thus,
the wide implementation of genomic selection throughout a
breeding pipeline holds promising improvements in cost
efficiency, shortening the duration of the cycle, and overall
genetic gain.

CONCLUSION

The increasing availability of high-dimensional genomic data has
allowed breeding programs to implement genomic selection to
optimize the efficiency of a given breeding pipeline. Although
widely adopted in commercial programs, the application of
genomic selection in the public sector still faces limitations
associated with costs, data availability, and technical support.
In this research, we investigated the potential of incorporating soil
texture and its interaction with molecular markers through
covariance structures to increase prediction accuracy. As an

approach to structuring the environmental term, the inclusion
of G×S was shown to benefit the predictive ability of the models
across multiple cross-validation scenarios. It is hypothesized that
the availability of the soil texture prior to the growing season may
have been essential to maximizing the functionality of covariance
structures, particularly in scenarios with untested genotypes in
untested environments. In addition, we demonstrated the
applications of genomic selection across multiple stages of a
breeding pipeline through four different cross-validation
scenarios. In both progeny testing and line selection, we
highlight the potential of genomic selection to optimize the
efficiency of a soybean breeding program and discuss the
opportunities to reconsider field experimental designs,
allocation of resources, and reduction of preliminary field
trials. Further studies considering covariates that are readily
available before the growing season are encouraged to better
understand the effect of the environment and enhance predictive
ability. In addition, alternative metrics to assess the true potential
and applicability of a model should be investigated to embolden
the wide implementation of genomic selection in the public
sector.
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