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Background: Drug-induced kidney injury (DIKI) is one of the most common

complications in clinical practice. Detection signals through post-marketing

approaches are of great value in preventing DIKI in pediatric patients. This study

aimed to propose a quantitative algorithm to detect DIKI signals in children

using an electronic health record (EHR) database.

Methods: In this study, 12 years of medical data collected from a constructed

data warehouse were analyzed, which contained 575,965 records of inpatients

from 1 January 2009 to 31 December 2020. Eligible participants included

inpatients aged 28 days to 18 years old. A two-stage procedure was adopted

to detect DIKI signals: 1) stage 1: the suspected drugs potentially associated with

DIKI were screened by calculating the crude incidence of DIKI events; and 2)

stage 2: the associations between suspected drugs and DIKI were identified in

the propensity score-matched retrospective cohorts. Unconditional logistic

regression was used to analyze the difference in the incidence of DIKI events

and to estimate the odds ratio (OR) and 95% confidence interval (CI). Potentially

new signals were distinguished from already known associations concerning

DIKI by manually reviewing the published literature and drug instructions.

Results: Nine suspected drugs were initially screened from a total of 652 drugs.

Six drugs, including diazepam (OR = 1.61, 95%CI: 1.43–1.80), omeprazole (OR =

1.35, 95%CI: 1.17–1.54), ondansetron (OR = 1.49, 95%CI: 1.36–1.63),

methotrexate (OR = 1.36, 95%CI: 1.25–1.47), creatine phosphate sodium

(OR = 1.13, 95%CI: 1.05–1.22), and cytarabine (OR = 1.17, 95%CI: 1.06–1.28),

were demonstrated to be associated with DIKI as positive signals. The remaining

three drugs, including vitamin K1 (OR = 1.06, 95%CI: 0.89–1.27), cefamandole

(OR = 1.07, 95%CI: 0.94–1.21), and ibuprofen (OR = 1.01, 95%CI: 0.94–1.09),

were found not to be associated with DIKI. Of these, creatine phosphate sodium

was considered to be a possible new DIKI signal as it had not been reported in

both adults and children previously. Moreover, three other drugs, namely,

diazepam, omeprazole, and ondansetron, were shown to be new potential

signals in pediatrics.
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Conclusion: A two-step quantitative procedure to actively explore DIKI signals

using real-world data (RWD) was developed. Our findings highlight the potential

of EHRs to complement traditional spontaneous reporting systems (SRS) for

drug safety signal detection in a pediatric setting.

KEYWORDS

drug-induced kidney injury, children, active monitoring, electronic health records,
signal detection

1 Introduction

Drug-induced kidney injury (DIKI), as one of the most

common adverse drug reactions (ADRs), is a significantly

increased clinical problem worldwide. It may lead to clinical

symptoms such as oliguria, anuria, and acute renal failure (Radi,

2019). Studies have shown that the incidence of DIKI in

hospitalized patients is about 2%–5%, accounting for 19%–

40% of acute kidney injury (AKI) (Hosohata, 2016). Children

are at higher risk of developing DIKI compared with adults;

several factors contribute to the pediatric renal damage onset,

including the immaturity of renal functions and specific

pathological conditions (Faught et al., 2015a). Data from

critically ill children who have DIKI suggest that survivors

develop a risk for the development of chronic kidney disease

(Hanna et al., 2016). In addition to that, DIKI is more likely to

occur in the post-marketing of drugs than in the pre-marketing

setting as its incidence is low (Faught et al., 2015b). This is

particularly true for children since they are not frequently

included in clinical trials. It is of great value to prevent and

reduce DIKI in pediatrics through a post-marketing approach.

Inmost countries all over the world, national pharmacovigilance

relies heavily on spontaneous reporting systems (SRS), in which

suspected ADRs are reported to a national coordinating center by

health professionals, manufacturers, or directly by patients.

However, as a passive monitoring method, SRS has its inherent

limitations, such as poor-quality reports, underreporting, and the

inability to estimate rates and frequencies of ADRs (Pitts and Le

Louet, 2018). Previous studies have demonstrated that 50%–90% of

DIKI were unreported using SRS (Yang et al., 2015). Additional

resources andmethods are, therefore, needed to actively monitor the

quantitative aspects of drug safety and to characterize ADRs

associated with specific drugs and in specific populations.

Recently, real-world data (RWD), especially data collected during

routine clinical care in the form of electronic health records (EHRs),

have been adopted by healthcare professionals, regulators, and

providers to inform decision-making about drug safety. Several

emerging pharmacovigilance programs extend the

pharmacovigilance capabilities by monitoring drug safety signals

actively using EHRs, such as the “Sentinel Initiative” in the

United States (Toh et al., 2016), the “Exploring and

Understanding Adverse Drug Reaction Project (EU-ADR)" in

Europe (de Bie et al., 2015), and the “Adverse Drug Events

Active Surveillance and Assessment System (ADE-ASAS)” in

China (Chen et al., 2020). More attempts have also been made

to develop data-mining methods based on EHRs, such as the

“Global Trigger Tool (GTT)” (Garrett et al., 2013) and the

“Comparison of the Laboratory Extreme Abnormality Ratio

(CLEAR) algorithm” (Yoon et al., 2012). However, these

methods are not applicable for the detection of DIKI signals

because the confounding factors affecting DIKI are not fully

considered. Moreover, most of these studies are conducted on

adults, and so far, little is known about pediatric patients in

relation to this issue.

Hence, the present study aims at developing a novel

quantitative algorithm for DIKI signal detection using a

hospital electronic medical record database and analyzing the

correlation and characteristics of DIKI signals with the specific

drugs in the pediatric population.

2 Methods

2.1 Data sources

This study was conducted using the retrospective inpatient

data warehouse of Beijing Children’s Hospital (BCH) from

1 January 2009 to 31 December 2020 (Yu et al., 2020).

Approximately, 575,965 records of inpatients under 18 years

old were included along with their detailed diagnoses,

medications, and laboratory tests. Considering the immature

kidney function in the neonates, only inpatients aged 28 days

to 18 years old were included. All eligible patient data were

exported and de-identified to protect their privacy.

The protocol of the study was approved by the Institutional

Review Board (IRB) of BCH, Capital Medical University

(approval number: 2018-129), with a waiver of informed

consent. This work was reported critically according to the

RECORD statement for pharmacoepidemiology (RECORD-

PE) statement (Supplementary Table S1).

2.2 Laboratory criterion of DIKI

According to the published Kidney Disease: Improving

Global Outcomes (KDIGO) (Ostermann et al., 2020), the

serum creatinine (SCr) and the glomerular filtration rate

(GFR) were the most important renal function parameters for
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determining DIKI. Because of the difficulty in measuring directly

in clinical settings, the estimated GFR (eGFR) was usually used

instead of the GFR and was calculated using the following

formula, based on Scr and the normalization constant (Q)

(Hoste et al., 2014):

eGFR � 107.3 × (1 − e−Age/0.5)/(SCr/Q).

(For children, Q is the median or the average Scr

concentration for healthy children and depends linearly on age)

The fourth-degree polynomials for Q are as follows:

Q � 17.8 + 6.68 × Age − 0.907 × Age2 + 0.0687 × Age3

− 0.00152 × Age4(boys)

Q � 18.2 + 5.54 × Age − 0.602 × Age2 + 0.0421 × Age3

− 0.00993 × Age4(girls)

After completing the calculation, the normal pediatric

reference interval of the eGFR was as follows:

33–84(3–6months), 57–122(6–12months), 78–132(12–15months),

84–150(15–24months), and 83–143 (24months–18 years old).

Thus, according to the KDIGO guidelines and the

reference interval of pediatric kidney parameters (Zhu,

2015), the trigger for pediatric DIKI was defined as the

following events that occurred after medication within the

appropriate therapeutic dose range: (1):SCr>130 mmol/L;

or (2) out of the reference interval of the eGFR for

pediatrics.

2.3 Establishment of the two-stage signal
detection model for DIKI

2.3.1 Stage 1: Screening suspected drugs
The main purpose of this step was to identify the suspected

drugs that may cause DIKI to provide candidate drugs for the

subsequent correlation analysis. The main steps were as follows

(Figure 1):

1) The records with at least two SCr tests in the eligible

participants were selected.

FIGURE 1
Workflow for identifying potential DIKI signals based on the retrospective cohort design. Abbreviations: DIKI: drug-induced kidney injury; EHRs:
electronic health records. SCr: serum creatinine; eGFR: estimate glomerular filtration rate; OR: odds ratio.
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2) The records with the initial SCr or eGFR value within the

reference range were further included. The report time of SCr

tests was recorded as T1. This step aimed to ensure that

kidney function was normal before medication.

3) The records with the diagnosis of kidney-related diseases were

excluded (Supplementary Table S2). This step aimed to

exclude the records where changes in laboratory

parameters were primarily due to the progression of the

kidney-related disease itself, rather than DIKI. The

remaining records were marked as group 1.

4) The records with abnormal SCr or eGFR test findings, which

were considered as DIKI events, were marked as group 2. The

time of the first abnormal result was recorded as T2.

5) All drugs during T1-T2 were extracted, and duplicates were

removed from groups 1 and 2. Thus, the number of DIKI

events (a) and the total number of drug users (b) of each drug

were obtained.

6) We calculated the ratio of a/b for each drug. The threshold of

the a/b ratio was set according to the range of a/b values of

solvents for intravenous infusions, such as normal saline and

glucose injections, which can be regarded as the reference

value since it is well known that they do not affect DIKI. The

a/b values of solvents for intravenous infusions ranged from

0.081 to 0.095. In addition to that, for drugs with less than

2000 users, the number of DIKI events in the exposed group

was too low. There may be a greater risk of bias in the

subsequent statistical analysis due to insufficient samples.

Thus, the criteria for suspected drugs were as follows: (1):

ratio (a/b) > 0.10 and (2) b > 2000.

2.3.2 Stage 2: Identifying potential DIKI signals
based on the retrospective cohort design

This step aimed to compare the incidence of DIKI events

between the exposed group (i.e., taking the suspected drugs)

and the unexposed group (i.e., not taking the suspected drugs)

whilst also adjusting for confounding factors through

retrospective analysis. This was performed to explore the

association between drugs and kidney damage. The following

analysis was performed on all suspected drugs found in stage 1

(Figure 1):

2.3.2.1 Exposure group

1) All records containing suspected drugs were identified.

2) The records with at least one SCr test before and after

medication were screened.

3) The records with an initial SCr or eGFR result that was within

the normal range before the first medication were included.

4) The records with competing kidney diseases were excluded

(Supplementary Table S2).

5) In cases where records showing abnormal SCr or eGFR findings

during hospitalization, the records with kidney-protecting drugs

before the first report time of the abnormal test were excluded

(Supplementary Table S3); for records without SCr or eGFR

abnormalities, those who have used kidney-protecting drugs

during the entire hospitalization were excluded.

2.3.2.2 Unexposed group

1) All records without the suspected drug were identified.

2) The records with at least two SCr tests during hospitalization

remained.

3) The records with an initial SCr or eGFR that was within the

normal range after admission were included.

4) The records with competing kidney diseases were excluded

(Supplementary Table S2).

5) In cases where records showing abnormal SCr or eGFR

findings during hospitalization, the records with kidney-

protecting drugs before the first report time of the

abnormal test were excluded (Supplementary Table S3); for

records without SCr or eGFR abnormalities, those who have

used kidney-protecting drugs during the entire

hospitalization were excluded.

2.3.3 Signal detection
1) Each exposed record was paired with four unexposed records

randomly after adjusting age, gender, admission time, and

major diagnosis.

2) The association between suspected drugs and kidney injury

was analyzed by unconditional logistic regression. The odds

ratio (OR) and 95% confidence interval (CI) were calculated.

3) An OR>1.0 (with the 95%CI lower band >1) indicated a

positive signal; otherwise, a negative signal was considered.

2.4 Evaluation of the DIKI signals

A literature search and the summary of product characteristics

(SPCs) were used as available knowledge to evaluate the novelty of

the positive DIKI signals. Type I signals were defined as those signals

that have not been previously documented in research in both

children and adults. Type II signals were defined as those drug–DIKI

associations that have not been reported in children, although they

have been reported in adults. The SPCs were checked from the FDA

website (https://www.fda.gov), Micromedex (https://www.ibm.com/

watson-health/learn/micromedex), and the drug instructions

(https://www.yaozh.com/). Literature research was conducted

using PubMed (https://pubmed.ncbi.nlm.nih.gov), Embase

(https://www.embase.com), Wanfang (http://www.wanfang.data.

com.cn/index.html), and CNKI (http://www. cnki.net/).

2.5 Statistical analysis

MySQL software version 14.14 (Oracle, California,

United States) was used as a database management system.

The pandas v1.2.2 package in Python 3.7 was performed to

summarize data. R 4.2.0 software was used for statistical
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analysis. The forest plot was visualized by GraphPad Prism

9.3 software.

The propensity score matching (PSM) was used to match the

exposed group and unexposed group for the ratio of 1:4. As

demographic variables, the distribution of age and gender needs

to be comparable in exposed and unexposed groups. Laboratory

testing equipment, methods, and capability may change over time in

the hospital, which can affect the results of laboratory parameters

such as Scr. The patients admitted at similar times in the two groups

were, therefore, more comparable. In addition, as the patient’s

underlying medical condition may affect the effectiveness of the

drugs on renal function, cases with similar diagnoses in two groups

need to be matched. Thus, four variables, namely, age, gender,

admission time, and main diagnosis, were considered as

confounding factors. The logistic regression model was used to

calculate propensity scores, with drug exposure or not as dependent

variables and four confounding factors as covariates. The nearest

neighbor matching principle was used with a caliper of 0.1.

An unconditional logistic regression was used to analyze the

association between suspected drugs and kidney injury. All

p-values were reported as two-sided, and p < 0.05 represented

statistical significance.

3 Results

3.1 Nine suspected drugs were screened in
stage 1

A total of 652 drugs were initially screened in stage 1. After

combining drugs with the same ingredients and anatomical

therapeutic chemical (ATC) classification, 346 drugs

remained. After excluding external drugs and solvents for

intravenous infusions (such as normal saline and glucose

injection), 48 drugs were left (Supplementary Table S4).

According to the inclusion criteria (a/b > 0.10 and b > 2000),

a total of nine suspected drugs (diazepam, vitamin K1,

cefamandole, omeprazole, ondansetron, ibuprofen,

methotrexate, creatine phosphate sodium, and cytarabine)

were finally identified. More information is shown in Table 1.

3.2 Six positive DIKI signals were identified
in stage 2

The data extraction workflow of the nine suspected drugs is

shown in Supplementary Table S5. The clinical information

between the exposed group and the unexposed group is

described in Supplementary Table S6. Retrospective cohort

analysis showed that nine drugs met the inclusion criteria. Six

drugs, namely, diazepam (p = 3.47 × 10–15, OR = 1.61, and 95%

CI: 1.43–1.80), omeprazole (p = 4.46 × 10–5, OR = 1.35, and 95%

CI: 1.17–1.54), ondansetron (p = 1.95 × 10–16, OR = 1.49, and 95%

CI: 1.36–1.63), methotrexate (p = 1.17 × 10–13, OR = 1.36, and

95% CI: 1.25–1.47), creatine phosphate sodium (p = 2.94 × 10–3,

OR = 1.13, and 95% CI: 1.05–1.22), and cytarabine (p = 1.76 ×

10–3, OR = 1.17, and 95% CI: 1.06–1.28), were found to be

associated with DIKI as positive signals. Although the three

remaining drugs, namely, vitamin K1 (p = 0.54, OR = 1.06,

and 95% CI: 0.89–1.27), cefamandole (p = 0.40, OR = 1.07, and

95% CI: 0.94–1.21), and ibuprofen (p = 0.77, OR = 1.01, and 95%

CI: 0.94–1.09), tended toward a positive association with kidney

injury, it did not reach statistical significance. The results of nine

drugs and their associations with DIKI are shown in Table 2 and

Figure 2.

3.3 Four new signals for DIKI in pediatrics
were evaluated

According to the current available knowledge, the novelty of

the six positive DIKI signals observed in stage 2 was further

TABLE 1 Suspected drugs related to DIKI in pediatrics in stage 1.

Drug name Pharmacological
classification

ATC code Number of
DIKI events
(a)

Total number
of drug
usages (b)

Ratio (a/b)

Diazepam Sedative–hypnotic drugs N05BA01 889 4,016 0.22

Vitamin K1 Vitamins B02BA01 538 2,661 0.20

Cefamandole Cephalosporins J01DC03 1,028 5,212 0.20

Omeprazole Mucosal protective agents A02BC01 792 4,817 0.16

Ondansetron Antiemetics A04AA01 836 6,501 0.13

Ibuprofen Antipyretics M01AE01 2,313 18,990 0.12

Methotrexate Antineoplastic agents L04AX03 1,066 9,377 0.11

Creatine phosphate sodium Cardioprotective drugs NA 2,875 25,485 0.11

Cytarabine Antineoplastic agents L01BC01 881 8,343 0.11

Abbreviations: DIKI: drug-induced kidney injury; ATC: anatomical therapeutic chemical classification.
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evaluated (Table 3). Of these, creatine phosphate sodium was

found to be a type I signal as it had not previously been reported

in either adults or children. Three other drugs, namely, diazepam,

omeprazole, and ondansetron, were demonstrated to be type II

signals in pediatrics. The other drug–DIKI associations have been

confirmed in previous studies.

4 Discussion

Medications are the relatively common cause of AKI,

especially in pediatrics. DIKI is related to a drugs’ inherent

toxicity and how the kidneys are able to handle it. It poses

several challenges for clinicians mainly because of the difficulties

TABLE 2 Signal detection of drug-induced kidney injury using PS matching in stage 2.

Suspect drug Exposed group Unexposed group Adjusted
p-valuea

Or
(95% CI)

Number of
cases
with DIKI
events

Number of cases
without DIKI
events

Number of
cases
with DIKI
events

Number of cases
without DIKI
events

Diazepam 571 2,363 1,558 10,178 3.47 × 10–15 1.61
(1.43, 1.80)

Vitamin K1 214 1,111 808 4,492 0.54 1.06
(0.89, 1.27)

Cefamandole 436 1873 1,627 7,609 0.40 1.07
(0.94, 1.21)

Omeprazole 391 2,203 1,402 8,974 4.46 × 10–05 1.35
(1.17, 1.54)

Ondansetron 779 5,530 2,875 22,361 1.95 × 10–16 1.49
(1.36, 1.63)

Ibuprofen 1,168 9,796 3,367 30,106 0.77 1.01
(0.94, 1.09)

Methotrexate 1,027 7,646 3,640 31,052 1.17 × 10–13 1.36
(1.25, 1.47)

Creatine phosphate
sodium

1,271 11,248 2,931 24,636 2.94 × 10–3 1.13
(1.05, 1.22)

Cytarabine 773 7,001 2,981 28,115 1.76 × 10–3 1.17
(1.06, 1.28)

a: The p-value was adjusted by the Benjamini–Hochberg method.

FIGURE 2
Forest plot for the association of suspected drugs with DIKI. Abbreviations: DIKI: drug-induced kidney injury; OR: odds ratio; CI: confidence
interval.
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in timely identification of drugs with potential nephrotoxicity

(Starr et al., 2021). In this context, research on RWD is growing

for its implication in the surveillance of drug safety. The EHR, as

one of the routine RWDs, is a good data source for

pharmacovigilance because of its detailed information on

clinical events related to medications (Patadia et al., 2015).

This study established and applied a two-stage method for

detecting DIKI signals in children using an EHR database:

first to identify potential suspected drugs and then to conduct

a retrospective cohort to analyze the correlation between the

specific suspected drugs and renal impairment. We initially

discovered nine candidate drugs related to DIKI, and six

positive signals for DIKI were identified in further analyses.

To the best of our knowledge, one of the drug-DIKI

associations (creatine phosphate sodium) has not been

previously described in current literature evidence, either in

adults or in children. Three other drug-DIKI associations

(diazepam, omeprazole, and ondansetron) were not previously

reported in children but have already been reported in adults.

These drugs may become the critical target drugs for active

surveillance and causality assessment in further research.

4.1 Potential new signals

The association of creatine phosphate sodium with DIKI was

found to be a possible new signal in this study. Creatine

phosphate sodium is one of the cardioprotective drugs and is

widely used in the protection of abnormal myocardial

metabolism during myocardial ischemia. A previous study

showed that 14.40% cases (28/200) of children were treated

with sodium creatine phosphate as prophylactic treatment

without a diagnosis, suggesting that there was an overdosage

of sodium creatine phosphate in pediatrics (Jin et al., 2022).

Another study showed that high doses of creatine phosphate

sodium injection may cause large amounts of phosphate intake,

which may affect renal function through calcium and purine

metabolism disorders, as well as unstable hormone secretion

(Yan et al., 2011). Recently, the National Medical Products

Administration (NMPA) in China has recommended that

serum calcium, serum phosphorus, and renal function should

be monitored during the use of creatine phosphate sodium in

neonates and premature infants, which also provides a reference

for children of other ages. Although creatine phosphate sodium

has been on the market for many years, the mechanisms

underlying the association between its use and the

deterioration of kidney function are still unclear. In light of

these findings, further studies should assess the mechanism of

kidney injury induced by creatine phosphate sodium in children.

For patients with DIKI, suspected drugs were discontinued

immediately, followed by symptomatic treatment to preserve

the kidney. At the same time, clinicians should also pay attention

to regular renal function in children who need long-term and

high-dose use of creatine phosphate sodium to better promote

the rational use of this drug.

Three other drug-DIKI associations (diazepam, omeprazole,

and ondansetron) were identified as potentially new signals in the

pediatric population. Diazepam is a common sedative–hypnotic

drug in clinical settings, and the ADRs described in SPC include

drowsiness, fatigue, muscle weakness, urinary retention, or

incontinence. A nationwide population-based retrospective

cohort study showed that diazepam had a significant

correlation with increased chronic kidney disease risk in the

population aged >18 years old (adjusted hazard ratio (HR) =

1.627, 95 CI%:1.527–1.736) (Liao et al., 2020). One of the possible

mechanisms is that propylene glycol is contained in parenteral

formulations of diazepam, which may cause AKI and proximal

tubule injury (Cawley, 2001). In addition, omeprazole is a proton

TABLE 3 Evaluation of drug-induced kidney injury signals.

Suspect drug Literature (PubMed/
Embase)

Literature (CNKI/
Wangfang)a

SPCb Signal type*

Adults Children Adults Children

Diazepam √ × × × × II

Omeprazole √ × √ × √ II

Ondansetron √ × × × × II

Methotrexate √ √ √ √ √ Known

Creatine phosphate sodium × × × × √ I

Cytarabine √ × √ √ √ Known

AbbreviationsDIKI: drug-induced kidney injury; SPCs: summary of product characteristics.
a: Literature reviewed: 1) PubMed: https://pubmed.ncbi.nlm.nih.gov; 2) Embase: https://www.embase.com; 3) Wanfang: http://www.wanfangdata.com.cn/index.html); and 4) CNKI:

https://www.cnki.net.
b: SPCs reviewed: 1) Micromedex: https://www.ibm.com/watson-health/learn/micromedex); 2) FDA website: https://www.fda.gov/; and 3) drug instructions: https://www.yaozh.com/.

*Signal type I: the specific drug-DIKI signal had never been reported in the literature; II: the specific drug-DIKI signal had been reported in the literature about adults, but no reports about

children could be found in the literature; known: the specific drug-DIKI association had been reported in both adults and children.
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pump inhibitor (PPI) that selectively inhibits the H + -K +

-ATPase in the gastric parietal cell membrane. It is widely used in

the treatment of peptic ulcers, reflux esophagitis, and

Zollinger–Ehrlich syndrome in pediatrics (Kato et al., 2021).

Serious ADRs such as acute interstitial nephritis (AIN) and renal

failure have also been reported in adults (Nadri and Althaf,

2014). Simpson et al. (2006) reported that the incidence of AIN

caused by omeprazole was 8/100,000 (95% Cl: 2.6/100,000 to

18.7/100,000) (Simpson et al., 2006). Other studies have shown

that omeprazole can cause a high incidence of renal damage in

the elderly (Klatte et al., 2017). The underlying mechanism was

drug-induced immune damage, including acute and chronic

interstitial nephritis and tubulointerstitial nephritis (Torlot

and Whitehead, 2016). Furthermore, ondansetron is a

preferred anti-emetic in critical care to treat nausea and

vomiting. A recent pharmacoepidemiology study reported that

ondansetron may be associated with an increased risk of AKI

(Gray et al., 2022). Another work showed that ondansetron can

enhance cisplatin-induced nephrotoxicity via inhibition of

multiple toxins and extrusion proteins (Li et al., 2013).

However, the associations between the aforementioned three

drugs and renal impairment were mainly reported in adults.

We should also remember that most of the drugs currently used

in pediatric clinical practices were originally developed for adults,

and for the majority of them, the mechanism of renal toxicity in

children is still to be clarified. Our results may provide more clues

and need to be validated in a larger pediatric population.

This study also found that both methotrexate (MTX) and

cytarabine were associated with a degree of kidney injury, which

was consistent with previous reports in the literature. They are

both common antineoplastic agents and are widely used in acute

lymphoblastic leukemia (ALL) and non-Hodgkin’s lymphoma in

pediatrics. A retrospective analysis found that the first high-dose

methotrexate (HDMTX) course (OR = 1.767) and methotrexate

dose per body surface area (OR = 1.944) significantly correlated

with AKI in 336 ALL children (Cheng et al., 2018). HDMTX-

associated AKI with delayed MTX clearance has been linked to

an excess in MTX-induced toxicities (Heuschkel et al., 2022).

AKI develops due to the precipitation of MTX and its metabolites

within the tubular lumens of the kidney (Perazella and Izzedine,

2015). Furthermore, MTX has been shown to induce the

formation of oxygen radicals with subsequent cellular injury,

associated with decreased adenosine deaminase activity

(Pinheiro et al., 2010). In addition, a case report showed that

low-dose cytarabine could induce hepatic and renal dysfunction

in a patient with myelodysplastic syndrome, indicating that

careful observation should be carried out in clinical practice

(Tanaka et al., 1999). As an anti-tumor drug with weak cell

specificity, cytarabine affects all actively growing cells by

inhibiting the synthesis of DNA, including renal tubular

epithelial cells, thereby causing nephrotoxicity (Pannu and

Nadim, 2008). The aforementioned results support the

reliability of our two-stage method in DIKI signal detection.

4.2 Strengths and limitations

The main strength of this study is its capability to

retrospectively observe a large number of children and

adolescents in a “real-world” setting by combining data from

longitudinal EHRs. This two-stage designed approach has certain

advantages in comparison with other methods based on

abnormal values of laboratory tests (Yoon et al., 2012) or

GTT. In the first stage, we roughly assessed the potential to

select the suspected drugs, increasing the efficiency of subsequent

analysis. Furthermore, more confounders, such as kidney disease

andmedications that may affect the level of laboratory indicators,

were considered. In addition, the algorithm execution does not

require manual review and can be developed into an automated

program in the future, which is more suitable for the detection of

ADEs based on large-scale databases. The final results suggest

that our method can be used as a useful tool to detect DIKI

signals for use by clinicians and regulatory agencies.

Despite the strengths of EHRs, they have inherent

limitations, including incomplete case capture, selection bias,

unmeasured confounding, and the inability to infer causality.

Thus, some limitations to this study should be considered. First,

only the records that met the criteria were included in the study.

The associations between suspected drugs and DIKI remain

unknown in those excluded records. Second, while our

method has controlled four important variables, it does not

adjust drug–drug interactions, drug–dose response, or disease

severity covariates in the model. Third, the EHR data from a

single-site system was used in this study. More efforts are needed

to validate the feasibility of the approach and the DIKI signals in

other EHR databases in the future. Lastly, it is important to

realize that this method is a tool to assist with signal detection but

does not ensure causality assessment of ADRs. All potentially

new signals require further evaluation in hypothesis-testing

studies to better account for bias and confounding.

In summary, this study shows that the RWDs, especially the

EHRs, are potentially valuable resources for post-marketing drug

safety surveillance. Our findings provide six candidate drug-DIKI

associations using medical record databases. Future research is

warranted to assess the causality of DIKI signals and formulate

strategies for drug risk management in pediatrics. Nowadays,

China has initiated the project “China ADR Sentinel Surveillance

Alliance” (CASSA) with at least 300 medical facilities. Also of

note, BCH was the first pediatric hospital in CASSA. More

attention will be paid to integrating the method based on the

CASSA platform to explore multi-center pharmacovigilance

research.

5 Conclusion

DIKI is one of the most common problems in clinical

practice, especially in hospitalized patients. In this work, we
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proposed a quantitative two-stage procedure to explore potential

DIKI signals using RWD. Six positive signals of DIKI, including

four new signals in children, were detected. Our findings

highlight the potential of EHRs to complement traditional

SRS for drug safety signal detection and strengthening in a

pediatric setting. It is hoped that current efforts to identify

DIKI signals will allow us to modify practice and reduce

unnecessary harm in the future.
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