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Background: Galvanic vestibular stimulation (GVS) is being increasingly explored as

a non-invasive brain stimulation technique to treat symptoms in Parkinson’s disease

(PD). To date, behavioral GVS effects in PD have been explored with only two stimulus

types, direct current and random noise (RN). The interaction between GVS effects and

anti-parkinsonian medication is unknown. In the present study, we designed multisine

(ms) stimuli and investigated the effects of ms and RN GVS on motor response time. In

comparison to the RN stimulus, the ms stimuli contained sinusoidal components only

at a set of desired frequencies and the phases were optimized to improve participants’

comfort. We hypothesized GVS motor effects were a function of stimulation frequency,

and specifically, that band-limited ms-GVS would result in better motor performance than

conventionally used broadband RN-GVS.

Materials and Methods: Eighteen PD patients (PDMOFF/PDMON: off-/on-levodopa

medication) and 20 healthy controls (HC) performed a simple reaction time task while

receiving sub-threshold GVS. Each participant underwent nine stimulation conditions:

off-stimulation, RN (4–200Hz), ms-θ (4–8Hz), ms-α (8–13Hz), ms-β (13–30Hz), ms-γ

(30–50Hz), ms-h1 (50–100Hz), ms-h2 (100–150Hz), and ms-h3 (150–200 Hz).

Results: The ms-γ resulted in shorter response time (RPT) in both PDMOFF and HC

groups compared with the RN. In addition, the RPT of the PDMOFF group decreased

during the ms-β while the RPT of the HC group decreased during the ms-α, ms-h1,

ms-h2, and ms-h3. There was considerable inter-subject variability in the optimum

stimulus type, although the frequency range tended to fall within 8–100Hz. Levodopa

medication significantly reduced the baseline RPT of the PD patients. In contrast to the

off-medication state, GVS did not significantly change RPT of the PD patients in the

on-medication state.

Conclusions: Using band-limited ms-GVS, we demonstrated that the GVS frequency

for the best RPT varied considerably across participants and was >30Hz for half of the
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PDMOFF patients. Moreover, dopaminergic medication was found to influence GVS

effects in PD patients. Our results indicate the common “one-size-fits-all” RN approach

is suboptimal for PD, and therefore personalized stimuli aiming to address this variability

is warranted to improve GVS effects.

Keywords: Parkinson’s disease, galvanic vestibular stimulation, stimulation frequency, response time, simple

reaction time task

INTRODUCTION

Parkinson’s disease (PD) is a progressive disorder marked by the
degeneration of dopaminergic neurons in the substantia nigra
projecting to the basal ganglia (BG). As these neurons degenerate,
individuals with PD frequently experience the cardinal motor
symptoms of slowness of movement, tremor, rigidity, and
postural instability. The estimated prevalence and incidence are
expected to grow as a result of aging populations (1).

Dopamine-based pharmacologic treatments such as levodopa
remain the gold standard for symptomatic treatment of PD
(2) and are robust and effective in improving motor function,
particularly in the early stages of the disease. However, some
symptoms such as gait and balance dysfunction may be
poorly responsive to dopaminergic medication (3), and many
people who have been treated with levodopa for prolonged
periods may experience complications such as dyskinesias and
motor fluctuations (2). Deep brain stimulation (DBS) is an
effective treatment for advanced PD (4) but utilized in as few
as 2% of the PD population (5) for reasons including the
invasiveness of surgical intervention and associated potential
complications (6), medical comorbidities that prevent surgery,
lack of advanced medical care, relatively mild symptoms, and
good response to medication. The exact mechanisms underlying
DBS effects are not yet fully understood, but likely involve
suppression of pathological neural oscillations [e.g., exaggerated
beta oscillations (7, 8)] in the BG circuit (9).

Inspired by the success of DBS in alleviating PD symptoms,
non-invasive brain stimulation (NIBS) is being increasingly
explored. As with DBS, NIBS techniques can apply electric
currents to the brain to modulate neural activity (10, 11) and
affect downstream behaviors (12). NIBS can be safely and
economically tested within a wide range of the PD population,
from early to advanced disease stages. Although NIBS lacks the
ability to directly target focal areas for maximum effectiveness
of the stimulation compared with DBS, it does not rely on
implantable hardware. Hardware that must be implanted has
severe constraints on design as it must be small in size,
strongly conserve battery power, and have strict temperature
regulation. In contrast, NIBS is not affected by these limitations
to the same degree and can utilize external (and potentially
portable) stimulators. Thus, NIBS techniques can employ more
complicated stimulus waveforms such as random noise (RN) and
multisine signals that can be delivered to achieve different effects,
as we show here, as compared to electrical pulses used in DBS.

Galvanic vestibular stimulation (GVS) is one type of NIBS
technique that applies weak electric currents to the mastoid
processes behind the ears to modulate the firing rates of the

vestibular afferents. In human studies, GVS has been utilized
primarily as a means to activate the vestibular system in order to
study balance and head movement responses (13). A pioneering
study to investigate GVS effects on PD patients was conducted
in 2005 (14) by applying 24-h continuous noisy GVS to six
idiopathic PD patients and one patient with akinesia. The
stimulation improved short-range heart rate variability, speed of
transitions between rest and activity in the trunk, and reaction
time in a Go/NoGo task.

Since then, GVS is being increasingly investigated for the
treatment of PD symptoms, motivated by anatomical and
functional evidence supporting close connections between the
vestibular nuclei, thalamus, and BG (15–19). Prior GVS studies in
PD have reported improvement in autonomic system regulation,
postural balance and gait, and motor task performance
(Supplementary Table 1). Notably, six out of the nine (66.7%)
GVS studies have used RN stimuli while the other studies (33.3%)
used direct current (DC) stimuli. The predominance of DC
stimuli is likely because it has been long-used in balance research
to induce body sways using GVS (20). Similarly, a RN stimulus
has been adopted as it was used in the original GVS study in PD
(14) and has been supported by the stochastic resonance theory
stating that the addition of an appropriate level of random noise
can paradoxically enhance the response of the nervous system to
a weak signal (21–23). Notably, the GVS frequencies used in these
studies have been limited to <30Hz as this reflects the frequency
range of most physical movements, and therefore likely reflects
the physiological range of endogenous vestibular activation (24).
However, we do not know if RN is the most effective stimulus
and if different stimulus frequencies significantly influence the
motor effects.

Here, we assessed the motor performance of PD participants
in a simple reaction time task using several band-limited
multisine GVS stimuli. Specifically, we compared whether the
multisine stimuli can result in better task performance compared
to the more traditional RN stimulus. We next sought to
answer the following questions: (1) is there a single band-
limited stimulus that brings about the most robust and largest
effects across individuals?; (2) does the most effective band-
limited stimulus vary across individuals?; and (3) how much
improvement in motor performance can be evoked by varying
stimulation frequency within an individual? Increasing evidence
demonstrates that the same transcranial electrical stimulation
can induce substantial variability in individual responses (25–
28) due to various factors including methodological differences
in the study protocols and participants’ physiological traits (e.g.,
age and sex) and brain states (e.g., emotional and mental states)
(28, 29). Here, we posit that a data-driven approach—whereby
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TABLE 1 | Demographic and clinical characteristics of the study participants.

PD (n = 18) HC (n = 20)

Age (years) 67.8 ± 7.3 68.7 ± 7.5

Gender (male/female) 9/9 10/10

Disease duration (years) 7.9 ± 4.4 –

UPDRS II 15.4 ± 8.2 –

UPDRS III 23.8 ± 9.7 –

- Bradykinesia a 9.3 ± 4.6 –

- Tremor b 8.0 ± 3.7 –

Hoehn and Yahr scale 1.3 (1–2) –

Levodopa Equivalent Daily Dose (mg) (30) 731.3 ± 403.8 –

Mean ± Standard deviation (SD).
aSum of the scores in UPDRS III 3.4–3.8 sections.
bSum of the scores in UPDRS III 3.15–3.18 sections.

individual responses to different stimuli are assessed—may be a
strategy to partly ameliorate these innate differences. Finally, for
the first time, we aimed to address the question of whether GVS
effects interact with levodopa medication by recruiting the same
PD participants both off-/on-dopaminergic medication.

MATERIALS AND METHODS

Participants
A total number of 20 PD patients and 22 age-matched healthy
controls (HC) took part in this study. The study protocol
was approved by the Clinical Research Ethics Board at the
University of British Columbia. All participants gave written,
informed consent prior to participation. No participant had any
reported vestibular or auditory disorder, and all were right-
handed. The PD patients were classified as having mild-stage PD
(Hoehn and Yahr stage 1–2) without atypical Parkinsonism or
other neurological disorders. Two PD participants and one HC
participant did not complete the entire study protocol (see 2.2
Study protocol) due to extraneous reasons such as occasional
coughing and arriving late for the experiment. As the motor task
data collected from these subjects were ultimately incomplete,
we excluded them from the data analysis. One HC participant
was also excluded from the data analysis because the subject did
not hold a pressure-sensor bulb as instructed and data were not
usable when we subsequently inspected the data. Notably, no
subjects failed to complete the entire study protocol due to the
intolerability of the GVS.

In total, 18 PD and 20 HC participants were included in the
data analysis (Table 1). The Unified Parkinson’s Disease Rating
Scale (UPDRS) Parts II and III were assessed for the PD patients
in the off-medication state prior to the experiment.

Study Protocol
In this present paper, we analyzed simple reaction time (SRT)
task data collected as a part of a concurrent GVS-EEG study
designed to investigate the effects of different GVS frequencies
on: (1) cortical activity at rest; and (2) cortical activity and
motor performance during the SRT task. In this section, we

report the overall experimental procedure of the concurrent
GVS-EEG study. The details of the SRT task are described in the
next section.

The experiment consisted of 9 blocks with different GVS
conditions that were 2min apart to minimize any confounding
post-stimulation effects. Each block included a 60-s rest
condition, followed by the SRT task (Figure 1A). Prior to
the experiment, each participant’s cutaneous threshold to GVS
was measured (see section GVS). Then, the participants were
fitted with an EEG cap. They were instructed to comfortably
sit in front of a computer screen and focus their gaze on a
continuously displayed fixed target for 60 s until they saw a
written instruction to press a key on the keyboard to start the
motor task. Further instruction on how to perform the SRT task
was given, followed by a practice run consisting of 10 trials, and
then the experiment began.

The PD participants performed the experiment in two sessions
on the same day, in the off-medication (PDMOFF) and on-
medication (PDMON) states. They stopped taking their normal
levodopa medication and any dopamine agonists at least 12 and
18 h prior to the experiment, respectively. After the first session,
they took their regular dose of medication and rested for an
hour before beginning the second session. The HC participants
performed the experiment once. At the end of the experiment,
all the participants were verbally asked whether they felt any
particular sensation or experienced pain, vertigo, nausea, or heat
sensation at the stimulating electrodes in order to confirm the
absence of placebo and adverse effects (13, 31).

Simple Reaction Time Task
Participants were instructed to respond to a visual cue as fast as
possible by squeezing a pressure-sensor bulb (Figure 1B). Each
trial started with a hold phase in which a fixation cross was
presented at the center for a randomized duration that ranged
from 1,000ms to 2,000ms [N (1500, 500)]. Then, a visual cue
(“Go”) appeared for 500ms followed by a 1,000-ms white blank
screen. The motor task in each stimulation block with the same
stimulus consisted of 10 trials. A pressure-sensor bulb was used
because it provides more descriptive behavior measures than a
simple button-press and a prior study reported that PD patients
demonstrate abnormal motor control while exerting pressure
during a task of repeatedly squeezing a rubber bulb (32). The
number of trials was selected such that the PD participants
could still complete the entire study protocol without excessive
tiredness (particularly during off-medication) while significant
differences in task performance between conditions could still
be detected.

The pressure was recorded at a sampling frequency of 250Hz.
For each trial, three temporal landmarks (t1, t2, and t3) were
defined in the pressure recording (Figure 1B). Response time
(RPT) was defined as t3 − t1, which was divided into two
subcomponents: (1) reaction time (RT) (t2− t1; the time between
the stimulus onset andmovement onset); and (2) movement time
(MT) (t3−t2; the time required to execute themotor response), in
order to further investigate whether GVS affects both RT andMT
or only one of them exclusively. Mean RPT, RT, andMT across 10
trials in each block were computed for further statistical analyses.
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FIGURE 1 | Schematic diagram of study protocol and simple reaction time task. (A) There were 9 stimulation conditions (blocks) and the order of GVS blocks was

randomized for each participant. In each block, participants were instructed to stare at a fixation cross on a computer screen for 60 s (Rest) and perform a simple

reaction time task afterward. There was a 120-s break between the blocks to avoid potential carry-over effects (i.e., GVS was not delivered during break). (B) Left:

participants were instructed to respond to a visual cue (“Go”) as fast as possible by squeezing a pressure sensor bulb. There were 10 trials in each stimulation

condition. For each trial, peak grip pressure (Pmax), time of visual cue (t1), time of movement onset (t2), and time of peak pressure (t3) were identified in the water

pressure recording.

GVS
GVS was delivered in bilateral, bipolar fashion through pre-
gelled Ag/AgCl electrodes (BIOPAC Systems Inc., USA) placed
over the mastoid process behind each ear using a constant
current stimulator DS5 (Digitimer, UK). We utilized systematic
procedures previously used to determine individual cutaneous
sensory threshold level (31, 33, 34). A noisy stimulus was
delivered to the mastoid processes for 20 s at an imperceptible
level, starting from a basal current level of 0.1mA. The
current intensity was then increased in 0.02mA intervals until
participants perceived a mild, local tingling sensation in the area
of the stimulating electrodes for the duration of the stimulus.
The current level was then decreased each time by one level until
sensation was no longer reported and then increased by one step
to confirm the threshold. In the experiment, GVS was applied
at 90% of the determined threshold value to avoid the effects of
placebo, general arousal, and/or voluntary selective attention.

In each stimulation block (Figure 1A), either random noise
(RN; 4–200Hz) or a band-limited multisine stimulus was
delivered. A multisine stimulus was adopted as it has the

advantages of reducing experiment time by testing multiple
sinusoids at once and preserves the power spectrum over
a frequency range of interest without any spectral leakage
compared with random noise (35). A multisine signal x (t) can
be expressed as:

x (t) = A

Nk∑

k=1

sin (ωkt + φk)

where A is the amplitude, Nk is the number of sinusoidal
components, ωk and φk are the frequency and phase of each
sinusoidal component k, respectively.

Seven multisine stimuli were designed in total. ms-θ , ms-
α, ms-β , and ms-γ were designed to cover conventional EEG
frequency bands, and ms-h1, ms-h2, and ms-h3 to cover high
frequency ranges (Table 2). For each stimulus, the sinusoidal
frequencies (ωk) were uniformly distributed every 0.4Hz (e.g.,
the ms-β consisted of sinusoids at 13.0, 13.4, . . . , 29.8Hz). The
phases (φk) of the sinusoids were chosen to minimize the crest
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TABLE 2 | Frequency ranges of the GVS stimuli investigated in the study.

RN ms-θ ms-α ms-β ms-γ ms-h1 ms-h2 ms-h3

Frequency (Hz) 4–200 4–8 8–13 13–30 30–50 50–100 100–150 150–200

FIGURE 2 | Clipping algorithm to minimize crest factor (CF) of a multisine signal.

factor using a clipping algorithm (36) (Figure 2) to increase
signal-to-noise ratios and improve participants’ comfort (37, 38).

The active-GVS blocks were randomly ordered for each
participant, and the off-stimulation block was conducted before
any active-GVS block to enable a comparison of motor
performance between the PD and HC groups without any carry-
over stimulation effects. In this study, behavioral effects of GVS
were investigated using only the active-GVS blocks that were
completely randomized.

Statistical Procedures
GVS thresholds between groups were compared using the
two-sample t-test, and correlations between GVS thresholds
and age or clinical scores were tested using the Pearson
correlation coefficient.

For each group, the RPTs during active-GVS blocks were
compared using a one-way repeated measures analysis of
variance (RM-ANOVA) with STIM (RN, ms-θ , ms-α, ms-β , ms-
γ , ms-h1, ms-h2, and ms-h3) as a within-subject factor. To
investigate the interaction effect of GVS and medication for PD
participants, we additionally conducted an overall two-way RM-
ANOVA with STIM and MED (on and off) as within-subject
factors. Mauchly’s test was used to assess the ANOVA assumption
of sphericity, and the Greenhouse-Geisser correction was used if
necessary to correct for non-sphericity. When a significant effect
was found, post-hoc pairwise comparisons with the Bonferroni
correction were conducted. If there was a stimulus that evoked a
significantly different RPT compared with RN-GVS, the RT and
MT were compared using a paired t-test.

All statistical analyses were performed using IBM SPSS
(version 27). Significance was assigned to P < 0.05.

RESULTS

None of the participants reported any adverse effects nor
awareness of any differences between stimulation conditions.

GVS Threshold
There was no significant difference between the PD and HC
groups in GVS threshold level [PD: 0.50 ± 0.24mA; HC: 0.46 ±
0.18mA; t(36) = 0.56, P= 0.58]. The thresholds of all participants
were not significantly correlated with age (r= 0.06, P= 0.73), but
there was a significant sex difference [males = 0.51 ± 0.21mA;
females = 0.35 ± 0.13mA; t(36) = 2.89, P = 0.006]. For PD
participants, no significant correlations were found between their
thresholds and clinical scores (disease duration: r = −0.11, P =

0.69; UPDRS III: r = 0.22, P = 0.39; bradykinesia: r = 0.35, P =

0.16; tremor: r =−0.19, P = 0.44).

Effects of GVS Frequencies on RPT
A one-way RM-ANOVA revealed a main effect of STIM for the
PDMOFF [F(7, 119) = 4.38, P < 0.001] and HC [F(7, 133) = 5.97, P
< 0.001] groups, but not for the PDMONgroup [F(7, 119) = 0.356,
P = 0.93] (Figure 3A). For the PDMOFF group, post-hoc tests
found that RPTwas significantly shorter duringms-β (P= 0.008)
and ms-γ (P = 0.026) compared to RPT during RN, and the %
change of RPT was −5.5 ± 4.8 and −5.4 ± 5.4%, respectively
(Figure 3B). No significant change in RPT was observed for ms-
θ (P = 0.51), ms-α (P = 0.11), ms-h1 (P = 0.093), ms-h2 (P =

0.056), and ms-h3 (P = 1.0). For the HC group, post-hoc tests
revealed that, compared to RN, the RPT significantly decreased
during ms-α (P = 0.01), ms-γ (P = 0.001), ms-h1 (P = 0.012),
ms-h2 (P = 0.008), and ms-h3 (P = 0.013), but not during ms-θ
(P = 1.0), and ms-β (P = 0.24) (Figure 3A).

We further investigated the nature of the significant RPT
changes (Table 3). For the PDMOFF group, ms-β significantly
decreased RT (P = 0.0095) but not MT (P = 0.17) whereas ms-γ
decreased MT (P = 0.013) but not RT (P = 0.076). For the HC
group, RT was decreased by ms-h1 (P = 0.013) and ms-h2 (P =

0.048). Overall, the results did not indicate that variation of GVS
frequency evokes an exclusive change in RT or MT.

The two-way RM-ANOVA revealed a main effect of STIM
[F(7, 119) = 2.78, P = 0.01] and MED [F(1, 17) = 5.59, P =

0.03]. Although PD participants tended to benefit frommultisine
stimuli more during off-medication state (Figure 3B), the STIM
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FIGURE 3 | (A) Response time (RPT) measured in different GVS conditions. Markers and vertical lines represent the group mean and standard error of the mean

(SEM), respectively. P values from the post-hoc tests are indicated (*P < 0.05 and **P < 0.01 compared to RN). (B) % change in the RPT compared to RN-GVS.

Each dot represents a participant.

TABLE 3 | Post-hoc comparisons of RT and MT measured during GVS.

PDMOFF HC

Stimulus RT (ms) MT (ms) RT (ms) MT (ms)

RN 478.0 ± 16.1 240.8 ± 15.7 472.3 ± 9.9 225.0 ± 17.8

ms-θ N/A N/A N/A N/A

ms-α N/A N/A 452.9 ± 10.0

(P = 0.09)

204.0 ± 18.0

(P = 0.069)

ms-β 450.6 ± 13.2

(P = 0.0095)

228.1 ± 15.3

(P = 0.17)

N/A N/A

ms-γ 456.6 ± 13.9

(P = 0.076)

221.6 ± 14.1

(P = 0.013)

449.1 ± 10.6

(P = 0.065)

205.9 ± 16.8

(P = 0.097)

ms-h1 N/A N/A 445.7 ± 10.0

(P = 0.013)

205.7 ± 18.2

(P = 0.065)

ms-h2 N/A N/A 450.4 ± 8.6

(P = 0.048)

209.3 ± 18.2

(P = 0.20)

ms-h3 N/A N/A 454.0 ± 11.3

(P = 0.14)

207.8 ± 18.2

(P = 0.15)

Values are shown only for the RN and multisine stimuli that resulted in significant RPT change compared to RN.

P values from paired t-tests (multisine vs. RN) are shown. N/A, Not applicable.
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FIGURE 4 | Group mean and SEM of the RPTs that are temporally ordered as opposed to stimulus types. The x-axis represents the temporal order of the stimulation

blocks. The first off-stimulation block (Figure 1A) is not shown.

×MED interaction effect did not reach the statistical significance
[F(7, 119) = 2.03, P = 0.056].

Effects of Time Order on RPT
To assess whether there was any spurious time-order effect
on RPT, we re-arranged RPTs in chronological order for every
participant and performed a one-way RM-ANOVA with TIME
as a within-subject factor.

No effect of TIME was found for all three groups [PDMOFF:
F(7, 119) = 1.31, P= 0.253; PDMON: F(3.8, 64.8) = 1.38, P= 0.251;
HC: F(7, 133) = 1.14, P = 0.341] (Figure 4).

Sensitivity of RPT on GVS Frequency
We investigated whether the degree of RPT variation induced by
different stimuli differed between the PDMOFF, PDMON, and
HC groups. To quantify this, for each participant, we computed
the standard deviation (RPTSD) and range (RPTrange; max–min)
of RPTs across the eight stimulation blocks.

Group comparisons suggested that both RPTSD and RPTrange

were comparable between the PDMOFF and HC groups
(Table 4). PDMON participants showed relatively smaller RPTSD

and RPTrange compared to the other two groups, but these
differences did not reach statistical significance.

Intersubject Variability in Most and Least
Effective Stimuli
Figure 5A shows the distributions of the most effective
stimulus (GVSmost) that resulted in the shortest RPT for each
participant. Interestingly, the distributions of the PDMOFF and
HC groups appeared similar in that 77.8 and 90.0% of the
participants, respectively, showed their best task performance
during ms-α, ms-β , ms-γ , or ms-h1. By comparison, only
38.9% of the PDMON participants performed the best in these
frequency ranges.

The contrast between the PDMON and the other two groups
was also observed when we investigated the least effective
stimulus (GVSleast) that resulted in the longest RPT (Figure 5B).
RN and ms-θ were found to be the least effective stimuli for 55.5
and 90.0% of the PDMOFF and HC participants, respectively. On

the other hand, only 16.7% of the PDMON participants showed
their worst performance during RN and ms-θ .

Significance of the RPT Decrease by
GVSmost
To assess whether the RPT evoked by GVSmost was significantly
faster compared with the other stimuli, we computed its P
value based on the empirical distribution of RPT estimated by
a bootstrapping approach (Figure 6A). Note that as the RPT is
computed as the mean over 10 randomly selected trials, it can
still be shorter than the mean RPT during GVSmost. Figure 6B
shows that 83.3, 66.7, and 85% of the PDMOFF, PDMON, and
HC participants, respectively, exhibited significantly shorter RPT
during GVSmost (P < 0.05) compared with the expected RPT
during any GVS stimulus.

DISCUSSION

To our knowledge, this is the first study investigating SRT
task performance of PD and HC participants while applying
GVS across a wide range of frequencies. Overall, our results
suggest that RPT can be improved by GVS in PD patients.
However, as bradykinesia is a key feature in PD, we cannot
disentangle whether or not the RPT improvements were a result
of faster decision-making and/or faster movement. This will
require examining the simultaneously acquired EEG and will be
the topic of another report. We demonstrated that the motor
improvement is significantly dependent on the GVS parameters
used. Surprisingly, we found that RN-GVS, despite its popularity,
did not actually evoke the best task performance in the PDMOFF
and HC groups, with ms-γ (30–50Hz) proving superior in
reducing RPT (Table 5). The performance of the off-medicated
PD participants during ms-β and ms-γ were comparable to the
baseline performance when they were in the on-medication state.
We found that the GVS frequency that resulted in the shortest
RPT varied considerably across participants, suggesting that a
one-size-fits-all stimulus will not be as effective as a personalized
stimulus. For most of the PDMOFF and HC participants, the
best GVS frequency varied in the range of 8–100Hz. The worst
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TABLE 4 | Comparisons of RPT variability (RPTSD and RPTrange) across the eight GVS conditions.

Mean ± SD P

PDMOFF PDMON HC PDMOFF − PDMON PDMOFF − HC PDMON − HC

RPTSD (ms) 27.2 ± 9.9 23.2 ± 10.7 29.8 ± 11.2 0.15 0.45 0.074

RPTrange (ms) 82.2 ± 29.9 68.8 ± 31.4 89.6 ± 33.3 0.084 0.48 0.057

P values obtained from student t-tests are presented.

FIGURE 5 | Distributions of stimulus types during which RPT was the shortest (GVSmost; top) and the longest (GVSleast; bottom) for the participants in each group.

task performance was found during RN or ms-θ for more than
half of the participants in these two groups. These results provide
evidence that further work is required to tailor GVS parameters
for maximum efficacy.

Whether or not RPT is actually delayed in PD has
been controversial (39–41), partially due to methodological
heterogeneity and different clinical characteristics of the
participants (42). In this study, the difference in baseline
RPT between the PDMOFF and HC groups did not reach
statistical significance (P = 0.068; Supplementary Table 2).

Instead, the most interesting finding was that responses to
different GVS stimuli showed a similar trend between the two
groups (Figure 3). This finding may suggest that there are
some mechanisms underlying the GVS effects that are common
between these groups.

In contrast, we found that the PDMON group showed
relatively different responses to GVS. Normally, dopamine is
active both phasically and tonically during motor performance.
Levodopa has complex effects in PD, which may result in relative
normalization of tonic dopamine firing, yet impairment of phasic
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FIGURE 6 | (A) Schematic diagram showing a process to generate an empirical distribution of RPT for each participant. Each bootstrap sample randomly selects

RPTs of 10 trials and the mean of the bootstrap samples is computed to generate the distribution. RPTbest represents the mean RPT during GVSmost. (B) P value of

RPTbest computed based on (A) is shown for every participant.

firing (43). While phasic dopamine firing is normally associated
with rewards in reinforcement learning paradigms, it may also
be involved in internal representations of desired actions with
actual sensory feedback during motor performance (44–46).
Thus, many studies have suggested that movement-related phasic
changes can be observed in nigrostriatal dopamine neuron firing
(47–49), and that dorsal striatal phasic dopamine signaling is
associated with specific kinematic features of movement (43).
Complex effects of dopaminergic medication in PD have also
been reported in fMRI studies (50–54) showing that levodopa
medication does not simply restore brain connectivity aberrant in
PD. Rather it induces functional connectivity changes distinctive
from those identified to be different between PD patients and
healthy controls (51, 54). Taken together, this is an important
point to consider for future GVS studies, as prior studies
(Supplementary Table 1) included only medicated PD patients,
and the information on the dosage and timing of the medication
was rarely reported.

Given the functional role of pathological beta oscillations in
PD (55), the result of particular interest was that ms-β resulted

in the largest decrease in RT among the tested stimuli in the
PDMOFF group whereas it did not improve motor performance
for the HC group. In this regard, there is some evidence to
support the concept that beta-frequency stimulation may have
clinical effectiveness in PD patients. In a transcranial alternating
current stimulation (tACS) study conducted on 10 PD and
10 HC participants (56), 20-Hz stimulation at the primary
motor cortex (M1) yielded a significant decrease in beta-band
cortico-muscular coupling in PD patients but not in HC. A
TMS study showed that 20–33Hz stimulation at M1 elicited
significant suppression of the motor evoked potential (MEP) in
PD patients and the amount of suppression was correlated with
their UPDRS III scores (57). It should be noted, however, that
there have been only a handful of studies that utilized beta-
frequency NIBS in PD patients, and it is difficult to determine
from our results whether the ms-β effects observed in the PD
participants were related to the pathological beta-band activity.
Thus, further neuroimaging studies are strongly suggested to be
carried out to validate our results and elucidate the mechanisms
of action.
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TABLE 5 | Summary of RPTs (unit: millisecond) measured during off-stimulation

(baseline), RN-GVS, and multisine GVS for the PD and HC participants.

PD (n = 18) HC (n = 20)

Off-medication

Baseline 748.5 ± 93.8 674.4 ± 107.5

GVS RN: 718.7 ± 88.5

ms-β: 678.7 ± 86.6**

ms-γ : 678.2 ± 78.3*

RN: 697.2 ± 85.4

ms-α: 656.8 ± 92.7*

ms-γ : 654.6 ± 81.2**

ms-h1: 651.3 ± 98.2*

ms-h2: 659.8 ± 89.5**

ms-h3: 661.8 ± 91.0*

On-medication

Baseline 683.2 ± 92.4 N/A

GVS RN: 671.82 ± 91.6 N/A

For multisine GVS, only those that resulted in significant changes compared with RN-

GVS are displayed (*P < 0.05 and **P < 0.01 compared with RN as in Figure 3). N/A,

Not applicable.

The frequency-dependent GVS effects we observed may be
related to the overlap between the neural processes affecting
RPT and neural pathways affected by external vestibular inputs.
One of the main vestibular pathways is the direct ascending
projection from the vestibular complex to the thalamus, primarily
targeting the ventral anterior, ventral lateral, ventral posterior
lateral, ventral posterior medial, intralaminar nuclei, and the
geniculate bodies (58–60). Strong activations in these regions by
vestibular stimulation (18, 59, 61–63) suggest a critical thalamic
contribution to processing vestibular information (60, 63). The
ventral parts of the thalamus are also closely connected with M1,
premotor cortex, and BG (15, 58, 63, 64), modulating a range of
aspects in motor control (15, 63, 65). Thus, we conjecture that
GVS effects on RPT can be in part explained by vestibular inputs
affecting themotor thalamus. Thismay also explain themild GVS
effects on the PDMON participants as the BG inputs to the motor
thalamus would vary at different dopamine levels.

It is also possible that GVS affected the striatum, a region
described as an integrative center for sensory information
and involved in motor planning and execution. Although the
largest inputs to the striatum are from the cortex, recent
studies have elucidated the subcortical pathways critical for
interpreting and responding to environmental stimuli (66, 67).
Electrophysiological studies in animal models and neuroimaging
studies in humans have shown that vestibular stimulation
activates the head of the caudate nucleus and putamen (16–
19, 62, 68, 69), likely through the parafascicular thalamic nucleus
(PFN) (64, 70). In addition, it has been recently proposed that the
striatal tail may play a role as a multisensory integration center
(71), and thus it is possible that there are vestibular inputs to this
region as well.

Our observations of different motor effects evoked by varying
GVS frequency are consistent with many animal studies (72, 73).
Surprisingly, canal and otolith afferents in macaque monkeys
responded to GVS as a function of frequency such that the
response gain (i.e., spikes/s/mA) increased more than twice when
the stimulation frequency varied from 0.1 to 25Hz (72). This
seminal finding opposes the common idea that high-frequency

GVS would result in smaller gains because the tissues between
the electrode and vestibular afferents may act as a low-pass
filter. Similarly, the firing rate of the PFN increases when the
frequency of stimulation applied to the semicircular canal nerve
is >100Hz (73). Taken together, these findings could explain in
part the efficacy of the frequency range we observed in most of
the PDMOFF and HC participants.

There are several limitations in our study. Considering the
study design and our primary objective to examine different types
of GVS stimuli, we did not try to replicate previous findings
demonstrating that GVS results in better motor performance
compared to baseline performance seen during off-stimulation.
Although we think the practice effect on the task performance
is unlikely for a simple, over-learned motor task like ours,
the possibility was not completely ruled out when the baseline
measurement always preceded active-GVS. Similarly, our study
was not designed to measure the after-effects of GVS. Post-
stimulation behavior effects of GVS are largely unknown (13).
Studies that examined GVS aftereffects stimulated participants
for more than 30min, and the results are conflicting (74–77).
The issue of whether stimulation effects last after the cease of
stimulation is not only limited to GVS but is one of the main
controversial topics for transcranial electrical stimulation (78).
As online stimulation effects differ depending on stimulation
parameters (e.g., frequency, intensity, duration, target sites) and
experimental tasks, the presence and duration of after-effects
appear to be influenced by the stimulation parameters and
tasks (79, 80). Although after-effects are infrequently reported,
evidence from tES studies shows the presence of after-effects
when stimulation was applied at >0.5mA for longer than
10min (78, 81–83). Given that we applied GVS for a short
duration at a low current intensity with a 2-min inter-block
off-stimulation break, we suggest that any effects carried over
from previous stimulation were relatively mild compared to
the online-stimulation effects. Validation of GVS after-effects
and their relationships with stimulation parameters will be
areas/topics of interest for future work. Note that, since GVS
can utilize portable stimulators, reliance on much more subtle
after-effects is not as important as other technologies that are
not as easily portable (e.g., TMS). Finally, several studies support
the notion that GVS effects are mostly spatially restricted to
the vestibular organs. For instance, the auditory effects of GVS
are rare (20) despite the proximity between the auditory and
vestibular systems. GVS evokes circumscribed cortical activation
of vestibular areas, and effects on the somatosensory cortex
are only seen at specific frequencies (62). At higher intensities,
the stimulation of the vestibular system can be self-reported by
feelings of vertigo. A recent computational modeling study of the
electric field generated by GVS (84) suggests that the bilateral
and bipolar configuration, as used in our study, results in the
most spatially-restricted current flow to the vestibular organs.
However, some current may diffuse to the medulla, pons, and
cerebellum. Although we note that both the electrodes (11mm)
and current intensity used here (0.43 ± 0.19mA) were less than
those used in the computational model (30mm and 1mA), we
cannot completely discount that some of our results may be via
modulation of extra-vestibular structures.
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In conclusion, our findings provide key information necessary
for the future development of GVS techniques to induce robust
and effective therapeutic effects in PD. Future research is
warranted to confirm similar behavioral effects of GVS applied
at frequencies beyond the assumed physiological ranges and to
establish potential mechanisms.
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