
ORIGINAL RESEARCH ARTICLE
published: 19 August 2014

doi: 10.3389/fncom.2014.00091

Signal-independent timescale analysis (SITA) and its
application for neural coding during reaching and walking
Miriam Zacksenhouse1*, Mikhail A. Lebedev2 and Miguel A. L. Nicolelis2

1 Brain-Computer Interfaces for Rehabilitation Laboratory, Department of Mechanical Engineering, Technion – IIT, Haifa, Israel
2 Department of Neurobiology, Center for Neuro-Engineering, Duke University, Durham, NC, USA

Edited by:

Mayank R. Mehta, UCLA, USA

Reviewed by:

Alexander G. Dimitrov, Washington
State University Vancouver, USA
James McFarland, University of
Maryland, USA

*Correspondence:

Miriam Zacksenhouse,
Brain-Computer Interfaces for
Rehabilitation Laboratory,
Department of Mechanical
Engineering, Technion – IIT, Haifa
32000, Israel
e-mail: mermz@tx.technion.ac.il

What are the relevant timescales of neural encoding in the brain? This question is
commonly investigated with respect to well-defined stimuli or actions. However, neurons
often encode multiple signals, including hidden or internal, which are not experimentally
controlled, and thus excluded from such analysis. Here we consider all rate modulations
as the signal, and define the rate-modulations signal-to-noise ratio (RM-SNR) as the
ratio between the variance of the rate and the variance of the neuronal noise. As the
bin-width increases, RM-SNR increases while the update rate decreases. This tradeoff
is captured by the ratio of RM-SNR to bin-width, and its variations with the bin-width
reveal the timescales of neural activity. Theoretical analysis and simulations elucidate
how the interactions between the recovery properties of the unit and the spectral
content of the encoded signals shape this ratio and determine the timescales of neural
coding. The resulting signal-independent timescale analysis (SITA) is applied to investigate
timescales of neural activity recorded from the motor cortex of monkeys during: (i)
reaching experiments with Brain-Machine Interface (BMI), and (ii) locomotion experiments
at different speeds. Interestingly, the timescales during BMI experiments did not change
significantly with the control mode or training. During locomotion, the analysis identified
units whose timescale varied consistently with the experimentally controlled speed of
walking, though the specific timescale reflected also the recovery properties of the unit.
Thus, the proposed method, SITA, characterizes the timescales of neural encoding and
how they are affected by the motor task, while accounting for all rate modulations.
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INTRODUCTION
The timescales of neural encoding is important for understand-
ing neural processing and for successfully interpreting recorded
neural activity (Shadlen and Newsome, 1994; de Ruyter van
Steveninck et al., 1997; Borst and Theunissen, 1999; Jacobs et al.,
2009). In the context of rate-coding, we focus on characteriz-
ing those timescales, independent of which signals modulate the
rate. Those may include: (i) encoded signals under experimen-
tal control, (ii) encoded task-relevant signals that are not under
experimental control and thus may vary from trial to trial, and
(iii) task-irrelevant signals. The last two groups are referred to
as “hidden” signals, and we are especially interested in the sec-
ond group of hidden task-relevant signals. Those may include,
for example, the estimated state or estimation error during reach-
ing movements (Desmurget and Grafton, 2000; Wolpert and
Ghahramani, 2000; Krigolson and Holroyd, 2006; Shadmehr and
Krakauer, 2008).

The potential contribution of hidden signals to trial-to-trial
variability in neuronal responses has been noted in the con-
text of different tasks, including skilled reaching movements
(Churchland et al., 2006a,b; Mandelblat-Cerf et al., 2009) motor
adaptation (Mandelblat-Cerf et al., 2009) and decision making

(Churchland et al., 2011). During skilled reaching movements,
trial-to-trial variations in preparatory neural activity were pre-
dictive of variations in reach, and were interpreted to reflect
variations in movement planning (Churchland et al., 2006a).
During novel visuo-motor tasks, trial-to-trial variability in spik-
ing activity increased in early adaptation stages before return-
ing to initial levels at the end of learning, and was interpreted
to reflect enhanced exploration or adjustments of the internal
models (Mandelblat-Cerf et al., 2009). During decision mak-
ing, trial-to-trial variations in the underlying rate were shown
to increase until the decision was made, in agreement with the
hypothesis that they encode trial-specific evidence accumulation
(Churchland et al., 2011).

Ideally we should quantify and analyze the contributions of the
first two groups of signals, i.e., only those that are task-relevant,
whether under experimental control or hidden. However, this
is hampered by the inability to control or measure hidden
task-relevant signals. Current methods for analyzing neuronal
timescales, which have focused mainly on sensory neurons, are
based on averaging the response over repeated trials with the
same stimuli (Borst and Theunissen, 1999; Warzech and Egelhaaf,
1999; Butts et al., 2007), or computing the mutual information
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between known stimuli and their reconstruction (Rieke et al.,
1997; Dimitrov and Miller, 2000). In either case, the analysis
accounts only for signals that are under experimental control, i.e.,
the first group of signals.

Neurons in the motor system are known to encode a large
number of signals (Georgopoulos, 2000; Johnson et al., 2001;
Scott, 2003), and are also expected to encode hidden signals, such
as the estimated state and errors (Desmurget and Grafton, 2000;
Wolpert and Ghahramani, 2000; Krigolson and Holroyd, 2006;
Shadmehr and Krakauer, 2008). Timescale analysis that is based
on synchronized averaging would miss the contribution of those
signals that are not under experimental control, including hidden
task-relevant signals. This is illustrated in Figure 1A (detailed in
Section Rate-modulations Signal-to-noise ratio of DSPP), where
the rate is assumed to encode both a movement related sig-
nal and a hidden signal: synchronized averaging captures the
rate-encoded movement but not the rate-encoded hidden sig-
nal. Instead, we focus on analyzing the timescales associated with
the underlying rate modulations, independent of which signals
modulate the rate. The proposed method considers asynchronous
sequences of random reaching movements (Figure 1B, upper
panel) so the resulting rate (Figure 1B, lower panel) is a stationary
process whose variance (dashed black) captures the variance of
both of the encoded signals (dashed black lines, Figure 1A upper
panel and Figure 1B lower panel, respectively). Thus, in contrast

with standard averaging methods, the proposed method captures
also the contribution of hidden signals. Admittedly, the hidden
signals may include not only task-relevant (group 2) but also task-
irrelevant (group 3) hidden signals. Hence, the method is best
used in comparing the timescales across different task conditions.
Here we demonstrate the power of this method by compar-
ing the timescales in neural activity during different phases of
experiments with brain-machine interfaces (BMIs) and during
locomotion at different speeds.

Timescales are assessed under the sole assumption that spike
trains are realizations of dead-time modified doubly stochastic
Poisson processes (DSPP) (Snyder, 1975; Cox and Isham, 1980;
Johnson, 1996; Gabbiani and Koch, 1998). DSPPs are the simplest
point processes that can describe rate modulations by stochas-
tic signals. This model is pertinent for describing spike trains
recorded during reaching and walking when the rate might be
modulated by a number of biologically relevant stochastic signals.
These signals may include not only measurable variables, such
as the velocity of movement, but also internal or hidden signals
(e.g., internal state estimations; Wolpert and Ghahramani, 2000;
Shadmehr and Krakauer, 2008), which cannot be measured or
controlled directly (Zacksenhouse et al., 2007). The effect of dead-
time is explicitly investigated to account for absolute refractory
period. The effects of other deviations from the DSPP assumption
are demonstrated via simulations.

FIGURE 1 | Illustration of the averaging approach (A) vs. the

proposed approach (B) when the rate encodes both the movement

and a hidden signal. Averaging methods are based on repeating the
same movement (A, upper panel) and synchronizing the resulting neural
activity and hence the rate (A, lower panel). Synchronized average (solid
black) is considered the signal, while the variance of the hidden signal
(dashed black) is considered noise. The proposed method considers
asynchronous sequences of random reaching movements (B, upper

panel) so the resulting rate (B, lower panel) is a stationary process
whose variance (dashed black) captures the variance of both of the
encoded signals [dashed black lines, (A) upper panel and (B) lower
panel, respectively]. Each movement has a minimum jerk profile over
500 ms. Random reaching movements (B) are 2 s long sequences of
reaching movements between random targets. Colored traces:
representative samples. Black solid and dashed lines: ensemble mean
and variance computed across an ensemble of 500 samples.
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Within the DSPP model, the modulated rate is considered
as the signal conveyed by the unit. Only rate-conditioned spike
count variations are considered noise (Churchland et al., 2011).
Thus, we define the rate-modulations signal-to-noise ratio (RM-
SNR) as the ratio between the variance of the rate and the
variance of the Poisson noise (Section Rate-modulations Signal-
to-noise ratio of DSPP). Theoretical analysis, presented in Section
Bandwidth Effect and Appendix A, indicates that at short bin-
widths RM-SNR should increase linearly with the bin-width,
while at long bin-widths it should saturate. The analysis is
extended in Section Dead-time Effect and Appendix B to include
the effect of refractory period (dead-time modified DSPP).
Section Simulations describes the simulations that are used to
demonstrate the proposed methods. Section Timescales Analysis
proposes to capture the trade-off between RM-SNR and update-
rate by the ratio between RM-SNR and bin-width. The variations
of this ratio with the bin-width are related to the interaction
between the refractory properties of the unit and the spectral
properties of the encoded signals, and the bin-widths at which
this ratio peaks are related to the timescales of neural encoding.
The effects of deviations from the DSPP assumption are evaluated
by analyzing simulated realizations of doubly stochastic Gamma
processes (DSGPs).

After demonstrating the analysis on simulated realizations of
both DSPPs and doubly stochastic Gamma processes (DSGPs),
it is applied to investigate the timescales of the neural activity
recorded from cortical motor units during two experiments with
Monkeys (described briefly in Section Experimental Methods).
Sections SNR During BMI Experiments and Timescale During
BMI Experiments present the analysis of spike-trains recorded
during experiments with BMIs and demonstrate that the average
timescale agrees well with the experimentally selected bin-width,
though the timescales of individual units vary. The effect of
the refractory period is assessed in Section Refractory Effects.
Most importantly, Section BMI and Training Effects demon-
strates that the timescales did not change significantly when
switching to brain control or with training. During locomotion,
the analysis identified the units whose timescales varied with
the speed of walking—in agreement with the spectral analysis
(Section Timescales During Walking). We conclude in Section
Conclusions and Discussion, by discussing the proposed signal-
independent timescale analysis (SITA) and its significance for
investigating the timescales of neural-rate coding under different
task conditions, and how they are related to the spectral content
of the encoded signals and the refractory properties of the unit.

MATERIALS AND METHODS
MODELING AND ANALYSIS METHODS
Rate-modulations Signal-to-noise ratio of DSPP
The Poisson process is the simplest point process in which the
probability of an event—a spike in the case of neural activ-
ity, is assumed to be independent of the history of the spike
train. Inhomogeneous Poisson processes are the simplest point
processes that can describe rate modulations, i.e., the probabil-
ity of a spike may change with time (Snyder, 1975; Cox and
Isham, 1980; Johnson, 1996; Gabbiani and Koch, 1998). Here we
consider DSPP, which is a subclass of inhomogeneous Poisson

processes whose rate is modulated by stochastic signals (Snyder,
1975; Cox and Isham, 1980; Johnson, 1996; Gabbiani and Koch,
1998). Thus, the statistics of spike trains generated by DSPPs are
determined by two factors: stochastic changes in instantaneous
spike-rate and Poisson probability of spike occurrence.

Considering long intervals of movements, the stochastic sig-
nals that modulate the instantaneous rate, and thus the instan-
taneous rate itself, are assumed to be stationary. This is justified
since we consider long sequences of movements (reaching or
stepping) that are not synchronized to any event, and thus may
start at an arbitrary phase of the movement. This approach is
illustrated in Figure 1 and contrasted with synchronized aver-
aging, using a simple example where the rate is assumed to
encode both the position (along 1-dimension) during a reach-
ing movement and an independent hidden signal. Figure 1A
illustrates the averaging method, where the same reaching move-
ment (upper panel) is repeated, and the resulting spike-rates
(lower panel, depicting a sample of 5 realizations) are synchro-
nized to movement initiation. The resulting synchronized rate is
a non-stationary process with time-varying mean (solid black line,
averaged over a simulated sample of 500 realizations). Figure 1B
illustrates the proposed approach, showing a sample of five move-
ment sequences (upper panel) starting at random phases (for
illustration, each sequence includes four consecutive reaching
movements between random targets). The resulting spike-rates
(lower panel) are not synchronized and thus generate a station-
ary process with constant mean and variance (solid and dashed
black lines, respectively, based on a sample of 500 realizations).
The rate-variance (Figure 1B, lower panel) captures the contri-
butions of both the movement (whose variance is depicted as
black dashed line in Figure 1B, upper panel), and the hidden sig-
nal (whose variance is depicted as black dashed line in Figure 1A,
lower panel).

Thus, the instantaneous spike-rate λ(t) = λ0 + λ̃(t) is
assumed to be a stationary stochastic process with mean rate
λ0 and zero-mean rate modulations λ̃(t). In realizations of
DSPP, the distribution of spike-counts, NT , in bins of size T is
determined by the integrated spike-rate during the bin:

�T(t) =
∫ t+T/2

t−T/2
λ(σ )dσ, (1)

and its statistics are given by (Snyder, 1975; Zacksenhouse et al.,
2007):

E[NT] = E[�T]
Var[NT] = Var[�T] + E[�T] (2)

The last equation can be interpreted as a decomposition of the
total variance in the spike-counts into the variance of the mod-
ulated rate, Var[�T], and the variance of the noise E[�T] =
E[NT] (Zacksenhouse et al., 2007). A similar decomposition was
derived for general point processes from the total variance equa-
tion (Churchland et al., 2011), however the restriction to DSPPs
assures that the meaning of the two sources of the neural vari-
ance is clearly defined (as further detailed in Section Conclusions
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and Discussion), and facilitates explicit analysis of the effect of the
refractory period, as detailed in Section Dead-time Effect.

Considering the modulated rate as the signal, the RM-SNR is
defined as:

SNRT ≡ Var[�T]
E[�T] , (3)

Using Equation (2), RM-SNR can be estimated from the mean
and variance of the binned spike-counts as:

SN̂RNT = Var[NT] − E[NT]
E[NT] = F − 1 (4)

where the hat denotes estimation, and F is the Fano factor, defined
as the ratio between the variance and the mean of the spike-counts
(Dayan and Abbott, 2001). Thus, for the simple DSPP case, the
RM-SNR is the deviation of the Fano-factor from its value for the
homogeneous Poisson process, where F = 1. Positive RM-SNR
reflects rate modulations and characterizes irregular spike trains
(i.e., spike trains whose variance is larger than their mean and
thus larger than the variance of a homogeneous Poisson process
with the same mean). Expressing the SNR is advantageous for fur-
ther analysis of the timescales, as detailed in Section Timescales
Analysis.

Bandwidth effect
The relationship between RM-SNR and the spectrum Sλ̃(ω) of the

instantaneous rate λ̃(t) is analyzed in Appendix A. Equation (A1)
shows that:

SNRT = 1

λ0T

1

2π

∫ ∞

−∞
∣∣GWT (ω)

∣∣2
Sλ̃(ω)dω (5)

where
∣∣GWT (ω)

∣∣ = T
(

sin (ωT/2)
ωT/2

)
is the Fourier transform of the

rectangular window of duration T (Bendat and Peirsol, 2000).
Furthermore, under the assumption that the spectrum of the
instantaneous spike-rate Sλ̃(ω) is band limited in the range
[−ωmax, ωmax], Appendix A derives two asymptotes for RM-SNR
that hold at short and long bin-widths, respectively. For short
bin-widths T, i.e., when ωmax � 2π/T, Equation (A2) indicates
that RM-SNR increases linearly with the bin-width. For long bin-
widths T, i.e., when ωmax � 2π/T, Equation (A3) indicates that
RM-SNR saturates.

Dead-time effect
During absolute refractory period, or dead-time τd, the instanta-
neous firing rate is zero regardless of the modulating signals. The
effect of the dead-time on the estimated RM-SNR is detailed in
Appendix B, and, assuming that the dead-time is short compared
to the dynamics of the instantaneous rate, an exact expression for
SN̂RNT is derived (Equation B4).

To gain more insight into the effect of the dead-time, the
estimated SN̂RNT is approximated (Appendix B, Equation B9) by:

SN̂RNT (τd) ∼= SNRT

[1 + τdλ0]
− τdλ0 (2 + τdλ0)

[1 + τdλ0]2
(6)

The approximation indicates that SN̂RNT estimated from a real-
ization of a dead-time modified DSPP is a scaled and downward
shifted version of SNRT associated with the original, dead-time
free, rate. The scaling reflects the effect of the dead-time on the
integrated rate (Equation B6), and the shift reflects the additional
effect on the variance of the spike-counts (Equation B3).

Simulations
The analysis is demonstrated on simulated realizations of point
processes with known characteristics. Specifically, the instanta-
neous rate was generated as a stationary stochastic process by:
(a) passing a unit variance white Gaussian noise through a 2nd
order Butterworth filter with known cut-off frequency fcut , (b)
scaling the resulting signal to achieve the desired variance of
the instantaneous rate, and (c) adding a constant mean rate λ0.
Finally, simulated spike trains were generated from the resulting
instantaneous rate using the inverse distribution function tech-
nique (Johnson, 1996). Spike trains were generated as realizations
of DSPPs, doubly stochastic Gamma processes (DSGP; Fujiwara
et al., 2009) with constant shape parameter κ, or dead-time
modified DSPPs or DSGPs with fixed dead-time. In summary,
the simulated spike trains were characterized by five parameters:
bandwidth defined by the cut-off frequency fcut of the low-pass
filter, mean (λ0) and variance (Vλ) of the instantaneous rate,
dead-time τd, and the shape parameter for DSGP (κ , κ = 1 for
DSPP).

We note that for homogeneous Gamma processes with κ > 1,
the probability of firing after a spike is reduced, resulting in rel-
ative refractory period, and the variance of the spike-counts is
lower than for the homogeneous Poisson process with the same
mean. In contrast, for homogeneous Gamma processes with κ <

1, the probability of firing after a spike is enhanced, and the
variance of the spike counts is larger than for the homogeneous
Poisson process with the same mean.

Timescales analysis
While SNRT , and hence SN̂RNT , increase with the bin-width, the
update rate decreases (Wu et al., 2006) and the reaction time
increases (Cohen and Newsome, 2009). We quantify the trade-off
between SN̂RNT and update-rate by evaluating their product, i.e.,

the ratio SN̂RNT /T, as a function of the bin-width T, and charac-
terize the timescale of neural encoding as the bin-width at which
this ratio saturates or peaks. This is demonstrated in Figure 2,
which depicts the variations of SN̂RNT /T with the bin-width
for simulated realizations of DSPPs and DSGPs generated from
the same realization of the instantaneous rate. The instantaneous
rate was generated with mean λ0 = 15 s−1, variance Vλ = 48 s−2,
and cut-off frequency fcut = 1.0 Hz. The realizations analyzed in
Figure 2A are dead-time free, while the realizations analyzed in
Figure 2B include dead-time τd = 1 ms.

Timescale analysis of DSPPs. The estimated SN̂RNT /T from both
the dead-time free DSPP (Figure 2A, blue line) and dead-time
modified DSPP (Figure 2B, blue line) closely match the val-
ues computed from the rate (Equations 3 and B4, respectively,
black lines). The curves depict the expected effects of the spec-
tral content and dead-time. At long bin-widths, SN̂RT should
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FIGURE 2 | Timescale analysis of simulated realizations of doubly

stochastic Poisson and Gamma processes (DSPP, DSGP) (A) and

dead-time modified (τd = 1) DSPP and DSGP (B). DSGPs are
simulated with κ = 0.85, κ = 1 (i.e., DSPP), and κ = 1.15. All
simulations were generated from the same instantaneous rate function
generated with mean λ0 = 15 s−1, variance Vλ = 48 s−2, and cutoff

frequency fcut = 1.0 Hz. Estimated SN̂RNT /T (Equation 4) are compared
with the values computed from the rate [using Equation (3) for the
dead-time free DSPP in (A), and Equation (B4) for the dead-time
modified DSPP in (B)]. Analysis is conducted at bin-widths of 30, 40,
50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 175, 200, 250, 300,
500, 750, and 1000 ms.

reach a constant asymptote (Equation A3), so SNRT/T should
indeed decrease with the bin-width. The additive bias in estimat-
ing SN̂RNT from dead-time modified DSPP is constant (Equation
6), independent of the bin-width, so, even when the spike-trains
include a refractory period, the effect on the estimated SN̂RNT /T
would diminish at long bin-widths, as is evident in Figure 2B.
At the other extreme, i.e., when the bin-widths are short enough
for the linear asymptote (Equation A2) to hold, SNRT/T should
be approximately constant, in agreement with the estimated
SN̂RNT /T for DSPP (blue curve, Figure 2A). Hence, the short

bin-widths at which SN̂RNT /T saturates are indicative of the
timescales above which the slower than linear increase in SNR
does not justify the reduction in update rate.

Dead-time introduces a constant bias in estimating SN̂RNT

(Equation 6), which becomes increasingly significant as SNRT

diminishes at short bin-widths. Since the bias is negative, the
estimated SN̂RNT /T becomes smaller as the bin-width becomes
shorter, in agreement with the short bin-width trend of the blue
curve in Figure 2B. The effect of the dead-time at short bin-
widths limits the benefit of reducing the bin-width, and results in
a peak in the SN̂RNT /T curve. The bin-width at which this peak

occurs maximizes the trade-off between SN̂RNT and update rate.
We also note that below this bin-width the distortion due to the
dead-time increases significantly.

Timescale analysis of DSGPs. Applied to doubly stochas-
tic Gamma processes (DSGPs) with scale parameter (κ)
larger/smaller than 1, the estimated SN̂RNT /T under/over

estimates the value computed from the rate, as demonstrated
in Figure 2. In realizations of Gamma processes with κ > 1, the
occurrence of a spike has an inhibitory effect, resulting in rela-
tive refractory period. The estimated SN̂RNT /T curve in such a
case (red line, Figure 2A) or when an absolute refractory period is
also included (red line, Figure 2B) depict a peak similar to that for
dead-time modified DSPP. As noted above (Section Simulations)
realizations of homogeneous Gamma processes with κ > 1 are
characterized by spike-count variance that is smaller than the
mean. The positive estimated SN̂RNT (which implies variance
larger than mean, see Equation 4) reflects the contribution of the
variance of the stochastic rate.

In realizations of DSGPs with κ < 1, the occurrence of a spike
enhances, rather than inhibits, the probability of firing. The esti-
mated SN̂RNT /T curve in such a case (green line, Figure 2A)
increases sharply as the bin-width become shorter without sat-
urating. For the specific parameters selected here, the excitatory
recovery after a spike dominates the inhibitory effect due to the
dead-time, and a similar increase is observed even with dead-time
(Figure 2B).

Timescales from SNRNT /T curves. In summary, the analysis and
simulations indicate that: (i) DSPPs are characterized by decreas-
ing SN̂RNT /T curves that saturate at short bin-widths. In those

cases, the bin-widths at which the SN̂RNT /T curve saturates are
indicative of the timescales above which the slower than linear
increase in SNR does not justify the reduction in update rate.
(ii) dead-time modified DSPP or DSGP with relative refractory
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period (κ > 1) are characterized by SN̂RNT /T curves that peak

at some bin-width. The bin-width at which the SN̂RNT /T peaks

maximizes the trade-off between SN̂RNT and update rate, while
limiting the distortion due to the refractory effect. (iii) DSPGs
with excitatory recovery (κ < 1) are characterized by decreasing
SN̂RNT /T curves that remain convex even at short bin-widths
without saturating. In those cases, the appropriate time-scale
is not evident from the proposed analysis, since the higher
SN̂RNT /T at short bin-widths reflect recovery effects rather than
actual rate modulations. Further analysis is needed to select the
bin-width that optimizes the trade-off between high SN̂RNT /T
and small distortion due to the excitatory recovery effect.

Variance, bandwidth and dead-time effects. The effects of the
variance, bandwidth and dead-time are further evaluated in
Figure 3, based on the approximation derived in Equation 6.
Figure 3A establishes that the approximated SN̂RNT /T (dashed
black line) captures well the main effect of the dead-time. Hence,
the above effects are evaluated by approximating SN̂RNT directly
from the simulated stochastic rate functions. Unless otherwise
specified, the nominal parameters of the stochastic rate functions
are: mean rate λ0 = 15 s−1, variance Vλ = 48 s−2, bandwidth
fcut = 1 Hz, and dead-time τd = 0.7 ms.

Figure 3B demonstrates that the major effect of increasing
the variance (from Vλ = 24 s−2 to Vλ = 48 s−2 and Vλ = 72 s−2)
is to increase the SNR. This is also accompanied by a shift in
the peak location toward shorter bin-widths, due to the inter-
action between SNRT and dead-time (Equation 6). Figure 3C

demonstrates that as the cutoff frequency fcut increases from
0.5 Hz to 1.0 Hz, and 1.5 Hz, SN̂RNT /T peaks at shorter bin-
widths, capturing well the reduction in the relevant timescales.
Figure 3D demonstrates that as the dead-time increases to 0.7
and 1.4 ms, SN̂RNT /T peaks at longer bin-widths. This trend
reflects the increasing effect of the dead-time on the magnitude
of the negative bias in Equation (6) (see note following Equation
B9). Thus, for dead-time modified DSPP, the bin-width at which
SN̂RNT /T peaks reflects the conflicting effects of the bandwidth
of the encoded signals and the refractory period.

EXPERIMENTAL METHODS
The analysis tools developed above to estimate the RM-SNR of
spike-trains and evaluate their timescales are applied to spike-
trains recorded form cortical units in two experiments with
Monkeys: (a) BMI experiments and (b) Locomotion experiments.

Ethics statement
All experiments were conducted with approved protocols
from the Duke University Institutional Animal Care and Use
Committee and were in accordance with the NRC/NIH guidelines
for the Care and Use of Laboratory Animals.

BMI experiments
As detailed in Carmena et al. (2003), the BMI experiments were
conducted with macaque monkeys and included three control
modes: (i) pole control, (ii) brain control with hand move-
ments (BCWH), and (iii) brain control without hand move-
ments (BCWOH). During pole control the monkey controlled the

FIGURE 3 | Approximated SN̂RNT
/T for dead-time modified DSPP

(Equation 6) in comparison with the SN̂RNT
/T computed from the

rate (Equation B4) or estimated from the spike-counts (A). The
approximation is used to demonstrate the effects of the variance

(B) bandwidth (C) and dead-time (D). Unless otherwise specified, the
nominal parameters of the stochastic rate functions are: mean rate
λ0 = 15 s−1, variance Vλ = 48 s−2, bandwidth fcut = 1 Hz, and dead-time
τd = 0.7 ms.
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cursor on the screen using a hand held pole. Data from pole con-
trol was used to train a linear filter to predict the velocity from the
neural activity. During brain control the cursor was controlled
to follow the velocity predicted from the recorded neural activ-
ity using the previously trained linear filter. Initially, the monkey
continued to move its hand during brain control (BCWH), but
starting at the 7th session, the monkey stopped moving the hand
(BCWOH). Spike trains were recorded from single and multi-
units (see Section Refractory Effects for more details) in the
primary motor area (M1), the pre-motor area (PMd), the supple-
mentary motor area (SMA), and somato-sensory area (S1). Here
we focus on significantly modulated units (n = 163), i.e., those
units for which the null hypothesis that their ISI distribution was
generated from a homogeneous Poisson process can be rejected at
α = 0.05 significance level (Zacksenhouse et al., 2007).

Locomotion experiments
During the locomotion experiments, rhesus macaques either
stood or walked bipedally on a treadmill in three different speeds,
12.5, 25, and 50 cm/s, as detailed in Fitzsimmons et al. (2009).
Spike trains were recorded from single and multi-units (66 and
34%, respectively) in regions associated with the representation
of the lower limbs in the primary motor (M1) and somatosensory
(S1) cortices.

RESULTS
SNR DURING BMI EXPERIMENTS
Figures 4A,C depict the mean SN̂RNT and mean normalized

SN̂RNT estimated from spike-trains of significantly modulated
cortical units (n = 163) recorded during a BMI experiment, as
a function of the bin-width T. Assuming ergodicity, Equation
(4) was used to estimate the SN̂RNT of each unit from its
spike-counts statistics in non-overlapping windows of 2 min.
The mean SN̂RNT in Figure 4A was derived by first computing
ensemble mean (over n = 163 units) at each window, and then
computing the mean and standard deviation over 10 consecu-
tive windows in each of the experimental modes (pole control
and brain control with and without hand movements). Thus,
error bars in Figure 4A depict the standard deviations of the
ensemble-means over the 10 windows of time. Variations across
the ensemble of units are described in Figure 4C, which depicts
the ensemble mean and standard deviations of the normalized
SN̂RNT . The normalized SN̂RNT for each unit was computed
by first averaging across all windows, and then normalizing by
a scaling factor. The scaling factor was selected so the nor-
malized SN̂RNT at bin-width of 300 ms is the same for all
units and equals the original ensemble mean. Thus, error bars
in Figure 4C depict the standard deviations of the normalized
SN̂RNT across the ensemble of significantly modulated units

FIGURE 4 | Mean estimated SN̂RNT
(A) and normalized SN̂RNT

(C),

and the corresponding SN̂RNT
/T (B,D) of neural activity recorded

from significantly modulated units (n = 163) during BMI experiments.

BMI experiments included pole control, brain control with hand
movements (WH), and without hand movements (WOH). SN̂RNT was
computed from the spike-train of each unit in non-overlapping windows of
2-min. (A,B) are based on first averaging over the units at each window,
and then computing the mean and standard deviation over 10 consecutive
windows in each of the experimental mode. Hence, error-bars in

(A,B) mark the standard deviations across 10 consecutive windows. (C,D)

are based on first averaging the SN̂RNT of each unit across all windows,

and then scaling it so the normalized SN̂RNT at bin-width of 300 ms is the
same for all units and equal the original ensemble mean. Ensemble mean
and standard deviation of the normalized SN̂RNT were computed across
units. Hence, error bars in (C,D) mark the standard deviations across the
ensemble of units (resulting in zero standard deviation at 300 ms, which
was used for normalizations). Dashed lines in (A) depict the linear fits for
short bin-widths, over the range 50–150 ms.
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(resulting in zero standard deviation at 300 ms, which was used
for normalizations).

Figures 4A,C demonstrate that the mean estimated SN̂RNT

increases approximately linearly at short bin-widths and
approaches a constant level at long bin-widths, in agreement with
the expected asymptotes (Equations A2 and A3). Another strik-
ing feature is that at each bin-width, the mean SN̂RNT in brain
control is always higher than that in pole control; and is high-
est in brain control without hand movements. This extends our
previous results (Zacksenhouse et al., 2007) for T = 100 ms—the
bin-width used for operating the BMI.

TIMESCALE DURING BMI EXPERIMENTS
Figures 4B,D demonstrate that the mean SN̂RNT /T and mean

normalized SN̂RNT /T increase at short bin-widths, reach a wide
peak around 100 ms, and decrease at long bin-widths. This pat-
tern agrees well with the analysis and approximation of the
SN̂RNT /T of dead-time modified DSPP, and with estimations
derived from the simulated spike-trains of dead-time modi-
fied DSPPs (or DSGPs with κ < 1, with or without dead-time)
depicted in Figure 2.

Focusing on individual units from PMd and M1, the SN̂RNT /T
curves shown in Figure 5 demonstrate two typical patterns: (i)
curves with a wide peak around 100 ms (Figures 5C,D), simi-
lar to the average curves in Figures 4B,D and to the curves for
dead-time modified DSPP or DSGP with κ < 1, in Figure 2, or
(ii) decreasing curves (Figures 5A,B), similar to the curves for
DSPP or DSGP with κ > 1 in Figure 2. The second type could
be further divided depending on whether the curve saturates at
short bin-widths as for DSPPs, or remains convex as for DSGPs
with κ > 1.

Units were classified as exhibiting a wide peak around 100 ms
if the peak SN̂RNT /T was in the range of 50–150 ms, and as

exhibiting decreasing SN̂RNT /T if the peak was below 50 ms.

Note that SN̂RNT /T of few units peaked at bin-widths longer
than 150 ms, and were not included in either group. To assure
proper peak-detection, we restricted this classification and fur-
ther analysis of the timescales to the significantly modulated units
whose maximum SN̂RNT /T during pole control was larger than
0.5 s−1 (n = 109). Of those units, 59.7, 64.2, and 61.5% exhib-
ited a wide peak around 100 ms during pole control, BCWH
and BCWOH, respectively, while 25.7, 21.1, and 22.0% exhib-
ited decreasing curves, respectively. The second group was further
divided depending on whether the decreasing curve was convex at
short bin-widths, i.e., whether u2 < (u1 + u3) /2 where u1, u2, u3

are the mean SN̂RNT /T in the bin-width intervals 30–50, 60–80,
and 90–100 ms, respectively. About 15% of the curves were con-
vex at short bin-widths (17.4, 11.0, and 15.6%, in pole control
BCWH and BCWOH, respectively). In those cases, the time-scale
analysis is not conclusive, and is either not appropriate since the
recovery function is dominated by excitatory effects (as clarified
in Section Timescales Analysis) or should be extended to shorter
bin-widths.

The SN̂RNT /T estimated form spike-trains recorded during
BMI experiments (Figures 4B,D, 5) vary with the bin-width in a
similar way to the SN̂RNT /T of simulated spike-trains (Figure 2).
Decreasing curves, which saturate at short bin-widths (Figure 5B,
pole and BCWH) agree well with the assumption that the spike-
trains are realizations of DSPP while decreasing curves that
remain convex at short bin-widths (Figure 5A, pole and BCWH)
agree well with the assumption that the spike-trains are real-
izations of DSGP with κ < 1. Curves that peak (Figures 5C,D)
agree well with the assumption that the spike trains are realiza-
tions of dead-time modified DSPP or DSGP with κ > 1 (with
or without dead-time), which are characterized by relative, rather
than absolute, refractory period.

FIGURE 5 | Estimated SN̂RNT
/T as a function of the bin-width for four representative cortical units in PMd (A,C) and M1 (B,D), during pole control,

and brain control with and without hand movements, WH and WOH, respectively.
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Refractory effects
To assess the potential contribution of refractory effects, we
estimated the refractory interval from the ISI distribution. The
minimum ISI in all units was 0.675 ms, and most units (95%
of the significantly modulated units) had minimum ISI of less
than 1 ms. Since a single ISI is prone to measurement errors, we
estimated the dead-time as the interval which was exceeded by
99% of the ISIs in at least one mode of operation. Of the 109
units described above, 50% had dead-time greater than 1.6 ms,
and thus could be considered single-units (Hatsopoulos et al.,
2004). The percent of units having decreasing curves was sim-
ilar, independent of whether the dead-time was short or long
(below or above 1.6 ms); but the percent of units having time-
scales longer than 150 ms was larger for units with long dead-time
(22.4% on average, across all modes, compared with 8% for
units with short refractory interval). Furthermore, the bin-widths
at which SN̂RNT /T peaked had a moderate positive correlation
with the product of the dead-time and the mean rate (coeffi-
cient of correlation of 0.4, 0.42, 0.48 in pole control BCWH and
BCWOH, respectively). Both the positive correlation and its mod-
erate value are in agreement with Equation (6), which indicates
that this product reduces the SN̂RNT (and hence shifts the peak of

the SN̂RNT /T toward longer bin-widths, as clarified in Section

Timescales Analysis), but that SN̂RNT is also affected by other
variables (i.e., SNRT).

BMI AND TRAINING EFFECTS
Figure 5 indicates that the bin-width at which the SN̂RNT /T
peaks remains approximately the same even after switching to
brain control. Specifically, the SN̂RNT /T curves in pole control,
BCWH and BCWOH peak at: 30, 40, and 30 ms for the PMd unit
in panel (A), 130, 150, and 140 ms for the PMd unit in panel (B);
30, 40, and 30 ms, for the M1 unit in panel (C); and 150, 150,
and 110 ms for the M1 unit in panel (D). The distribution of

the bin-widths at which the estimated SN̂RNT /T peak and how
they change when switching to brain control is summarized in
Figure 6. The bin-width at which the estimated SN̂RNT /T peaks
during pole control is similar to (within 50 ms of) the bin-width
at which it peaks during brain control for most of the units (80.7
and 67.9% for BCWH and BCWOH, respectively).

The spectral content of the spike-counts (in 100 ms bins) of
the four units whose timescales were analyzed in Figure 5, are
depicted in Figure 7. Specifically, the power spectrum density
(PSD) was computed from the spike-counts in bins of 100 ms
after subtracting the mean and expressed in dB. The main effect
of the transition to brain control is the increase in power, which is
higher in brain control than in pole control and is highest in brain
control without hand movements. This is consistent with the
higher RM-SNR in brain control compared to pole control. The
overall bandwidth of the activity of each unit remains relatively
similar across the different BMI control modes [even when, as in
panel (D), the PSD of the activity during pole control portrays a
small peak which is surpassed by the higher overall power during
brain control]—consistent with the relatively similar shapes and
peak locations of the different SN̂RNT /T curves for each unit in
Figure 5.

Figure 8 demonstrates that the shape of the SN̂RNT /T curves
is also invariant to training. At later sessions, as training pro-
gresses, the SNR at each control mode and bin-width decreases (as
detailed in Zacksenhouse et al., 2007) for bin-width of 100 ms).
However, the effect of bin-width is similar and the SN̂RNT /T
curves peak at a similar bin-width in all sessions.

TIMESCALES DURING WALKING
Figures 9, 10 depict the estimated SN̂RNT /T and the spectrum of
representative cortical units in the motor leg area while the mon-
key was standing (black) or walking at increasing speeds (12.5,
25, and 50 cm/s). The SN̂RNT /T curves in Figures 9A,B peak at

FIGURE 6 | Distribution of timescales during BMI experiments.

Comparison of bin-widths at which SN̂RNT /T curves peak during pole control
and during either brain control with hand movements, (WH, A) or brain

control without hand movements (WOH, B). Only significantly modulated
units whose peak SN̂RNT /T during pole control was larger than 0.5 s−1 were
included (n = 109).
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FIGURE 7 | Power spectrum density (PSD) of the neural activity analyzed in Figure 4. The spectrums were computed from spike-counts in 100 ms bins,
with frequency resolution of 0.039 Hz.

FIGURE 8 | Mean estimated SN̂RNT
/T across the population of

significantly modulated cortical units recorded in three different BMI

sessions during pole control (PC), and brain control with and without

hand movements (BCWH and BCWOH, repectively) as a function of

the bin-width. The three sessions include: an early session (3rd day); a
mid session (7th day), and a late session (10th day). The 7th day is the first
one in which BCWOH was performed, and in subsequent sessions BCWH
was not perfomrned.

progressively shorter bin-widths as the speed of walking increases.
During standing, the peak SN̂RNT /T is shallower and appears at
longer bin-widths than during walking. Figures 10A,B indicate
that the spectrums of the spike-counts (in 100 ms bins) of these
spike-trains are dominated by single spectral lines that appear

at higher frequencies as the speed of walking increases. During
standing, the dominating spectral line appears at very low fre-
quencies and is smaller compared to the spectral lines during
walking. Thus, this simple case, in which the spectrums are dom-
inated by single spectral lines, helps to demonstrate the expected
effect of changes in the spectral content of the modulating sig-
nals on the timescale. However, the timescale emerges from the
interaction between the spectral content and the refractory prop-
erties of the individual unit. Hence, even though the dominating
spectral lines appear in the same frequencies (Figures 10A,B) the
timescales are unit specific (Figures 9A,B).

In contrast, the neural activity from other units in the leg area
are characterized by SN̂RNT /T curves that either decrease with-
out peaking (Figure 9D) or depict a peak that does not shift as
expected with the speed of walking (Figure 9C). In both cases
the neural activity during standing is characterized by higher
SN̂RNT /T than during walking. The corresponding spectrums
(Figures 10C,D) indicate that the power of the spike-counts
recorded from these two units is indeed larger during standing
than during walking. The spectral lines associated with the speed
of walking (at the frequencies in which they appear in the spec-
trums depicted in panels A and B) are very small. Finally, for
both units the neural activity recorded during running has more
power in the low-frequency range than during walking. This may
explain the unexpected shift in the peak of the SN̂RT/T toward
longer rather than shorter bin-widths when the Monkey is run-
ning compared to walking (Figure 9C). The convex shape of the
SN̂RNT /T curve in Figure 9D even at short bin-widths suggests
that the activity of this unit is dominated by excitatory recovery
effects, and the timescale is not conclusive. Nevertheless, since the
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FIGURE 9 | Estimated SN̂RNT
/T as a function of the bin-width for four representative cortical units (A–D) in the motor leg area while the monkey is

standing (black) or walking at increasing speeds (12.5, 25, and 50 cm/s).

FIGURE 10 | Power Spectrum Density (PSD) of the neural activity analyzed in Figure 9. PSDs were computed from the binned neural activity with 100 ms
bins and frequency resolution of 0.039 Hz.

SN̂RNT /T curves are similar during walking and running (inde-
pendent of the speed) but much higher during standing, it can
be concluded that signals associated with the frequency of walk-
ing have little effect on the spike-rate of these two units, and that
their activity is more strongly modulated during standing.

Additional analysis (not shown) indicates that the mean
SN̂RNT /T and mean normalized SN̂RNT /T across significantly
modulated units with peak above 0.5 s−1 (n = 48) depict a wide
peak around 50–110 ms, in most cases. The only exception is the
normalized SN̂RNT /T during standing, which is highest at the
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shortest bin-width analyzed (25 ms). Around the peak, the mag-
nitude of the SN̂RNT /T are similar independent of the speed so

the curves overlap each other. At longer bin-widths SN̂RNT /T
during slow walking is higher than during fast walking or run-
ning, and is highest during standing.

CONCLUSIONS AND DISCUSSION
SNR ESTIMATION
We suggest a computational framework for estimating the SNR in
spike trains without relying on any assumption about the encoded
signals. The suggested approach captures all the encoded sig-
nals, including hidden and internal signals, and not only those
controlled experimentally. The proposed approach has two lim-
itations: (i) it accounts also for possible task irrelevant rate
modulations, and (ii) the estimation method is derived under the
assumption that the spike-trains are realization of DSPP. The first
limitation is a necessary side-effect of capturing the hidden or
internal signals. The second limitation is partially relaxed by con-
sidering dead-time modified DSPP and doubly stochastic Gamma
processes.

The dependency of RM-SNR on bin-width was first analyzed
for DSPP and two asymptotes were derived for bin-widths that are
either very short or very long compared with the inverse of the
bandwidth. In particular, it was shown that RM-SNR increases
linearity at short bin-widths and reaches saturation at long bin-
widths. Extending the analysis to dead-time modified DSPP, it was
shown that the estimated RM-SNR is reduced by both scaling and
shifting factors that do not depend on the bin-width. The bias
effect becomes more significant as the RM-SNR becomes smaller
at shorter bin-widths. Using simulations of doubly-stochastic
Gamma processes, we also evaluate other recovery effects in which
the occurrence of a spike temporarily and partially inhibits (as in
relative refractory period) or enhances the probability of firing.

INHOMOGENEOUS vs. DOUBLY STOCHASTIC POINT PROCESSES
Doubly stochastic point processes are inhomogeneous point pro-
cesses with stochastic rate function. The alternative model for
describing rate modulations is the inhomogeneous point pro-
cess with a deterministic rate function (Cox and Isham, 1980;
Kass and Ventura, 2001; Nawrot et al., 2008). The determin-
istic model is based on the assumption that the rate function
depends solely on the experimentally controlled conditions, and
thus that it can be estimated from the post-stimulus time his-
togram. This assumption might be valid for peripheral neurons
that are affected almost exclusively by the experimentally con-
trolled stimulus, but less for cortical neurons which may encode
additional hidden signals, not directly under experimental con-
trol. These signals may vary from trial-to-trial and thus can only
be modeled as stochastic. During movements, motor planning
(Churchland et al., 2006a,b) and prediction errors (Wolpert and
Ghahramani, 2000; Shadmehr and Krakauer, 2008), for example,
may vary from trial-to-trial, while in decision making the accu-
mulated evidence (while potentially sharing a common trend),
may vary from trial-to-trial (Churchland et al., 2011). In these
cases, doubly stochastic point processes are essential for captur-
ing the variance of all the signals that might be encoded in the
neural activity.

VARIANCE DECOMPOSITION
Under the assumption that spike-trains are realizations of DSPPs,
the variance of the spike-counts is decomposed into two terms
associated with the signal and noise. A similar decomposition was
developed in Churchland et al. (2011) where the resulting two
terms were described as the variance of the underlying “inten-
sity command” and the variance of the neural activity given
that command. That decomposition was applied to uncover how
trial-to-trial neural variability changes during decision making
and reveal the underlying nature of neural processing. While the
application and some of the analysis details differ (as discussed
below), we share the most important hypotheses: (i) the neu-
ral activity may represent hidden signals, i.e., signals that are
not directly controlled and hence may vary from trial to trial,
(ii) decomposition of the variance of neural activity facilitates
estimating the variance of the underlying rate, including modula-
tions by those hidden signals, and (iii) variations in the variance
of the underlying rate with time (or task) may reveal important
information about the neural processing.

The decomposition developed in Churchland et al. (2011) is
based on the total variance equation, which holds for any dou-
bly stochastic point process. The total variance is decomposed
into the variance of the conditional expectation (the variance of
the expected spike-count given the rate parameter and the point
process variance (the expectation of the conditional variance).
Under the restriction to DSPP made here, the first term equals
the variance of the rate parameter, which is assumed to encode the
modulating signals. Otherwise, the relationship of the first term
to the variance of the rate parameter is more complex. In par-
ticular, for dead-time modified DSPPs and for DSGPs, the first
term is proportional to the variance of the rate-parameter but
not equal to it (see Equations B1 and B6 for the dead-time mod-
ified DSPP). Hence, the restriction to DSPP made here assures
that the meaning of the first term is clearly defined. Furthermore,
it enables explicit analysis of the effect of the refractory period
on both terms. Another major difference is that the analysis in
Churchland et al. (2011) was applied to estimate the synchronized
trial-to-trial variance in the underlying rate-process (intensity
command) at each time along the trial. In contrast, we applied the
analysis to estimate asynchronous variance in the underlying rate
process.

TIMESCALES OF NEURAL ACTIVITY
As bin-width increases, SNR increases but update-rate is com-
promised (Wu et al., 2006). This trade-off is captured by the
ratio of SNR to bin-width, SNRT/T. Thus, the bin-width at
which SNRT/T peaks optimizes the trade-off between SNR and
update rate and is suggested as a criterion for characterizing the
timescales of neural rate-coding.

Our analysis suggests that the estimated SN̂RNT /T is affected
by both the spectral content of the encoded signals and the
recovery properties of the unit. The effects of the bandwidth
and absolute refractory period were analyzed theoretically and
demonstrated via simulations of DSPPs and dead-time modi-
fied DSPPs. Their conflicting effects give rise to a peak in the
SN̂RNT /T curve, which characterizes the timescale of neural
rate-coding.
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DEVIATIONS FROM THE DSPP ASSUMPTION
The DSPP assumption is violated when the firing rate depends on
the history of the spike train. In these cases, the estimated SN̂RNT

may differ from the actual SNRT , due to history-dependent mod-
ulations of the instantaneous rate. We restrict the analysis to the
simple, yet common case, of renewal point processes, in which
the dependency on the history is captured by the time elapsed
since the last spike. The effect of absolute refractory period was
analyzed theoretically, and was shown to result in a peak in
the SN̂RNT /T curve. Thus, the dead-time limits the benefit of

reducing the bin-width, since the estimated SN̂RNT becomes
increasingly distorted. The bin-width at which the peak occurs
maximizes the trade-off between SN̂RNT and update rate, and
characterizes the timescale of neural rate-coding.

Using simulations we also demonstrated that relative refrac-
tory periods have similar effect, resulting in SN̂RNT /T curves
that are also characterized by a peak. So the timescales are sim-
ilarly characterized by the bin-widths at which the SN̂RNT /T
curves peak. In contrast, when the recovery period is charac-
terized by enhanced, rather than inhibited, probability of firing,
the SN̂RNT /T over-estimates (rather than under-estimates) the

SNRT/T. Thus, as the bin-width decreases, SN̂RNT /T increases
without peaking or saturating. In those cases, the appropriate
time-scale is not conclusive from the proposed analysis, since
the higher SN̂RNT /T at short bin-widths reflect recovery effects
rather than actual signal modulations. Further analysis is needed
to select the bin-width that optimizes the trade-off between high
SN̂RNT /T and small distortion due to the excitatory recovery
effect.

TIMESCALES DURING BMI EXPERIMENTS
Estimating RM-SNR from neural activity recorded during BMI
experiments, we observe that while its magnitude depends on the
BMI mode and on training, the timescale revealed by the peak of
the SN̂RNT /T curve remains the same.

The observation that RM-SNR increases when switching to
brain control indicates that the variance of the rate increases—
and thus that the variance of some of the encoded signals
increases. The observation that the timescales remain invariant
suggests that those signals are task-relevant, and we are currently
investigating the hypothesis that they include state estimation
and control signals, within the framework of optimal control.
However, their exact nature and decoding remains an open issue.

Most of the analyzed SN̂RNT /T curves (62% on average across
the different control modes, n = 109) were characterized by a
wide peak at 50–150 ms. For this class of curves (and for the
15% of curves that peak at longer bin-widths), decreasing the bin-
width below the peak may compromise decoding, unless the effect
of the refractory period is accounted for. Indeed BMI applica-
tions based on spike-counts used bin-widths in the range between
30 and 100 ms (Wessberg et al., 2000; Serruya et al., 2002; Kim
et al., 2008; Velliste et al., 2008), consistent with the range of
timescales revealed here. In particular, the BMI experiments ana-
lyzed here were conducted with 100 ms bins (Carmena et al.,
2003) within the wide peak of the estimated SN̂RNT /T curve
depicted in Figure 4B. Our analysis suggests that this selection
provides a good trade-off between the SNR and update rate.

Curves whose peak was below 50 ms were divided into those
that were convex or concave at short bin-widths (15 and 8%
on average, respectively). Concave shape at short bin-widths is
expected from SN̂RNT /T curves derived from DSPPs, where this
ratio should saturate at short bin-widths as detailed in Section
Timescales Analysis (and Figure 2A). In this case, the range of
bin-widths at which the curve saturates is indicative of the rel-
evant timescales for neural decoding. At longer bin-widths, the
slower than linear increase in SNR does not justify the reduction
in update rate. Convex SN̂RNT /T are expected when the unit has
excitatory recovery period (in which the probability of firing is
enhanced). As detailed above, the timescale analysis in this case is
not conclusive.

Since the relevant timescales vary across individual units,
it might be beneficial to apply different bin-widths when bin-
ning different units. This may explain the potential advantage
of multi-resolution binning (Kim et al., 2005). Recent decod-
ing methods are based on point process filters that operate at
5 ms bins (Shanechi et al., 2013a,b). The BMI tested in Shanechi
et al. (2013a) was based on multi-unit recording, where the dead-
time effect might be negligible, and hence the timescales could
be short. Furthermore, point process filters are based on estimat-
ing the conditional probability of the spike-counts given the rate,
which is computationally more efficient when the bin is small
(and the number of spikes that may occur with significant prob-
ability is limited). Hence, the choice of small bins may reflect
computational constraints. The analysis conducted here suggests
that unless recovery effects are negligible or accounted for, very
short bin-widths may compromise the trade-off between SNR
and update-rate.

TIMESCALES DURING LOCOMOTION EXPERIMENTS
The overall shape of SN̂RNT /T curves estimated from spike trains
recorded during walking is similar to those derived from the spike
trains recorded during the BMI experiments. However, the peak
location in the locomotion experiments varied with the task, at
least for some units, and shifted to lower bin-widths when the
speed of walking increased. This is in agreement with the expected
change in the bandwidth of encoded signals associated with the
experimentally controlled speed of walking. Indeed, units whose
timescales vary in this way are characterized by PSDs dominated
by a single peak at the frequency of walking. Thus, the locomotion
test-case demonstrates the expected effect of changes in the spec-
tral content of the modulating signals on the timescales. However,
timescales depend not only on the spectral content but also on the
refractory properties of the units. So even if the spectral content
is similar the timescales are unit-specific.

In summary, we developed a method for assessing the SNR and
timescales of neuronal activity independent of the encoded sig-
nals and observe that many units depict well-defined timescales
of the order of tens to hundreds msec. The timescale emerges
from the interaction of the recovery properties of the unit and
the spectral content of the modulating signals. In particular,
the variations of the estimated SN̂RNT /T at short bin-widths
is related to the recovery properties of the unit. During a
BMI experiment, the average timescale across the population
agrees well with the experimentally selected bin-width, though
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individual units depict different timescales. Furthermore, while
SNR increases after switching to brain control and decreases
with training, timescales remain similar. During locomotion,
the analysis identified units whose timescales varied consistently
with the experimentally controlled speed of walking, though
the specific timescale reflected also the recovery properties of
the unit. Hence, the proposed method provides a hypothe-
sis free tool for investigating possible contributions of hidden
signals, not under experimental control, to neural modula-
tions and the effect of task conditions on their magnitude and
timescales.
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APPENDIX A: BANDWIDTH EFFECT
The binning process is equivalent to passing the instantaneous
spike-rate through a finite time integrator followed by down-
sampling and spike-counting (see Bair et al., 1994 for a similar
formalization of the recording of spike-trains with finite time res-
olution). Specifically, the integrated spike-rate �T(t) = λ0T +
�̃T(t), where �̃T(t) = ∫ t+T/2

t−T/2 λ̃(σ )dσ , is obtained by convolving
the time-dependent component of the instantaneous spike-rate
λ̃(σ ) with a rectangular window of duration T: �̃T(t) = λ̃(t) ⊗
WT(t) [⊗ denotes convolution, and WT(t) is a rectangle signal
of duration T (Bair et al., 1994)]. The effect of down-sampling
will be considered later. For now we note that the spectrum of
�̃T(t), denoted by S�̃(ω), is related to the spectrum Sλ̃(ω) of λ̃(t)

by: S�̃(ω) = ∣∣GWT (ω)
∣∣2

Sλ̃(ω), where
∣∣GWT (ω)

∣∣ = T
(

sin (ωT/2)
ωT/2

)
is the Fourier transform of the rectangular window (Bendat and
Peirsol, 2000). The variance of �T(t) can be computed from
the spectrum S�̃(ω) as: Var[�T(t)] = 1

2π

∫ ∞
−∞ S�̃(ω)dω, while

its mean is E[�T(t)] = E[NT(t)] = λ0T. Using Equation (3), the
SNR of the binned spike-counts is given by:

SNRT = 1

λ0T

1

2π

∫ ∞

−∞
∣∣GWT (ω)

∣∣2
Sλ̃(ω)dω (A1)

Assuming that the spectrum of the instantaneous spike-rate
Sλ̃(ω) is band limited in the range [−ωmax, ωmax], the SNR
reaches two asymptotes for short and long bin-widths. For
short bin-widths T, i.e., when ωmax � 2π/T, the transfer
function of the rectangular window

∣∣GWT (ω)
∣∣ in the range

[−ωmax, ωmax] can be approximated by
∣∣GWT (0)

∣∣ = T, so, from
Equation (A1):

SNRT
∼= 1

λ0T

T2

2π

∫ ωmax

−ωmax

Sλ̃(ω)dω = Pλ̃

λ0
T, (A2)

where Pλ̃ = 1
2π

∫ ωmax
−ωmax

Sλ̃(ω)dω is the power of the time-
dependent component of the instantaneous rate. Hence, at short
bin-widths, the SNR of spike-counts generated from DSPP with
band-limited instantaneous rate should increase linearly with the
bin-width T.

For long bin-widths T, i.e., ωmax � 2π/T, the Fourier trans-
form of the rectangular window is concentrated around zero,
so only low frequencies pass the averaging process and affect
the average rate. Denoting by S0 the spectrum of the instanta-
neous rate at low frequencies, Equation (A1) implies that at long
bin-widths the SNR saturates at:

SNRT →
T→∞

1

λ0T

S0

2π

∫ ∞

−∞
∣∣GWT (ω)

∣∣2
dω = S0T

λ0T
= S0

λ0
. (A3)

Binning is usually performed in non-overlapping windows, so
the binned spike-counts are related to the samples of the inte-
grated spike-rate taken at sampling interval T. At short bin-
widths, the Nyquist frequency ωNy ≡ ωsampling/2 ≡ π/T satisfies
the Nyquist criterion ωNy > ωmax. Hence, there is no aliasing,
and Equation (A2) holds, implying that the SNR of binned spike
counts should increase linearly with the bin-width. At long bin-
widths, the Nyquist criterion is not satisfied, and the side bands

of the spectrum of the rectangular window
∣∣GWT (ω)

∣∣2
fold back

into the main lobe. Nevertheless, as long as the spectrum is
constant over most of the side-lobes, the total power in the
main lobe (including all the folded back side-lobes) is the same
as the integral computed in Equation (A3) (Bair et al., 1994).
Hence the SNR of binned spike counts should saturates at long
bin-widths.

APPENDIX B: SNR OF DEAD-TIME MODIFIED DSPP
Assuming the dead-time is short compared to the dynam-
ics of the instantaneous rate, the statistics of the spike-counts
depend on the dead-time modified integrated rate: �̄T =∫ t+T/2

t−T/2
λ(σ )

1 + τdλ(σ ) dσ , and are given by [see Equations 3 and 9 in
Vannucci and Teich (1981)]:

E[NT] = E
[
�̄T

]
(B1)

E[N2
T] = E

[(
�̄T

)2
]

+ E

[∫ t+T/2

t−T/2

λ(σ )

[1 + τdλ(σ )]3
dσ

]
(B2)

So:

Var[NT] = Var[�̄T] + E

[∫ t+T/2

t−T/2

λ(σ )

[1 + τdλ(σ )]3
dσ

]
(B3)

Substituting Equations (B1) and (B3) in Equation (4), the esti-
mated SNR from a dead-time modified DSPP is:

SN̂RNT (τd) =
Var

[
�̄T

] + E
[∫ t+T/2

t−T/2
λ(σ )

[1+τdλ(σ )]3 dσ
]

− E
[
�̄T

]
E

[
�̄T

]
(B4)

The SNR associated with the dead-time modified integrated rate,
SN̄RT , can be defined in a similar way to the definition of SNRT

for the original integrated rate (Equation 3):

SN̄RT ≡ Var
[
�̄T

]
E

[
�̄T

] (B5)

For τdλ̃(σ ) � 1, the integral defining �̄T can be approximated

by: �̄T
∼= 1

1+τdλ0

∫ t+T/2
t−T/2 λ(σ )dσ = �T

1 + τdλ0
, so its statistics can be

approximated by:

E[�̄T] ∼= E [�T]

1 + τdλ0
(B6)

Var[�̄T] ∼= Var [�T]

[1 + τdλ0]2
(B7)

Hence, the SN̄RT can be related to SNRT by:

SN̄RT(τd) ∼= SNRT

[1 + τdλ0]
(B8)

Using a similar approximation, the second term in Equations
(B2–B4) can be approximated as:
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E

[∫ t+T/2

t−T/2

λ(σ )

[1 + τdλ(σ )]3
dσ

]
∼= E [�T]

[1 + τdλ0]3
(B9)

Substituting these approximations in Equation (B4) results in an
approximated relationship between the estimated SNR from a
dead-time modified DSPP and the SNR of a dead-time free DSPP
having the same instantaneous rate:

SN̂RNT (τd) ∼= S	NRT − τdλ0 (2 + τdλ0)

[1 + τdλ0]2
∼= SNRT

[1 + τdλ0]

−τdλ0 (2 + τdλ0)[
1 + τd0

]2
(B10)

Note that the second term increases with the dead-time both
absolutely and as a fraction of the first term.
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