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Abstract

Two important issues for conservation are the range expansion of species as a result of climate change and the invasion of
exotic species. Being able to predict the rate at which species spread is key for successful management. In deterministic
models, the invasion speed of a polymorphic population can be faster than that of any of the component phenotypes, and
these ‘‘anomalous’’ invasion speeds persist even when the mutation rate between phenotypes is vanishingly small. Here we
investigate whether the same phenomenon is observed in a model with demographic stochasticity. The model that we use
is discrete in time and space and we carry out numerical simulations to determine the invasion speed of a population that
has two morphs which differ in their dispersal abilities. We find that anomalous speeds are observed in the stochastic
model, but only when the carrying capacity of the population is large or the mutation rate between morphs is high enough.
These results suggest that only species with large population sizes, such as many insect species, may be able to invade
faster if they are polymorphic than if there is only a single morph present in the population.
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Introduction

The range expansion of species either as a result of climate

change or from the introduction of exotic species has important

consequences for conservation management. There is increasing

evidence that species are shifting their distributions as a result of

climate change [1–4] but predicting whether these species can

keep up with the rate of change or whether and by how much they

lag behind is a challenge. The introduction of exotic species that

then spread [5] and especially those that become pests [6] can

have important consequences for biodiversity [7]. Being able to

predict the rate at which they spread is key for minimising the

impact these species have on ecosystems.

The rate of spread of species invasions has long been

investigated using simple deterministic models [8,9]. Since these

early models more complex techniques have been developed and

used to model the spread of species. These include new analytical

methods such as integrodifference equations, and more computa-

tional methods such as individual-based models (IBMs) which

often incorporate a greater number of parameters and include

stochasticity (see [10,11] for reviews of these developments).

Deterministic models have the advantage that they are elegant and

give simple predictions. However, deterministic models do not

take account of the discrete nature of individuals and the

unpredictable nature of demographic events, and stochastic

models are expected to give more realistic results that are likely

to be more useful when making decisions for conservation

management.

Simple, deterministic models predict that a polymorphic species

can invade at an ‘anomalous’ speed, i.e. faster than a population

containing any of the constituent phenotypes on its own [12,13].

In an earlier paper, we found anomalous speeds can occur for a

simple dimorphic population with mutation at birth, diffusive

motion, and Lotka-Volterra competitive interactions, when there

are differences in the dispersal and establishment abilities of two

morphs [13]. We found that this effect persists–i.e., the invasion

speed does not tend towards the faster monomorphic speed–when

the mutation rate between morphs approaches zero. This is

surprising because in that limit the leading edge of the invasion

front (which determines the invasion speed) contains vanishingly

few individuals of the minority morph. The biological interpre-

tation of this is unclear, so the question arises as to whether

anomalous speeds occur as an artefact of the fact that densities can

be arbitrarily small in the model, or if they are still present in

models where species are made up of individuals. In this paper we

will develop a stochastic version of the model in the hope that it

will shed some light on this question.

The use of deterministic and stochastic models for predicting

the rate of spread of species has highlighted some important

differences. In density independent models, demographic stochas-

ticity does not generally slow invasions [14]. This was also found

by Mollison [15], who showed that linear stochastic models often

give the same result as deterministic models and that speeds

predicted using these provide an upper bound for the more

realistic nonlinear stochastic case. Incorporating demographic

stochasticity into density dependent models has provided further
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insight into whether stochasticity affects invasion speeds [16–19].

These models reach varying conclusions, with Snyder [19] finding

that the addition of demographic stochasticity results in marginally

slower invasions and Clark et al. [18] finding that adding

stochasticity can turn accelerating invasions into constant speed

invasions. Kot et al. [14] also demonstrated that, in contrast to the

density independent case, the combined effect of stochasticity and

density dependence can slow invasions.

Travis et al. [20] have also highlighted the value of using both

deterministic and stochastic modelling approaches when predict-

ing invasion speeds. They found that though both models

produced similar trends, their analytical model predicted signif-

icantly higher speeds than their stochastic IBM [20]. They found

that increasing the amount of stochasticity incorporated into the

model, through increasing the number of age classes, widened the

difference in the speed predicted by the two models. Their results

revealed that looking at both stochastic and deterministic models

can help to more accurately predict the speed at which a species

expands its range.

A general result appearing in the literature is that density

dependent models with demographic stochasticity have slower

invasion speeds than their deterministic counterparts. Based on

these results [14,19,20] we may expect that a stochastic version of

our dispersal polymorphism model [13] has slower invasion speeds

than the deterministic version. If this is the case then it may be that

anomalous speeds do not arise in stochastic models. In this paper

we investigate whether anomalous speeds are preserved in a model

incorporating demographic stochasticity. We do this using a

discrete time and space stochastic model. The model follows our

previous work [13] so that there is a polymorphic population with

morphs that differ in their dispersal abilities. We carry out

numerical simulations of this model in order to determine the

invasion speed of the population, to find the conditions (if any)

under which anomalous speeds are produced.

Methods

The model that we use is similar to that used in our previous

work which looked at the invasion of a species that has two

dispersal phenotypes [13]. That model used partial differential

equations (PDEs) because they are elegant, easy to analyse, and

give simple results. In this manuscript we adapt our spatially

explicit general Lotka-Volterra model so that it is now discrete in

time and space. We do this because the stochastic equivalence of

PDEs are complex and it is more straightforward to make a link

between deterministic and stochastic models that are discrete

rather than continuous. We will therefore first develop a discrete

time and space deterministic model and then compare the results

of this model to a stochastic version.

The model has the same two phenotypes with mutation

between morphs as in our previous model [13]. The phenotypes

differ in their dispersal and establishment abilities, so that we have:

N an establisher morph e that after establishment has a higher

growth rate but is a poorer disperser; and

N a disperser morph d that has a lower growth rate after

establishment but is a better disperser

The model simulates the invasion of these two morphs with

discrete generations. Population density of the species is denoted

by Ni with i[fe,dg representing density of each morph.

Population dynamics and dispersal then occur in discrete steps,

so that in each time step the order of events occurs as follows. First,

each individual of either morph produces b offspring, with a

fraction m of these offspring being of the other phenotype. This

gives the number of individuals of morph i=j at time t and

position x after recruitment to be

Bi(t,x)~(1zb)Ni(t,x)zmb(Nj(t,x){Ni(t,x)) ð1Þ

A fraction of each morph then dies. We assume a Ricker-like

density dependence where the survival probability of morph i is

Pi~ exp½{m0
i {m1

i (Bi(t,x)zBj(t,x))� ð2Þ

The number of individuals of morph i after the mortality step is

then given by

Mi(t,x)~PiBi(t,x) ð3Þ

We choose density dependence to act on mortality rather than

birth rate because it makes the calculations simpler, but we expect

qualitatively similar results if density dependence were to act on

birth. Finally a fraction Di of each morph disperses, so that the

number of individuals of morph i that disperse is given by

~NNi(t,x)~DiMi(t,x) ð4Þ

In the 1D case we have that each morph disperses with equal

probability to the left and right, and in the 2D case with equal

probability to the 8 neighbouring cells. This gives two discrete time

and space equations that represent the population dynamics and

dispersal of a polymorphic population. In 1D the iteration

equation for morph i is therefore

Ni(tz1,x)~Mi(t,x){ ~NNi(t,x)z
1

2
~NNi(t,xz1)z

1

2
~NNi(t,x{1) ð5Þ

We reparameterise this model so that we can relate the

parameters to our continuous time model [13], and to reduce the

dimension of the parameter space we need to explore in the

discrete model (see Appendix S1 in File S1 for details). We define

the net growth rate ri~ log (b){m0
i and carrying capacity

K~
log (b){m0

i

m1
i (1zb)

. We carry out simulations with different values

of ri and Di to determine the effect each morph’s dispersal and

establishment abilities have on the invasion speed.

Our stochastic model is an individual-based model that uses the

same mean birth, death, and dispersal rates as in the deterministic

model. The difference is that these are now random demographic

processes, and the number of individuals Ni(t,x) of morph i at site

x and time t is an integer. In the recruitment step, we assume that

each individual produces independently a Poisson-distributed

number of offspring with mean b, and each new birth has the

same phenotype of its parent with probability 1{m and the other

phenotype with probability m. At the mortality step, we assume

that each individual survives (statistically independently) with

probability given by Pi in Eqn. (2). At the dispersal step, each

individual chooses (independently) to disperse with probability Di,

in which case it moves to a randomly chosen neighbouring site

with equal probability, and otherwise remains at the same site.

Since the sum of Poisson-distributed random variables also has a

Anomalous Invasion Speeds and Stochasticity
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Poisson distribution, and the sum of Bernoulli random numbers

has a binomial distribution, we can implement these individual-

based processes in the model by generating Poisson-distributed

pseudorandom numbers with mean given by Bi(t,x){Ni(t,x) in

Eqn. (1) for the total number of births of each morph at each site,

and using binomial distributed pseudorandom variables to

generate the total number of individuals of each morph surviving

(using probability Pi from Eqn. (2)) and dispersing (using

probability Di) at each site. This is formally equivalent to an

individual-based model, but much more computationally efficient

than generating separate pseudorandom numbers for each

individual.

In the stochastic model we are also interested in the effect that

the carrying capacity of the population, K , has on the invasion

speed. We expect that the stochastic model should behave in a

similar way to the deterministic model when K is large. It is well

established that demographic fluctuations are proportional to the

square root of the population size [21], so that the fluctuations are

smaller relative to the population size when the population size is

large. In Appendix S2 in File S1, we show explicitly how our

stochastic model approaches the deterministic one when K is

large. When the carrying capacity is small, we expect that

stochasticity will have a bigger effect on the invasion speed. We

therefore ran simulations with the carrying capacity K ranging

from K~100 to K~1014 whilst keeping the other parameters

constant as a way of looking at how stochasticity affects the

invasion speed.

In the stochastic case we are also interested in the effect that the

mutation rate, m, has on the invasion speed. In our continuous

model [13] we found the surprising result that, when the mutation

rate is small, changing it has no effect on the invasion speed. We

therefore vary the mutation rate in both models in the present

manuscript to see if we observe the same result. We predict, in

contrast to our previous model, that changing the mutation rate

will affect the speed, in particular that the smaller the mutation

rate the bigger the effect that stochasticity will have on

determining the invasion speed.

We consider invasions of an introduced species into a previously

unoccupied landscape in both a one and two-dimensional

landscape, with half the landscape initially occupied by the

population at its stable equilibrium density and half the landscape

initially unoccupied. We analysed this model using both semi-

analytical and simulation techniques. A prediction for the invasion

speed for the deterministic model was computed by using the

method of front propagation [22], which led to equations that then

were solved numerically (see Appendix S3 in File S1).

Simulations of the deterministic and stochastic models were

then carried out in R [23], using lattices with dimensions

15000|1 in 1D and 15000|10 in 2D and reflecting boundary

conditions at the end of the lattices. These simulations produced

travelling waves which rapidly approached a constant speed as the

invasion progressed. The invasion speed was estimated by

calculating the distance that the density profiles at different times

needed to be displaced in order to lie on top of each other. We

verified that the simulations had reached a constant invasion speed

by carrying these calculations out at several time points; in all

cases, 10 000 time steps was sufficient for the wave speed to

converge to a constant value.

In contrast to the deterministic case, the number of dimensions

does matter in a stochastic model. In particular there are more

fluctuations in 1D, so if we observe anomalous speeds in this case

we know that the results are robust. In addition carrying out

simulations in 1D is computationally cheaper than in 2D and so

the results presented will be in 1D, with 2D simulations carried out

to check that the same qualitative results are observed.

Results

Deterministic model
We first carried out deterministic simulations to investigate how

the invasion speed varies with different parameter values. We

compare these to the results we found in our PDE model [13].

These simulations were carried out by iterating equations (1–4) in

R [24]. We carried out simulations first with each morph present

in the landscape on its own and then with both morphs present. By

symmetry, the deterministic model in 2D is equivalent to a 1D

model, so we will only present simulation results in 1D here.

We observe the same phenomenon as we found in our previous

model [13], i.e. that there are three possible scenarios for the

wavespeed (Fig. 1) depending on the relative dispersal and

establishment abilities of the two phenotypes. When the dispersal

abilities of the disperser and establisher are similar but the

population growth rate of the establisher is much higher than that

of the disperser the invasion occurs at the speed of the establisher

(Fig. 1a). When the population growth rates of each morph are

similar but the dispersal rate of the disperser is much higher than

the dispersal rate of the establisher the invasion occurs at the speed

of the disperser (Fig. 1b). However, when there is a big difference

between the two phenotypes in terms of both the dispersal and

establishment abilities, the invasion occurs faster than either single

morph (Fig. 1c).

The main difference that we observe between the continuous

and discrete time models is that with comparable parameter values

all of the invasion speeds are slightly slower in the discrete version.

In addition, the difference between the anomalous speed and the

fastest single morph speed is not as big. For example, for the

parameter values used in Fig. 1c when both morphs are present

the invasion speed is 1.24 times faster than the fastest single

morph, however, in the PDE model for the same ratio of dispersal

and establishment rates between morphs the invasion speed is

1.38 times faster [13]. This means that a population consisting of

two morphs with big differences in their establishment and

dispersal abilities does not have as significant an effect on the

invasion speed. Nevertheless the invasion does still occur faster

than we would predict from a single morph’s invasion speed.

Analytical calculation of invasion speed. We used the

front propagation method of van Saarloos [22] to calculate the

invasion speed of this polymorphic population (see Appendix S3 in

File S1 for details of these calculations). This method assumes that,

although the model is nonlinear, the wave speed is determined by

the linear behaviour of the leading edge of the front. We find that

this analytical method does indeed give the same invasion speed

that we found using the numerical simulations, as can be seen in

Fig. 2.

Stochastic model
We next investigated what effect demographic stochasticity has

on the invasion speed. A version of the model that includes

demographic stochasticity was set up in the way described in the

Model section. The model was then simulated in the same

geometry as the deterministic model with simulations run on both

a one and two dimensional landscape. The 2D simulations give

similar predictions to the 1D and so we will only present the results

of the 1D stochastic model here. We ran 10 replicates of each

simulation, which proved to be a sufficient number as there was

little variation between repeats. For the stochastic simulations we

investigated how the carrying capacity of the population affects the

Anomalous Invasion Speeds and Stochasticity
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invasion speed, as stochasticity is expected to have a bigger effect

at low population densities. We were therefore also interested in

whether there was a threshold population size for stochasticity to

no longer have an effect on the invasion speed, so larger

population sizes than we may realistically expect to find were

investigated to show that the stochastic model converged to the

deterministic model.

We found for all parameter values that having a finite carrying

capacity results in the invasion occurring more slowly than the

deterministic prediction. Demographic stochasticity does therefore

result in slower invasions as has previously been found [19,20].

However, we find that as the carrying capacity of the population

increases the invasion speed also increases, approaching the

deterministic speed (Fig. 3). The stochastic model does therefore

Figure 1. Invasion profiles of the two morphs. These show the disperser morph (dashed line) and establisher morph (solid line) when present in
the landscape on their own (rows (i) and (ii)) and when mutation allows both to be present (row (iii)). The simulations were initiated with the first 100
cells occupied by each phenotype at its equilibrium population density and the remaining cells unoccupied. The simulations were run on a lattice
consisting of 15000 cells. For all graphs each line represents the density profiles at a different time point, with each time point 500 units apart. In
column (a) the polymorphic invasion speed is the same as the monomorphic establisher speed; in column (b) the polymorphic invasion speed is the
same as the monomorphic disperser speed, and in (c) the polymorphic invasion speed is faster than either monomorphic invasion. For all simulations
K~100, m~0:01, and in (a) re~0:8, rd~0:2, Dd~0:6, De~0:4; (b) re~0:6, rd~0:4, Dd~0:8, De~0:2; (c) re~0:8, rd~0:14, Dd~0:8, De~0:1.
doi:10.1371/journal.pone.0067871.g001
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behave like the deterministic model when the population is big

enough.

We find the same pattern as in the deterministic model in that

when the dispersal abilities of the disperser and establisher are

similar but the population growth rate of the establisher is much

higher than that of the disperser the invasion follows the speed of

the establisher (Fig 3a). Also when the population growth rates of

each morph are similar but the dispersal rate of the disperser is

much higher than the dispersal rate of the establisher the invasion

follows the speed of the disperser (Fig 3b). In the case where there

is a big difference between the two phenotypes in terms of both

their dispersal and establishment abilities, we find that at the lower

carrying capacities the invasion follows the speed of the faster

morph. However, there is a threshold carrying capacity where the

invasion starts to be faster than the monomorphic speed, and as

the carrying capacity increases further this increases to approach

the anomalous deterministic speed (Fig. 3c).

We investigated how the mutation rate affects the threshold

value for anomalous invasion speeds to occur for the case observed

in Fig. 3c. We find that the higher the mutation rate the lower the

threshold carrying capacity is for anomalous invasion speeds to

occur (Fig. 4). High mutation rates (m~0:05 and m~0:1) result in

anomalous invasion speeds even when the carrying capacity is very

low (K~100). Smaller mutation rates (m~0:001{m~0:01) do

not result in anomalous invasion speeds until the carrying capacity

is much higher. This is in contrast to both the continuous and

discrete deterministic models where we found that mutation rate

had a negligible effect on the invasion speed. This could be

because a higher mutation rate allows the morphs to keep up with

each other better at the front of the invasion wave. A higher

mutation rate therefore means that there are more of the morph

that is at lower density present at the invasion front, in this case the

disperser morph, and so there are more good dispersers along with

the good establishers present at the front which results in faster

invasions particularly when the carrying capacity is lower.

However, we found that anomalous speeds are much more

likely to be observed if the monomorphic speeds of either morph

are similar to each other. For m~0:001 the lowest mutation rate

investigated, we find that anomalous speeds can be observed from

a carrying capacity of K~104 (Fig 5) whereas for the parameter

values used in Fig 3 anomalous speeds were not observed at this

mutation rate until K~1011. Therefore we find that if one morph

has a faster invasion speed than the other, when both morphs are

present high carrying capacities are required for anomalous speeds

to be observed, however, if the individual morphs speeds are

similar then when both morphs are present anomalous speeds are

also found at low carrying capacities.

Discussion

We have investigated the effect of the presence of two dispersal

phenotypes on a species invasion speed in both a deterministic and

stochastic model in discrete time and space. We found that if the

morphs differ in both their dispersal ability and growth rate, then

the invasion speed can be faster than the speed of either morph on

its own. We have shown that this effect persists when demographic

stochasticity is added into the model, although only when either

the carrying capacity of the population is high enough or when the

mutation rate between morphs is big. In many cases, an extremely

large carrying capacity is required for anomalous speeds to be

observed (e.g. about 1011 for the parameters in Fig. 3). However, if

the two morphs have similar monomorphic invasion speeds then

anomalous speeds are observed already at much smaller carrying

capacities (e.g. about 104 for the parameters in Fig. 5).

Our work agrees with previous studies that adding demographic

stochasticity results in slower invasion speeds, with the determin-

istic speed predicting an upper bound for the stochastic speed

[15,16,19]. Travis et al. [20] showed that the greater the amount of

stochasticity the bigger the difference in the speeds predicted by

their deterministic and stochastic models. Our results display a

similar pattern, as we have shown that the stochastic speed tends

towards the deterministic one when the degree of demographic

stochasticity is decreased, in our case by increasing the carrying

capacity of the population.

Since the wave speed in the deterministic limit is correctly

predicted by the linear conjecture (see Fig. 2), i.e. by the low-

density behaviour in the leading edge of the front, it is reasonable

to expect that both morphs need to be present in high enough

numbers in the leading edge in order to observe cooperative

behaviour such as anomalous speeds. Our observation that higher

carrying capacities and/or mutation rates make anomalous speeds

more likely is consistent with this idea, because both of these

conditions will boost the density of whichever morph is rarer in the

leading edge. We have explored numerically the density profiles in

order to understand the conditions under which anomalous speeds

occur in stochastic models (see Appendix S4 in File S1). We do

indeed find that anomalous speeds only occur when there is

mutation between good establishers and good dispersers which are

present at high densities in the leading edge of the invasion (see

Fig. S1 and S2 in File S1), suggesting that these are necessary

conditions for this emergent phenomenon. However, we also find

in some cases that anomalous speeds do not occur even when both

morphs have very high densities at the leading edge (see Fig. S1a

in File S1). While it is clear that anomalous speeds arise from the

dispersal ability of one morph and the establishment ability of the

other, a simple quantitative criterion to predict exactly when we

Figure 2. Comparison of analytical and numerical predictions
of the invasion speed. This is an example of the case when
polymorphism results in faster invasions than either single morph. The
circles represent numerical results calculated from simulations, and the
curve numerical predictions found using the van Saarloos method [27].
Parameter values used were rd~0:1, Dd~0:8, De~0:15, K~100,
m~0:01 and the values of re used for the numerical simulations were
0.5, 0.6, 0.7, 0.8 and 0.9.
doi:10.1371/journal.pone.0067871.g002
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should observe anomalous invasion speeds in the stochastic model

has so far elluded us.

At low mutation rates the carrying capacity required for

anomalous polymorphic speeds is typically high–higher than the

carrying capacity of many species. For example, despite some

species exhibiting differences in their establishment and dispersal

abilities, such as the western bluebird, Sialia mexicana, which has

morphs with different dispersal behaviours [24], and flowering

plants which exhibit seed polymorphism [25], these examples will

not have populations with large enough carrying capacities to

observe anomalous speeds. For low mutation rates the carrying

capacity needs to be in the order of 104{1011 for faster speeds to

be observed. Considering demographic stochasticity does therefore

rule out a large number of species for which deterministic models

would predict anomalous invasion speeds.

There are, however, species that have very large populations, in

particular we may realistically expect to find populations with

carrying capacities in the order of 104 and so we may observe

anomalous invasion speeds for species such as these. For example,

many insect species exhibit trade-offs in their establishment and

dispersal abilities through wing polymorphism (reviewed in

Figure 3. Comparison of stochastic and deterministic invasion speeds at different carrying capacities. The filled symbols represent the
deterministic prediction and the empty symbols the stochastic predictions. The triangles represents the establisher morphs speed, the crosses the
disperser morphs speed and the circles the invasion speed when both morphs are present. In (a) the polymorphic invasion speed is the same as the
monomorphic establisher speed; in (b) the polymorphic invasion speed is the same as the monomorphic disperser speed, and in (c) the polymorphic
invasion speed is faster than either monomorphic invasion. Parameter values used in (a) and (b) are the same as in Fig. 1 (a) and (b) and in (c) the
parameter values used were re~1, rd~0:2, Dd~0:9, De~0:2, m~0:01, with K ranging from K~100 to K~1014.
doi:10.1371/journal.pone.0067871.g003

Anomalous Invasion Speeds and Stochasticity
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[26,27]) and also have very large population densities. In

particular we may expect to see anomalous invasion speeds in

insects such as crickets [28], planthoppers [29] and aphids [30] to

name a few. We may also see anomalous invasion speeds in other

taxa, for example, microorganisms can have very large population

sizes, and some species of protists have been found to have trade-

offs in their dispersal and establishment abilities [31].

Figure 4. Comparison of invasion speeds with different values of m. The parameter values are the same as in Fig 3(c) with the value of m
varied from m~0:001 (crosses), m~0:005 (diamonds), m~0:01 (circles), m~0:05 (plus) and m~0:1 (triangles point down). The filled circle represents
the polymorphic deterministic speed which is the same for all mutation rates. The triangles point up represent the fastest single morphs speed, which
here is the establisher, with the filled triangle the deterministic speed.
doi:10.1371/journal.pone.0067871.g004

Figure 5. Anomalous invasion speeds when individual morph speeds are similar. The triangles represents the establisher morphs speed,
the crosses the disperser morphs speed and the circles the invasion speed when both morphs are present. Parameter values used were re~0:56,

rd~0:13, Dd~0:8, De~0:15, m~0:001 and K ranges from K~100 to K~1013.
doi:10.1371/journal.pone.0067871.g005

Anomalous Invasion Speeds and Stochasticity
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In this model we have assumed that dispersal ability trades-off

with population growth rate. Although this is the case for some

species, with for example more dispersive individuals of the

speckled wood butterfly, Pararge aegeria, having lower fecundity

[32], this trade-off is not always observed. Some species show a

positive relationship between dispersal and population growth

rate, for example, more dispersive Glanville fritillary butterflies,

Melitaea cinxia, have been found to invest more in reproduction

[33,34] and more dispersive cane toads, Bufo marinus, have been

shown to have faster growth rates [35]. It has also been suggested

that dispersal and reproductive rate may not directly trade-off

against one another and may instead trade-off against other traits

[36]. The anomalous speeds that we found using this model are

unlikely to be observed in species where there is no trade-off in

dispersal and establishment ability.

We have modelled the invasion of a polymorphic species on a

homogenous landscape which is not very realistic. Introducing

spatial heterogeneity into the model would more realistically

reflect the natural environment and so would be a natural

extension to this model. We are also interested in whether

dispersal polymorphism resulting in anomalous invasion speeds

can help a species to keep up with the rate of climate change. Our

next step in this research will therefore be to explicitly model a

range expansion as a result of a shifting climate.

We have shown that the presence of two phenotypes can lead to

unexpected results for the speed of biological invasions. Our results

reveal that demographic stochasticity can slow invasions, however,

this is dependent on the carrying capacity of the population and

the mutation rate between morphs being high enough. We hope

that our results motivate further research into understanding the

difference between deterministic and stochastic models and the

implications that anomalous speeds have for predicting the rate of

range expansions.
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