

Synthesis of Tetra-Substituted Trifluoromethyl-3,1-Benzoxazines by Transition-Metal-Catalyzed Decarboxylative Cyclization of *N*-Benzoyl Benzoxazinones

Hiroto Uno⁺,^[a] Daichi Fujimoto⁺,^[b] Kyosuke Harada,^[b] Chika Tanaka,^[b] and Norio Shibata*^[a, b, c]

Efficient synthesis of *N,O*-heterocyclic tetra-substituted trifluoromethyl-3,1-benzoxazines via a transition-metal-catalyzed decarboxylative intramolecular cyclization was achieved. The decarboxylation of N-benzoyl trifluoromethyl-benzoxazinones generated the amide oxygen nucleophile, allowing a selective internal C1-attack on Pd- or Cu-coordinated zwitterions, affording medicinally attractive tetra-substituted vinyl- or ethynyl-trifluoromethyl-3,1-benzoxazines. This protocol can be applied to the synthesis of perfluoroalkyl- and non-fluorinated 3,1-benzoxazines.

Fluorinated N-heterocyclic compounds have been in a promising position of drug development in pharmaceuticals^[1] or agrochemicals^[2] since the discovery of fluorinated guinolones.^[3] In particular, trifluoromethylated N,O-containing six-membered heterocycles have become primary synthetic targets in recent drug discovery due to their great market success.^[4] A representative example is the anti-HIV drug, efavirenz,^[5] which has an N,O-heterocyclic 3,1-benzoxazine structure with a tetrasubstituted trifluoromethyl C_{sp3} center (Figure 1). Thus, the development of an efficient synthetic methodology for trifluoromethylated N,O-heterocyclic compounds is highly desirable. Besides, N,O-heterocyclic 3,1-benzoxazines with a tetrasubstituted C_{sp3} center are privileged structures of biologically

[a] [b]	H. Uno, ⁺ Prof. Dr. N. Shibata Department of Nanopharmaceutical Sciences Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 (Japan) D. Fujimoto, ⁺ K. Harada, C. Tanaka, Prof. Dr. N. Shibata Department of Life Science and Applied Chemistry Nagoya Institute of Technology Gokiso, Showa-ku, Nagoya 466-8555 (Japan) E-mail: norshib@mitech.ac.in
[c]	Prof. Dr. N. Shibata Institute of Advanced Fluorine-Containing Materials Zhejiang Normal University 688 Yingbin Avenue, 321004 Jinhua (P. R. China)
[⁺]	These authors contributed equally to this work. Supporting information for this article is available on the WWW under https://doi.org/10.1002/open.202000360
Special Collection	An invited contribution to a Special Collection dedicated to the latest re- search of ChemistryOpen's Editorial Advisory Board Members.
	© 2021 The Authors. Published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution Non-Com- mercial NoDerivs License, which permits use and distribution in any med- ium, provided the original work is properly cited, the use is non-commercial

Chemistry Europe

European Chemical Societies Publishing

Figure 1. Bioactive N,O-heterocyclic 3,1-benzoxazines.

active molecules (Figure 1).^[6] In this context, many chemists have focused on the development of efficient synthetic methods to synthesize N,O-heterocyclic 3,1-benzoxazine structures with a tetra-substituted C_{sp3} center.^[7] However, the synthesis of a N,O-heterocyclic 3,1-benzoxazine structure with a tetra-substituted trifluoromethyl C_{so3} center remains a challenge.^[8]

In the last few decades, the transition-metal-catalyzed cycloaddition reaction of zwitterion intermediates has emerged as a powerful method for constructing various N-heterocyclic compounds.^[9] N-Toluene sulfonyl (tosyl) 4-vinvl benzoxazinones^[10] and *N*-tosyl 4-ethynyl benzoxazinones^[11] are two representative substrates in this area that have been widely used for many types of annulation reactions under metal catalysis, Pd for 4-vinyl and Cu for 4-ethynyl substrates. The decarboxylative generation of zwitterionic π -allyl-Pd or Cuallenylidene intermediates, which serve as crucial reactive species for the annulation reactions, are promptly trapped intermolecularly by a variety of interceptors.^[9-11] N-Tosyl 4trifluoromethyl-benzoxazinones have recently joined this research area (Scheme 1a),^[12] and a couple of novel annulation reactions have been disclosed under Pd-catalysis. π -Benzyl-Pd zwitterionic intermediates generated via decarboxylation have been suggested as reactive species,^[12a,b] and unique trifluoromethylated N-heterocycles are synthesized in good to high yields. In 2019, we revealed that medicinally attractive trifluoromethyl-dihydroquinoline derivatives are obtained in good yields by the decarboxylative intramolecular annulation of N-tosyl 4-vinyl-4-trifluoromethyl benzoxazinones in the presence of Pd-catalysts (Scheme 1b).^[13] The intramolecular C₃attack by tosyl amide-nitrogen is the key to the cyclization reaction. During the decarboxylative annulation reactions,^[12–14] we noticed the critical role of the N-tosyl-moiety in a series of benzoxazinones for annulation reactions, while N-benzoylvariants furnished completely different products. In a seminal paper by Tunge in 2009, a single example of 3,1-benzoxazine

Scheme 1. Synthesis of heterocycles from benzoxazinones: a) Three benzoxazinone derivatives for annulation reactions. b) Annulation reaction of *N*tosyl 4-vinyl-4-trifluoromethyl benzoxazinones under Pd-catalysis (previous work). c) Annulation reaction of *N*-benzoyl 4-vinyl-4-trifluoromethyl benzoxazinones under Pd-catalysis (this work). d) Annulation reaction of *N*-benzoyl 4-ethynyl-4-trifluoromethyl benzoxazinones under Cu-catalysis (this work).

synthesis from N-benzoyl 4-vinyl benzoxazinone under Pdcatalysis was shown.^[10b] However, the substrate scope and generality were entirely unexplored, despite their potential applications. Herein, we report the efficient synthesis of N,Oheterocyclic tetra-substituted trifluoromethyl-3,1-benzoxazines by the transition-metal-catalyzed decarboxylative intramolecular cyclization of 4-vinyl or 4-ethynyl 4-trifluoromethyl-benzoxazinones in good to high yields. Independent of the substitution of the 4-vinyl or the 4-ethynyl group, the amide oxygen of the benzoyl moiety attacks at the C₁-position of trifluoromethylsubstituted Pd-π-allyl or Cu-allenylidene zwitterions to generate a tetra-substituted trifluoromethyl C_{sp3} -stereogenic center in the N,O-heterocyclic skeleton. While there is much effort on synthesizing N,O-heterocyclic 3,1-benzoxazine structures,^[7–8] no general method for the synthesis of trifluoromethylated 3,1benzoxazines with a tetra-substituted stereogenic center has appeared. Only a handful of corresponding compounds are registered in the SciFinder^{®, [8,15]} Moreover, this strategy applies to the synthesis of a variety of tetra-substituted 3,1-benzoxazines, including perfluoroalkyl and non-fluorinated derivatives, in high yields.

We initiated our investigation with the reaction of 4-vinyl 4trifluoromethyl benzoxazinone 1a under Pd(PPh₃)₄ catalyst in CH₂Cl₂. As expected, decarboxylative intramolecular cyclization proceeded to furnish tetra-substituted 3,1-benzoxazine 2a in 99% yield (Table 1, entry 1). Prompted by this result, we

[a] Reaction was carried out with Ta (0.05 mmol), [Fd] (5 mol%), ligand (10 mol%) in CH_2Cl_2 (0.5 mL) at room temperature. [b] Determined by ¹⁹F NMR in crude using PhCF₃ as an internal standard.

optimized the reaction conditions by examining the effect of ligand and solvent. Another monodentate ligand, PCy₃, provided only a trace amount of **2a** after 20 h (entry 2). Although bidentate phosphine ligands such as DPEPhos and dppe also gave product **2a** in high yield, a prolonged reaction time was required (entries 3–4). Thus, with the optimal Pd(PPh₃)₄ catalyst, we screened solvents (entries 5–7). Even though other solvents such as toluene, THF, or DMF allowed the reaction to successfully proceed, CH₂Cl₂ gave the best result.

With the optimal conditions in hand, the substrate generality of the Pd-catalyzed decarboxylative cyclization was examined using a broad array of substituted N-benzoyl benzoxazinones 1 a-o (Scheme 2). As shown in Scheme 2, a range of Nbenzoyl benzoxazinones containing both electron-donating and electron-withdrawing groups on the benzene rings furnished the desired tetra-substituted 3,1-benzoxazines 2 quickly in high yields. Benzoxazinone 1b with an electron-donating alkyl group on benzoyl gave 2b in 92% yield. Even with halogen-substitution, including of the extremely electronegative fluorine atom, on the benzoyl group, the reaction proceeded efficiently to furnish high yields regardless of the ortho-, meta, or para-position (2c: 86%; 2d: 90%; 2e: 86%). Furthermore, the hetero-aryl ring and π -extended naphthyl substitution were tolerated in this reaction (2f: 96%; 2g: 91%). We further explored the effect of substitution on the benzene rings of benzoxazinones. Regardless the electronic nature and substitution position, the desired products were successfully obtained with a benzoyl group (2h: 99%; 2i: 96%; 2j: 95%; 2k: 80%) and a 4-tBu-benzoyl group (2l: 98%; 2m: 86%; 2n: 83%). It is noteworthy that 4-vinyl 4-pentafluoroethyl benzoxazinone 1o also underwent the reaction to provide 2o in 40% yield when heated.

Scheme 2. The substrate scope of tetra-substituted vinyl 3,1-benzoxazines. Isolated yield values are shown. (a) 40 °C and 1.5 h.

Next, we attempted to expand this transformation to the Cu-catalyzed decarboxylative intramolecular cyclization of 4ethynyl 4-trifluoromethyl benzoxazinone **3a** (Table 2). As a result, the reaction with **3a**, [Cu(MeCN)₄]PF₆ catalyst and *rac-i*Pr-PyBOX ligand in MeOH solvent allowed decarboxylation to proceed followed by an intramolecular C₁-attack to afford tetrasubstituted 3,1-benzoxazine **4a** in 72% yield (entry 1). Encouraged by this initial result, we investigated the optimization of reaction conditions. While the *rac-t*Bu-PyBOX ligand resulted in low yield, *rac*-Ph-PyBOX increased yield to 86% (entries 2–3). A copper(II) catalyst, Cu(OTf)₂, gave lower yield (76%, entry 4). After solvent screening with the optimal catalyst (entries 5–8), the reaction proceeded efficiently with EtOH to furnish 94% yield.

Subsequently, we examined the substrate scope using a range of substituted 4-ethynyl 4-trifluoromethyl benzoxazinones, **3a–3I**, with varying substitution patterns of benzene rings (Scheme 3). The desired trifluoromethyl-ethynyl-3,1-benzoxazines **4a–4I** were obtained in good yield, regardless of the substitution effects. The electron-donating groups at *para-, ortho-,* and *meta-*positions were tolerated in this reaction to

Scheme 3. The substrate scope of tetra-substituted ethynyl 3,1-benzoxazines. Yield values shown are for isolated.

ChemistryOpen 2021, 10, 518-522

Scheme 4. a) Synthesis of non-fluorinated derivatives. b) Derivatization of products.

Scheme 5. Plausible reaction mechanisms.

ChemistryOpen 2021, 10, 518–522 www.chemistryopen.org

give **4b**, **4e**, and **4f** (92%, 87%, and 79%, respectively). The halogen substitution on the benzoyl ring also furnished the products in good to excellent yields (**4c**: 74%; **4d**: 95%). Similarly, π -extended naphthyl and hetero-aryl substituted benzoxazinones **3g**-h afforded **4g** in 91% yield and **4h** in 90% yield, respectively. The benzoxazinones **3i**-l, which have a methyl group on the phenyl ring, provided the desired products regardless of the substitution on the benzoyl group (**4i**: 83%; **4j**: 93%; **4k**: 92%; **4l**: 86%). Furthermore, 4-ethynyl 4-penta-fluoroethyl benzoxazinone **3m** also underwent the reaction to give corresponding product **4m** in 73% yield.

Chemistry Europe

European Chemical Societies Publishing

To further investigate the potential of this method for the synthesis of tetra-substituted 3,1-benzoxazines, we attempted the reaction using 1 x and 3 x with 4-methyl substitution instead of the trifluoromethyl group (Scheme 4a). In the case of both 4-vinyl and 4-ethynyl substrates, decarboxylation followed by the C₁-attack of amide oxygen proceeded under the optimized conditions to provide the corresponding non-fluorinated methyl-3,1-benzoxazines 2x and 4x (83% and 90%, respectively). The obtained products 4, tetra-substituted ethynyl 3,1-benzoxazines, were derivatized to 5 by the Huisgen cycloaddition using TsN₃ under Cu-catalysis (Scheme 4b, 5a: 99%; 5x: 86%).

A plausible reaction mechanism was proposed based on previous works.^[10-11,13-14] As shown in Scheme 5, in both cases, the coordination of metal-catalysts caused the decarboxylation of **1a** and **3a** to form zwitterionic intermediates I or II. The less steric amide oxygen nucleophile attacks at the C₁-position via intramolecular cyclization gave tetra-substituted benzoxazines **2a** and **4a**.

In conclusion, we disclose herein that *N*-benzoyl 4trifluoromethyl benzoxazinones are efficient synthons for constructing tetra-substituted 3,1-benzoxazines via an intramolecular cyclization reaction. Whereas *N*-tosyl protected 4-vinyl or 4ethynyl trifluoromethyl-benzoxazinones resulted in a C₃-attack product,^[13,14] *N*-benzoyl protection allowed selective C₁-attack by the amide oxygen nucleophile to generate a tetrasubstituted trifluoromethyl stereogenic carbon center. The enantioselective variants of this reaction are currently being assessed in our laboratory.

Acknowledgements

This work was supported by JSPS KAKENHI grants JP 18H02553 (KIBAN B, NS).

Conflict of Interest

The authors declare no conflict of interest.

Keywords: Benzoxazinones · copper · decarboxylation reactions · fluorinated compounds · heterocycle derivatives · intramolecular cyclization reactions

- [1] M. Inoue, Y. Sumii, N. Shibata, ACS Omega 2020, 5, 10633–10640.
- [2] Y. Ogawa, E. Tokunaga, O. Kobayashi, K. Hirai, N. Shibata, iScience 2020,
- 23, 101467.
 [3] a) B. Zhang, Arch Pharm Chem Life Sci., 2019, 352, 1800382; b) T. D. M. Pham, Z. M. Ziora, M. A. T. Blaskovich, MedChemComm, 2019, 10, 1719–1739; c) N. G. Bush, I. Diez-Santos, L. R. Abbott, A. Maxwell, Molecules 2020, 25, 5662.
- [4] a) W. Zhu, J. Wang, S. Wanga, Z. Gu, J. L. Aceña, K. Izawa, H. Liu, V. A. Soloshonok, J. Fluorine Chem., 2014, 167, 37–54; b) J. Han, A. M. Remete, L. S. Dobson, L. Kiss, K. Izawa, H. Moriwaki, V. A. Soloshonok, D. O'Hagan, J. Fluorine Chem., 2020, 239, 109639.
- [5] S. D. Young, S. F. Britcher, L. O. Tran, L. S. Payne, W. C. Lumma, T. A. Lyle, J. R. Huff, P. S. Anderson, D. B. Olsen, S. S. Carroll, D. J. Pettibone, J. A. O. Brien, R. G. Ball, S. K. Balani, J. H. Lin, I. Chen, W. A. Schleif, V. V. Sardana, W. J. Long, V. W. Byrnes, E. A. Emini, *Antimicrob. Agents Chemother*. 1995, 39, 2602–2605.
- [6] a) H. Sugiyama, K. Hosoda, Y. Kumagai, M. Takeuchi, M. Okada, US 4596801, **1986**; b) G. Gazzo, P. Girard, N. Kamoun, M. Verleye, P. Poisbeau, *Eur. J. Pharmacol.* **2019**, *843*, 316; c) P. Zhang, E. A. Terefenko, A. Fensome, Z. Zhang, Y. Zhu, J. Cohen, R. Winneker, J. Wrobel, J. Yardley, *Bioorg. Med. Chem. Lett.* **2002**, *12*, 787.
- [7] a) W. Fu, X. Han, M. Zhu, C. Xu, Z. Wang, B. Ji, X.-Q. Hao, M.-P. Song, *Chem. Commun.*, **2016**, *52*, 13413–13416; b) S. Rajkumar, M. Tang, X. Yang, *Angew. Chem. Int. Ed.* **2019**, *59*, 2333–2337; c) T.-J. He, W.-Q. Zhong, J.-M. Huang, *Chem. Commun.* **2020**, *56*, 2735–2738; d) E. Miller, S. Kim, K. Gibson, J. S. Derrick, F. D. Toste, *J. Am. Chem. Soc.* **2020**, *142*, 8946–8952; e) Q. Xie, H.-J. Long, Q.-Y. Zhang, P. Tang, J. Deng, *J. Org. Chem.* **2020**, *85*, 1882–1893.
- [8] a) A. V. Lygin, A. Meijere, J. Org. Chem. 2009, 74, 4554–4559; b) A. Kinens, T. Kalnins, E. Suna, Chem. Heterocycl. Compd. 2015, 50, 10, 1500–1504; c) T. K. Das, K. Madica, J. Krishnan, U. K. Marelli, A. T. Biju, J. Org. Chem. 2020, 85, 5114–5121.
- [9] a) B. D. W. Allen, C. P. Lakeland, J. P. A. Harrity, *Chem. Eur. J.* 2017, 23,13830–13857; b) B. Niu, X.-Y. Wu, Y. Wei, M. Shi, *Org. Lett.* 2019, 21, 12, 4859–4863; c) Y. Liu, Q.-W. Huang, Q.-Z. Li, H.-J. Leng, Q.-S. Dai, R. Zeng, Y.-Q. Liu, X. Zhang, B. Han, J.-L. Li, *Org. Lett.* 2019, 21, 18, 7478–7483; d) L. Zuo, T. Liu, X. Chang, W. Guo, *Molecules* 2019, 24, 3930; e) R. Zeng, J.-L. Li, X. Zhang, Y.-Q. Liu, Z.-Q. Jia, H.-J. Leng, Q.-W. Huang, Y. Liu, Q.-Z. Li, *ACS Catal.* 2019, 9, 8256–8262; f) H. Uno, K. Kawai, M. Shiro, N. Shibata, *ACS Catal.* 2020, 10, 14117–14126; g) J.-U. Park, H.-I. Ahn, H.-J. Cho, Z. Xuan, J. H. Kim, *Adv. Synth. Catal.* 2020, 362, 1836–1840; h) Q.-Z. Li, Y. Liu, M.-Z. Li, X. Zhang, T. Qi, J.-L. Li, *Org. Biomol. Chem.* 2020, 18, 3638–3648.

- [10] a) C. Wang, J. A. Tunge, J. Am. Chem. Soc. 2008, 130, 8118–8119; b) C. Wang, N. Pahadi, J. A. Tunge, Tetrahedron 2009, 65, 5102–5109; c) T.-R. Li, F. Tan, L.-Q. Lu, Y. Wei, Y.-N. Wang, Y.-Y. Liu, Q.-Q. Yang, J.-R. Chen, D.-Q. Shi, W.-J. Xiao, Nat. Commun. 2014, 5, 5500–5509; d) C. Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F. Glorius, J. Am. Chem. Soc. 2016, 138, 7840–7843; e) T.-R. Li, Y.-N. Wang, W.-J. Xiao, L-Q. Lu, Tetrahedron Lett., 2018, 59, 1521–1530; f) J.-H. Jin, H. Wang, Z.-T. Yang, W.-L. Yang, W. Tang, W.-P. Deng, Org. Lett. 2018, 20, 104–107; g) C. Wang, Y. Li, Y. Wu, Q. Wang, W. Shi, C. Yuan, L. Zhou, Y. Xiao, H. Guo, Org. Lett. 2018, 20, 2880–2883; h) Y.-N. Lu, J.-P. Lan, Y.-J. Mao, Y.-X. Wang, G.-J. Mei, F. Shi, Chem. Commun., 2018, 54, 13527–13530; j) Y. Wang, S. Jia, E.-Q. Li, Z. Duan, J. Org. Chem. 2019, 84, 15323–15330; j) Z. D. Tucker, H. M. Hill, A. L. Smith, B. L. Ashfeld, Org. Lett. 2020, 22, 6605–6609.
- [11] a) Q. Wang, T.-R. Li, L.-Q. Lu, M.-M. Li, K. Zhang, W.-J. Xiao, J. Am. Chem. Soc. 2016, 138, 8360–8363; b) J. Song, Z.-J. Zhang, L.-Z. Gong, Angew. Chem. Int. Ed. 2017, 56, 5212–5216; Angew. Chem. 2017, 129, 5296–5300; c) H. Chen, X. Lu, X. Xia, Q. Zhu, Y. Song, J. Chen, W. Cao, X. Wu, Org. Lett. 2018, 20, 7, 1760–1763; d) Y. Wang, L. Zhu, M. Wang, J. Xiong, N. Chen, X. Feng, Z. Xu, X. Jiang, Org. Lett. 2018, 20, 20, 6506–6510; e) A. K. Simlandy, B. Ghosh, S. Mukherjee, Org. Lett. 2019, 21, 9, 3361–3366; f) B.-B. Sun, Q.-X. Hu, J.-M. Hu, J.-Q. Yu, J. Jia, X.-W. Wang, Tetrahedron Lett. 2019, 60, 1967–1970; g) Z.-J. Zhang, L. Zhang, R.-L. Geng, J. Song, X.-H. Chen, L.-Z. Gong, Angew. Chem. Int. Ed. 2019, 58, 12190–12194.
- [12] a) N. Punna, P. Das, V. Gouverneur, N. Shibata, Org. Lett. 2018, 20, 1526–1529; b) P. Das, S. Gondo, P. Nagender, H. Uno, E. Tokunaga, N. Shibata, Chem. Sci., 2018, 9, 3276–3281; c) H. Uno, N. Punna, E. Tokunaga, M. Shiro, N. Shibata, Angew. Chem. Int. Ed. 2020, 59, 8187–8194; d) H. Uno, T. Imai, K. Harada, N. Shibata, ACS Catal. 2020, 10, 2, 1454–1459; e) K. Kawai, H. Uno, D. Fujimoto, N. Shibata, Helv. Chim. Acta 2020, accepted, DOI: 10.1002/hlca.202000217.
- [13] N. Punna, K. Harada, J. Zhou, N. Shibata, Org. Lett. 2019, 21, 1515–1520.
- [14] M. R. Gannarapu, J. Zhou, B. Jiang, N. Shibata, *iScience* 2020, 23, 100994.
- [15] Six compounds were registered, CAS Registry Numbers; 1160653-30-4; 1160653-33-7; 1160653-34-8; 1160653-36-0; 1643613-91-5; 2413648-06 1. See all the structures in reference 8.

Manuscript received: December 30, 2020 Revised manuscript received: February 2, 2021