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Abstract: Previous results have shown that infection with the cytoplasmic-replicating parainfluenza
virus 5 mutant P/V-CPI- sensitizes cells to DNA damaging agents, resulting in the enhanced killing of
airway cancer cells. Here, we have tested the hypothesis that histone deacetylase (HDAC) inhibitors
can also act with P/V-CPI- infection to enhance cancer cell killing. Using human small cell lung
cancer and laryngeal cancer cell lines, 10 HDAC inhibitors were tested for their effect on viability of
P/V-CPI- infected cells. HDAC inhibitors such as scriptaid enhanced caspase-3/7, -8 and -9 activity
induced by P/V-CPI- and overall cell toxicity. Scriptaid-mediated enhanced killing was eliminated in
lung cancer cells that were engineered to express a protein which sequesters double stranded RNA.
Scriptaid also enhanced cancer cell killing by two other negative strand RNA viruses – the La Crosse
virus and vesicular stomatitis virus. Scriptaid treatment enhanced the spread of the P/V-CPI- virus
through a population of cancer cells, and suppressed interferon-beta induction through blocking
phosphorylation and nuclear translocation of Interferon Regulatory Factor 3 (IRF-3). Taken together,
these data support a role for combinations of a cytoplasmic-replicating RNA virus such as the P/V-CPI-
mutant along with chemotherapeutic agents.
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1. Introduction

Oncolytic viruses have shown to be promising treatments for human cancers. The recent
FDA approval of a modified herpes simplex virus type 1 for the treatment of advanced malignant
melanoma [1], and the number of recombinant viruses in development are evidence of strong interest
in these therapies for a variety of cancers [2,3]. A range of paramyxoviruses have been proposed as
oncolytic vectors due to their inherent cytopathic properties and their ability to activate the immune
response, including measles virus, Newcastle disease virus, Sendai virus, and mumps virus [4–10].
Based on our prior work with an oncolytic Parainfluenza virus type 5 (PIV5), the overall goal of the
work described here was to test the hypothesis that selective killing of human airway cancer cells can
be enhanced by combinations of chemotherapy and oncolytic virus infection.

Wild type (WT) PIV5 is inherently non-cytopathic and is a poor inducer of host cell responses
in most human cell types [11–14], and thus would not be expected to have appropriate oncolytic
properties. Non-cytopathic WT PIV5 can be converted into a virus that induces cell killing through
engineered substitutions in the viral P/V gene [15,16]. The PIV5 P/V gene encodes the phosphoprotein
P and the V protein [17], which share an identical 164 residue amino-terminal domain (the shared
P/V region) but have unique C terminal domains. The P protein is an essential subunit of the viral
RNA-dependent RNA polymerase [17]. The V protein contains a COOH-terminal cysteine-rich
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(cys-rich) zinc-binding domain that is required for many V protein functions [18], including blocking
type I interferon (IFN) signaling by targeting STAT1 for degradation [19] and inhibiting interferon-beta
(IFN-β) gene expression through binding to mda-5 [20]. Amino acid substitutions in the PIV5 shared
P/V region resulted in a mutant (P/V-CPI-) which overexpresses viral RNA and protein, is a potent
inducer of IFN-β and proinflammatory cytokines, is defective in blocking IFN signaling, and induces
cell death in cancer cells [14–16,21–23]. The P/V-CPI- mutant is very effective at killing cancer cells,
a property which may be linked to the high induction of double stranded RNA (dsRNA) during
virus replication, the shut off of host and viral protein synthesis through Protein Kinase R (PKR)
pathways [24], and the activation of caspase dependent death pathways [15,25]. Importantly, previous
work has shown that the P/V-CPI- mutant is restricted for tissue culture growth in normal primary
prostate cells [21] and can reduce prostate cancer tumor burden in a mouse model system [23].

While the P/V-CPI- virus is inherently cytopathic to cancer cells, we have recently shown that
P/V-CPI- infection can sensitize cancer cells to further killing by treatment with cisplatin [26], a DNA
adduct-inducing chemotherapy drug. Remarkably, infection with the cytoplasmic-replicating P/V-CPI-
virus followed by cisplatin treatment led to increased damage to cellular DNA, along with enhanced
caspase activation and death compared to treatment with the virus or drug alone [26]. The ability of
P/V-CPI- to sensitize cells to cisplatin-induced death correlated with virus-induced defects in the cell’s
ability to repair damaged DNA. These results with DNA-damaging agents, such as cisplatin, raise the
question of whether the P/V-CPI- virus would be more effective at killing cancer cells when coupled
with other chemotherapeutic agents that alter DNA metabolism and stress responses.

There are 18 known human histone deacetylase (HDAC) enzymes which are involved in a number
of cellular processes. HDAC expression levels have been found to be associated with differing prognosis
in various cancers. For example, high expression of HDAC1 and HDAC2 has been correlated with
a poor prognosis in patients with lung or oral cancers [27,28]. As such, there has been a recent focus on
developing HDAC inhibitors for cancer therapy. These chemicals can have pleotropic effects on cancer
cells such as altering the cell cycle, inducing senescence or autophagy, altering signaling pathways and
immune responses, or regulating apoptosis. Importantly however, many HDAC inhibitors have been
shown to have little cytotoxic effect on normal cells [29]. To date, four HDAC inhibitors are approved
by the FDA for use in humans (Vorinostat, Romidepsin, Belinostat, and Panobinostat), and a large
number of different inhibitors are in clinical trials for cancer therapy [30].

Here we show that treatment of human airway cancer cells with HDAC inhibitors increased cell
death and caspase activation induced by P/V-CPI- mutant infection, through pathways that involved
at least in part recognition of double stranded RNA. In addition, HDAC inhibitors reduced IFN-β
production by P/V-CPI- infection by blocking phosphorylation and nuclear localization of the key
transcription factor interferon regulatory factor-3 (IRF-3), resulting in enhanced P/V-CPI- spread
through a population of human airway cancer cells. Our studies support a common property by which
a cytoplasmic-replicating RNA virus sensitizes cancer cells to chemotherapeutic agents and suggest
combined paramyxovirus and chemotherapy as promising future approaches to treat cancer.

2. Materials and Methods

2.1. Cells, Viruses, and Infections

The H1299 cell line was obtained from Annette Khaled (University of Central Florida, Orlando, FL,
USA). A549, HEp-2, Vero, MDBK, and CV-1 cell lines were provided by Robert Lamb (Northwestern
University, Evanston, Illinois, USA). Cultures of H1299 non-small cell lung carcinoma cells were grown
in Roswell Park Memorial Institute medium (RPMI 1640) supplemented with 10% heat inactivated
fetal calf serum (HI FBS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA). Cultures of A549
alveolar adenocarcinoma cells, HEp-2 laryngeal carcinoma cells, Vero cells, MDBK cells, and CV-1
cells were grown in Dulbecco modified Eagle medium (DMEM) supplemented with 10% HI FBS.
Previously described A549 cells that constitutively express reovirus type 3 Dearing sigma3 protein [31]
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were generated by transfection with pCXN-S4T3D [32] followed by selection in DMEM containing
0.5 mg/mL G418.

Wild type (WT) PIV5 was grown in MDBK cells and titered on CV-1 cells. The P/V mutant
rPIV5-P/V-CPI− (P/V-CPI-) encoding Green Flourescence Protein (GFP) as an additional gene between
HN and L was generated and grown in Vero cells as described previously [16] using a cDNA plasmid [33]
kindly provided by Robert Lamb (Northwestern University, Evanston, Illinois, USA) and Biao He
(University of Georgia, Athens, Georgia, USA). P/V-CPI- encodes six naturally-occurring mutations in
the amino-terminal region of the P/V gene, resulting in amino acid changes at: Y26H, V32I, T33I, L50P,
L102P, and S157F [15]. Vesicular stomatitis virus (VSV), human parainfluenza virus type 2 (hPIV2),
and Zika virus (ZIKV, MR766, BEI resources, Manassas, VA, USA) were grown in Vero cells. La Crosse
virus (LACV; a kind gift from Andy Pekosz, Johns Hopkins University, Baltimore, Maryland, USA)
were grown in C636 cells and stocks were titered by plaque assay on Vero cells.

Infections were performed by incubating virus and cells in DMEM or RPMI supplemented with
10% BSA. After one hour of incubation, cells were washed, and media was replaced with DMEM or
RPMI supplemented with 2% HI FBS and various HDAC inhibitors as indicated in the figure legends.

2.2. Chemical Preparation

Chemicals were purchased from Sigma-Aldrich (St. Louis, MO, USA). Scriptaid, CI-994, Apicidin,
Panobinostat (LBH589), Suberoylanilide hydroxamic acid (SAHA, also known as Vorinostat), Tubacin,
and Trichostatin A were reconstituted in sterile dimethyl sulfoxide (DMSO). Sodium 4 Phenylbutuyrate,
Suberoyl bis-hydroxamic acid (SBHA), and Valproic Acid were reconstituted in sterile water.

2.3. Cell Viability and Caspase Assays

[3–5-dimethylthiazol-2-yl)-5-(3-carboxymethoxy phenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt]
MTT cell viability assays were performed in 96-well dishes using Cell Titer 96 Aqueous One solution
reagent (Promega, Madison, WI, USA) according to the manufacturer’s instructions. Data are expressed
as a percentage of mock-infected cells analyzed in parallel.

Alternatively, cells cultured in 24-well plates (2 cm diameter) were treated as indicated in each
figure legend (concentration of drug and time). Media and trypsinized adherent cells were centrifuged
and analyzed for annexin V binding (BD Bioscience, San Jose, CA, USA) and propidium iodide
(BD Bioscience) staining as described by the manufacturer. Cells were analyzed by flow cytometry
using the CytoFLEX (Beckman Coulter, Brea, CA, USA) and 10,000 independent events were analyzed
using CytExpert software (Beckman Coulter).

Cytotoxicity assays were performed in 96-well white plates (Corning, Corning, NY, USA) using
CytoTox-Glo reagent (Promega) according to the manufacturer’s instructions. Data are expressed as a
fold change of mock-infected cells analyzed in parallel. Functional caspase assays were performed
in 96-well white plates (Corning) using Caspase-Glo 9, 8, or 3/7 assays (Promega) according to the
manufacturer’s instructions. Data are expressed as a fold change of mock-infected cells analyzed
in parallel.

2.4. Western Blotting

As described in the figure legends, 6-well dishes (60 mm diameter) of cells were treated, followed
by lysis in 1X protein lysis buffer (Cell Signaling Technology, Danvers, MA, USA). Cell lysate
was resolved on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) gels
(Bio-Rad, Hercules, CA, USA) and transferred to nitrocellulose membranes. Samples were probed with
antibodies indicated in the figure legends (Cell Signaling Technology), anti-β-actin antibody (A5316,
Sigma-Aldrich, St. Louis, MO, USA), or IFIT-1 antibody (Novus Biologicals, Centennial, CO, USA).
Blots were visualized by horseradish peroxidase-conjugated antibodies (Cell Signaling Technology)
and chemiluminescence (Thermo Fisher Scientific).
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2.5. Fluorescence Microscopy and IRF-3 immunostaining

Cells were grown on glass bottom 48-well plates (MatTek, Ashland, MA, USA) and treated as
indicated in the figure legends. Live imaging microscopy was performed using the Perkin Elmer
Ultraview microscope with 20× objective lens. IRF-3 immunostaining was performed as previously
described [34] using a primary antibody against IRF-3 at 1:400 dilution (BD PharMingen, clone SL-12.1).
Slides were imaged on a Ziess710 confocal microscope with 40× objective lens.

2.6. Human IFN-β ELISA

As described in the figure legends, 6 -well dishes (60 mm diameter) of cells were treated and
supernatants were evaluated using a VeriKine Human IFN-βELISA kit as described by the manufacturer
(PBL Assay Science, Piscataway, NJ, USA). ELISA results were normalized to 106 cells.

2.7. Reverse Transcription and Real Time PCR

As described in the figure legends, 6-well dishes (60 mm diameter) of cells were treated, followed
by RNA extraction using TRIzol (Invitrogen, Carlsbad, CA, USA). To produce cDNA, 1 µg of
total RNA was used by utilizing TaqMan® Reverse Transcription Reagents (Applied Biosystems,
Foster City, CA, USA) as per the manufacturer’s instructions. Quantitative real-time PCR was
performed using Bio-Rad CFX Connect Real-Time and Fast SYBR® FAST Green Master Mix (Applied
Biosystems). Primers used include: β-actin forward 5′- GATCATTGCTCCTCCTGAGC-3′, and β-actin
reverse 5′-ACTCCTGCTTGCTGATCCAC-3′ and OAS2 forward: 5’-AGAAGCTGGGTTGGTTTATC-3’,
and OAS2 reverse 5’- GACGTCACAGATGGTGTTC-3’. IFIT1 and TLR3 forward and reverse primers
were obtained from studies by [35] and [36], respectively. Relative gene expression was determined
using CFX Manager 3.1 Software (Bio-Rad).

2.8. Statistical Analyses

Values are the mean of three replicates and experiments were performed at least twice. Statistical
analysis was performed using Prism GraphPad, students T test or a two-way ANOVA. In all figures,
* indicates p-value < 0.05, ** indicates p-value < 0.01, and *** indicates p-value < 0.001.

3. Results

3.1. HDAC Inhibitors Enhance Killing of Lung Cancer Cells by the P/V-CPI- Mutant through Increases in
Caspase Activity

To determine the effects on cell viability of combining HDAC inhibitors with P/V-CPI- mutant
infection, human non-small cell lung cancer H1299 cells were pretreated for 12 h with DMSO as a
vehicle control, or with various concentrations of either SAHA or scriptaid. SAHA was the first HDAC
inhibitor approved by the FDA and scriptaid is a structurally related novel pan-HDAC inhibitor [30].
Cells were then mock infected or infected with the P/V-CPI- mutant at a multiplicity of infection
(MOI) of 10 plaque forming units (PFU)/cell for 24 h Cell viability was determined using MTT assays.
As shown in Figure 1A, pretreatment with either HDAC inhibitor enhanced death induced by the
P/V-CPI- mutant. For example, mock infected cells that were pretreated with 100 µM SAHA retained
roughly 70% viability (left panel, Figure 1A), whereas cells pretreated with 100 µM SAHA and then
infected with P/V-CPI- virus showed only ~35% viability. A similar enhancement of cell killing was
observed with scriptaid pretreatment (Figure 1A, right panel).
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24 h, cell viability was determined by MTT assay as described in Methods section. (B) A549 cells were 
pretreated with 5 µM scriptaid or DMSO as a vehicle control for 12 h. Cells were mock infected or 
infected with the P/V-CPI- mutant at an MOI of 10, and cultured in the presence of 5 µM scriptaid or 
DMSO. Cell viability was determined by annexin V (left panel) and PI staining (right panel) at 24 hpi. 
(C) H1299 (left panel) or A549 (right panel) cells were pretreated with 20 µM scriptaid or DMSO for 
12 h before mock infection or P/V-CPI- infection at an MOI of 10. After culturing in the presence of 1 
µM scriptaid or DMSO for 24 h, cytotoxicity was determined by CytoTox-Glo assay. Values in all 
panels are the mean of three replicates normalized to DMSO pretreated mock infected samples with 
error bars indicating standard deviation. *** indicates p-value of < 0.001 comparing DMSO versus 
HDAC inhibitor pretreated infected samples. 
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Figure 1. Pretreatment with HDAC inhibitors enhances cell death by the P/V-CPI- mutant virus.
(A) H1299 cells were pretreated with the indicated concentrations of SAHA (left panel), scriptaid (right
panel), or DMSO as a vehicle control for 12 h. Cells were mock infected or infected with the P/V-CPI-
mutant at an MOI of 10, and cultured in the presence of the indicated concentration of drugs. After
24 h, cell viability was determined by MTT assay as described in Methods section. (B) A549 cells were
pretreated with 5 µM scriptaid or DMSO as a vehicle control for 12 h. Cells were mock infected or
infected with the P/V-CPI- mutant at an MOI of 10, and cultured in the presence of 5 µM scriptaid or
DMSO. Cell viability was determined by annexin V (left panel) and PI staining (right panel) at 24 hpi.
(C) H1299 (left panel) or A549 (right panel) cells were pretreated with 20 µM scriptaid or DMSO for
12 h before mock infection or P/V-CPI- infection at an MOI of 10. After culturing in the presence of
1 µM scriptaid or DMSO for 24 h, cytotoxicity was determined by CytoTox-Glo assay. Values in all
panels are the mean of three replicates normalized to DMSO pretreated mock infected samples with
error bars indicating standard deviation. ** and *** indicates p-value of <0.01 and <0.001 comparing
DMSO versus HDAC inhibitor pretreated infected samples.

We extended this study to another human non-small cell lung cancer cell line. A549 cells were
pretreated with either DMSO as a control or with 5 µM scriptaid, followed by mock infection or
P/V-CPI- infection. At 24 h post infection (hpi), cell viability was determined by staining with annexin
V and propidium iodide (PI) followed by flow cytometry. As shown in Figure 1B, infected control cells
showed ~35% and ~30% of the cell population being positive for annexin V (left panel) and PI staining
(right panel), respectively. By contrast, scriptaid pretreated cells that were infected with P/V-CPI- virus
showed ~60% and ~55% annexin V and PI positive staining.

To directly measure cytotoxicity, H1299 (Figure 1C, left panel) or A549 (Figure 1C, right panel) cells
were pretreated with either vehicle control or scriptaid for 12 h, followed by mock infection or infection
with P/V-CPI- virus. At 24 hpi, cytotoxicity was determined using a CytoTox-Glo assay which measures
overall cell death. As shown in Figure 1C, P/V-CPI- infection of H1299 cells resulted in a ~9 fold increase
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in cell killing compared to control mock infected samples. By contrast, scriptaid pretreatment followed by
P/V-CPI- infection resulted in a ~20-fold change in cytotoxicity. Similarly, in A549 cells (Figure 1C, right
panel) control P/V-CPI- mutant infection resulted in a ~10-fold increase in cytotoxicity compared to mock
infected samples, and this was enhanced to ~15-fold increase by scriptaid pretreatment.

To measure cellular caspase activity, H1299 cells were pretreated with 20 µM Scriptaid for 12 h
followed by mock infection or infection at high MOI with P/V-CPI-. At 24 hpi, caspase activity was
determined using caspase-glo assays. As shown in Figure 2A, effector caspases 3/7 were increased
~5-fold by Scriptaid treatment of mock infected cells, but were increased ~20-fold compared to control
samples when Scriptaid pretreated was combined with P/V-CPI- infection. In these same samples,
activities of the extrinsic pathway initiator caspase 8 and intrinsic pathway initiator caspase 9 were
increased ~9-fold and ~15-fold, respectively, in cells treated with scriptaid and infected with P/V-CPI-
virus compared to mock infected control samples (Figure 2B,C).
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Figure 2. HDAC inhibitor enhances caspase activation in P/V-CPI- infected cells. (A–C) H1299 cells
were pretreated with 20 µM Scriptaid or DMSO as a control for 12 h. Cells were then mock infected or
infected with P/V-CPI- at an MOI of 10, and cultured for 24 h in media containing either 1 µM Scriptaid
or DMSO. At 24 hpi, caspase activity was determined by Caspase-Glo-3/7 (A), -9 (B) or -8 (C) assays.
Values are the mean of three replicates normalized to DMSO pretreated mock infected samples with *
and *** indicating p-values of <0.05 and <0.001, respectively, comparing DMSO versus HDAC inhibitor
pretreated infected samples. (D) A549 cells were treated as described for panels A-C. At 24 hpi, cells
were harvested, and lysates were analyzed by western blotting for β-actin or for caspase-8, -9, and -3
cleavage products. (E) H1299 cells were pretreated with 20 µM scriptaid or DMSO for 12 h, and then
mock infected or infected with P/V-CPI- at an MOI of 10. Cells were then cultured in media containing
either 1 µM scriptaid or DMSO, with and without 50 µM of the pan-caspase inhibitor Z-VAD-FMK.
At 24 hpi, cytotoxicity was determined by CytoTox-Glo assay. Values are the mean of three replicates
normalized to DMSO pretreated mock infected samples with error bars indicating standard deviation
and *** indicating p-values of <0.001.
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To confirm the above results, western blots were used to measure caspase cleavage products in
lysates from A549 cells that were pretreated with scriptaid, followed by P/V-CPI- infection. As shown
in Figure 2D, scriptaid pretreatment followed by virus infection induced higher levels of cleaved
caspases-9 and -3 compared to treatment with inhibitor alone or P/V-CPI- alone. Increases in caspase-8
cleavage products following combined treatment was less clear, consistent with the lower induction of
enzyme levels shown in Figure 2B. The increase in caspase activity after scriptaid pretreatment was
responsible at least in part for the increases in cell death. This is evident in Figure 2E, where culturing
cells with a pan-caspase inhibitor Z-VAD-FMK greatly reduced the level of killing in scriptaid-pretreated
cells infected with P/V-CPI- virus.

Taken together, these data from two airway cancer cell lines and three different cytotoxicity assays
indicate that scriptaid pretreatment followed by P/V-CPI- infection leads to increases in caspase-9 and
-3/7 activity and to increases in cell killing through caspase-dependent pathways.

3.2. Double Stranded RNA Contributes to scriptaid-Mediated Enhancement of Cell Killing by the P/V-CPI- Virus

We have previously shown that strong induction of proinflammatory cytokines by the P/V-CPI-
virus is inhibited in a A549 cell line that was engineered to constitutively express the reovirus
sigma3 protein—a viral protein known to specifically bind to and sequester double stranded RNA
(dsRNA) [31,37]. Given that viral dsRNA can be an inducer of apoptosis [38], we tested the hypothesis
that if dsRNA was involved in scriptaid-mediated enhancement of P/V-CPI- killing, cell death would
be reduced in sigma 3-expressing cells. Parental A549 cells and A549-sigma 3 cells were pretreated
with scriptaid for 12 h before mock infection or high MOI infection with P/V-CPI- virus. Cells were
analyzed for Annexin V and PI staining at 24 hpi. As shown in Figure 3, both Annexin V (panel A) and
PI (panel B) staining was enhanced in P/V-CPI-infected parental A549 cells by prior treatment with
scriptaid. Most importantly, staining for both of these cytotoxicity markers was significantly reduced
in A549 cells expressing sigma 3 protein, indicating dsRNA plays a role in the scriptaid-mediated
enhancement of P/V-CPI- cell death.

Viruses 2018, 10, x 7 of 20 

 

To confirm the above results, western blots were used to measure caspase cleavage products in 
lysates from A549 cells that were pretreated with scriptaid, followed by P/V-CPI- infection. As shown 
in Figure 2D, scriptaid pretreatment followed by virus infection induced higher levels of cleaved 
caspases-9 and -3 compared to treatment with inhibitor alone or P/V-CPI- alone. Increases in caspase-
8 cleavage products following combined treatment was less clear, consistent with the lower induction 
of enzyme levels shown in Figure 2B. The increase in caspase activity after scriptaid pretreatment 
was responsible at least in part for the increases in cell death. This is evident in Figure 2E, where 
culturing cells with a pan-caspase inhibitor Z-VAD-FMK greatly reduced the level of killing in 
scriptaid-pretreated cells infected with P/V-CPI- virus. 

Taken together, these data from two airway cancer cell lines and three different cytotoxicity 
assays indicate that scriptaid pretreatment followed by P/V-CPI- infection leads to increases in 
caspase-9 and -3/7 activity and to increases in cell killing through caspase-dependent pathways. 

3.2. Double Stranded RNA Contributes to scriptaid-Mediated Enhancement of Cell Killing by the P/V-CPI- 
Virus 

We have previously shown that strong induction of proinflammatory cytokines by the P/V-CPI- 
virus is inhibited in a A549 cell line that was engineered to constitutively express the reovirus sigma3 
protein – a viral protein known to specifically bind to and sequester double stranded RNA (dsRNA) 
[31,36]. Given that viral dsRNA can be an inducer of apoptosis [37], we tested the hypothesis that if 
dsRNA was involved in scriptaid-mediated enhancement of P/V-CPI- killing, cell death would be 
reduced in sigma 3-expressing cells. Parental A549 cells and A549-sigma 3 cells were pretreated with 
scriptaid for 12 h before mock infection or high MOI infection with P/V-CPI- virus. Cells were 
analyzed for Annexin V and PI staining at 24 hpi. As shown in Figure 3, both Annexin V (panel A) 
and PI (panel B) staining was enhanced in P/V-CPI-infected parental A549 cells by prior treatment 
with scriptaid. Most importantly, staining for both of these cytotoxicity markers was significantly 
reduced in A549 cells expressing sigma 3 protein, indicating dsRNA plays a role in the scriptaid-
mediated enhancement of P/V-CPI- cell death. 

 
Figure 3. dsRNA contributes to enhanced death in cells treated with HDAC inhibitor and P/V-CPI- 
infection. (A, B) Parental A549 cells and A549 cells expressing reovirus sigma 3 protein were 
pretreated with 20 µM Scriptaid or DMSO for 12 h. Cells were mock infected or infected with P/V-
CPI- virus at an MOI of 10, and cultured in the presence of 1 µM Scriptaid or DMSO control. Cell 
viability was determined by Annexin V (A) and PI (B) staining at 24 hpi. Values are the mean of three 
replicates with error bars indicating standard deviation. ** and *** indicating p-values of < 0.01 and < 
0.001, respectively. 

3.3. Scriptaid Pretreatment Enhances Killing of Lung Cancer Cells Infected with LACV and VSV 

We tested the hypothesis that HDAC-mediated enhancement of p/V-CPI- cell killing would 
extend to other cytoplasmic-replicating RNA viruses. A549 or H1299 cells were pretreated with 

Figure 3. dsRNA contributes to enhanced death in cells treated with HDAC inhibitor and P/V-CPI-
infection. (A, B) Parental A549 cells and A549 cells expressing reovirus sigma 3 protein were pretreated
with 20 µM Scriptaid or DMSO for 12 h. Cells were mock infected or infected with P/V-CPI- virus at
an MOI of 10, and cultured in the presence of 1 µM Scriptaid or DMSO control. Cell viability was
determined by Annexin V (A) and PI (B) staining at 24 hpi. Values are the mean of three replicates with
error bars indicating standard deviation. ** and *** indicating p-values of <0.01 and <0.001, respectively.

3.3. Scriptaid Pretreatment Enhances Killing of Lung Cancer Cells Infected with LACV and VSV

We tested the hypothesis that HDAC-mediated enhancement of p/V-CPI- cell killing would extend
to other cytoplasmic-replicating RNA viruses. A549 or H1299 cells were pretreated with Scriptaid for
12 h prior to mock infection or high MOI infection with hPIV2, ZIKV, VSV, WT PIV5 or LACV. Due to
the large virus-induced cytopathic effects seen at late times pi, the cells infected with hPIV2, ZIKV and
VSV were analyzed at 16 hpi by CytoTox-Glo assay. For WT PIV5 and LACV, cells were analyzed at
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24 hpi. As shown in Figure 4, Scriptaid pretreatment enhanced killing of both H1299 and A549 cells by
VSV (panels A and C) and LACV (panels B and D) infections, but this was not seen after infection with
hPIV2, ZIKV or WT PIV5. Microscopic analysis of VSV and LACV infected cells showed relatively
little cytopathic effect (e.g., cell rounding) in control treated cultures, but this was greatly enhanced
in scriptaid-pretreated cells (Figure 4E). The scriptaid-mediated enhancement of VSV and LACV cell
killing was confirmed by analysis of Annexin V and PI staining (Figure 4F,G).
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Figure 4. HDAC inhibitor pretreatment enhances cell death by other RNA viruses. (A–D) H1299 (A,B)
or A549 (C,D) cells were pretreated with 20 µM scriptaid or DMSO for 12 h. Cells were then either
mock infected or infected with the indicated viruses at an MOI of 10. After culturing in the presence of
1 µM scriptaid or DMSO for either 16 (A,C) or 24 (B,D) h, cytotoxicity was determined by CytoTox-Glo
assay. hPIV2, human parainfluenza virus 2; ZIKV, Zika virus; VSV, vesicular stomatitis virus. LACV,
La Crosse virus. Values are the mean of three replicates normalized to DMSO pretreated mock infected
samples, with error bars indicating standard deviation. ** and *** indicating p-values of <0.01 and
<0.001, respectively. (E–G) A549 cells were pretreated with 20 µM scriptaid or DMSO and either mock
infected or infected with LACV or VSV at MOIs of 10. After culturing in the presence of 1 µM scriptaid
or DMSO for 16 h, cells were imaged at 10×magnification, and representative bright field images are
shown (E). Cell viability was determined by annexin V (F) and PI (G) staining.
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3.4. HDAC Inhibitor Pretreatment Downregulates IFN-β Production and Enhances Spread of the P/V-CPI- Mutant

During the course of our studies, we observed that infected cells pretreated with scriptaid had
higher GFP expression derived from the P/V-CPI- genome compared to infected control untreated
cells. This is evident in Figure 5A, where microscopy analysis of infected H1299 cells showed brighter
green fluorescence in cultures of scriptaid pretreated P/V-CPI- infected cells compared to the DMSO
pretreated P/V-CPI- infected cells. When analyzed by flow cytometry, 10 µM scriptaid pretreatment
reproducibly resulted in ~1.5-fold increase in GFP intensity during high MOI P/V-CPI- infections
compared to vehicle treated cells (Figure 5B).
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Figure 5. Pretreatment of cells with an HDAC inhibitor increases P/V-CPI- GFP expression and
promotes low MOI virus spread. (A,B) H1299 cells were pretreated with the indicated concentrations
of scriptaid or control DMSO for 12 h. Cells were then mock infected or infected with P/V-CPI- at
an MOI of 10. After 24 h of culture in media containing either 1 µM scriptaid or DMSO, 20× bright
field (BF) or fluorescence (FL) images of cells were captured (A). Alternatively, cells were analyzed
by flow cytometry for GFP expression (B). Values are expressed as fold change over DMSO treated
virus infected cells set at 1.0. (C,D). A549 cells were pretreated with 20 µM scriptaid or DMSO for 12 h.
Cells were then mock infected or infected with the P/V-CPI- mutant at an MOI of 0.05, and cultured in
media containing 1 µM scriptaid or DMSO. At the indicated hpi, cells were harvested and analyzed by
flow cytometry for GFP expression (C) or PI staining (D). For all panels, error bars indicate standard
deviation. * and *** indicates p-values of <0.05 and <0.001, respectively.
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To determine if scriptaid pretreatment alters P/V-CPI- spread through a population of cells, A549
cells were infected at an MOI of 0.05 and cells were analyzed over time for GFP expression (Figure 5C)
and PI staining (Figure 5D). At 45 hpi, control cultures of P/V-CPI- infected cells showed GFP expression
and PI staining in ~15% and 20% of cells, respectively. By contrast, scriptaid pretreatment resulted
in GFP expression and PI staining in 30% and 50% of the cells. At later times after infection, GFP
expression in the cell population decreased in both control and scriptaid treated samples, likely due to
increased cell death. These data indicate that scriptaid pretreatment relieves a restriction on low MOI
spread of P/V-CPI- through a cell population.

Given our previous findings that P/V-CPI- is a potent inducer of IFN-β and is defective in blocking
IFN signaling [16], we tested the hypothesis that scriptaid pretreatment enhanced virus spread by
altering IFN responses. H1299 and A549 cells were pretreated with DMSO as a control or scriptaid,
and then mock infected or infected with P/V-CPI- at an MOI of 10. At 24 hpi, media was collected and
IFN-β levels were determined by ELISA. As shown in Figure 6A and B, mock infected cells produced
minimal IFN-β levels, which were largely unaltered by scriptaid. As shown previously [16], P/V-CPI-
infected control cells produced high amounts of IFN-β (Figure 6A,B). Most importantly, virus-induced
IFN-β secretion was effectively eliminated from cells that had been pretreated with scriptaid.Viruses 2018, 10, x 11 of 20 
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Figure 6. HDAC inhibitor pretreatment decreases P/V-CPI- induction of IFN-β and ISG expression.
(A–G) H1299 (A,C,E) or A549 (B,D,E) cells were pretreated with 20 µM scriptaid or DMSO for 12 h.
Cells were then mock infected or infected with P/V-CPI- at an MOI of 10 and cultured in media
containing either 1 µM scriptaid or DMSO. At 24 hpi, media was collected and analyzed for IFN-β
amounts by ELISA (A,B). Total cellular RNA was extracted and evaluated for IFIT1 (C,D) and OAS2
(E,F) expression levels by RT-qPCR. (G) H1299 cell lysates were analyzed for levels of IFIT protein by
western blotting. (H–J) H1299 cells were pretreated with 20 µM scriptaid or DMSO for 12 h. Cells were
then either mock treated or treated with 100 or 1000 U/mL of universal type 1 IFN. At 24 hpi, total
cellular RNA was extracted and evaluated for IFIT1 (H), OAS2 (I), and TLR3 (J) expression levels by
RT-qPCR. For all panels, error bars indicate standard deviation. ** and *** indicates p-values of <0.01
and <0.001, respectively.

To determine if scriptaid pretreatment altered IFN stimulated gene (ISG) expression in
P/V-CPI-infected cells, H1299 and A549 cells were pretreated with DMSO or scriptaid and then infected
at an MOI of 10 with P/V-CPI-. Expression of two ISGs was analyzed by qPCR at 24 hpi. As shown in
Figure 6C and D, IFIT1 and OAS2 genes were induced by P/V-CPI- infection of control cells. Scriptaid
pretreatment significantly reduced the expression of these ISGs after P/V-CPI- infection. Western
blotting confirmed scriptaid pretreatment reduced IFIT1 protein levels in H1299 cells (Figure 6G).

The above described scriptaid-mediated reduction in ISG expression could be due to a direct
altering of IFN signaling, or alternatively, be primarily due to the loss of IFN-β production which
indirectly reduces ISG expression due to loss of autocrine/paracrine signaling. In the absence of virus
infection, control and scriptaid-pretreated H1299 cells were induced with increasing levels of IFN
and ISG expression was assayed by qPCR. As shown in Figure 6H–J, scriptaid pretreatment did not
significantly alter the induction of IFIT1, OAS2 or TLR3 genes by exogenously-added IFN.

Taken together, these data support the conclusion that scriptaid pretreatment directly reduced
IFN-β production, which in turn indirectly reduced ISGs expression, contributing to enhanced P/V-CPI-
spread and cell death.

3.5. Scriptaid Treatment Reduces P/V-CPI-Induced Nuclear Localization of IRF-3

Following virus infection, IFN-β synthesis requires the phosphorylation and translocation of
IRF-3 to the nucleus to initiate transcription of the IFN-β gene [39]. To determine if scriptaid treatment
altered IRF-3 nuclear translocation, A549 cells were treated with DMSO or scriptaid and then infected
at high multiplicity with P/V-CPI-. At 22 hpi, IRF-3 location was examined by immunofluorescence.
As seen in the representative images in Figure 7A, mock infected cells showed diffuse cytoplasmic IRF-3
staining which was largely unaltered by scriptaid treatment. Consistent with previous results [31,34]
and the strong induction of IFN-β synthesis by P/V-CPI-, nearly all P/V-CPI-infected cells showed
intense nuclear IRF-3 staining. Most importantly, in the case of most cells pretreated with scriptaid,
P/V-CPI- infection did not produce intense IRF-3 nuclear staining, but rather the staining was seen in a
pattern resembling mock infected samples. Quantification of multiple microscopy images showed that
~70–80% of P/V-CPI- infected cells showed nuclear IRF-3 staining at either 14 or 22 hpi, which was
reduced to ~10% by scriptaid pretreatment.
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Figure 7. Effect of scriptaid treatment on P/V-CPI-induced IRF-3 nuclear localization and
phosphorylation. (A,B) A549 cells were pretreated with 20 µM scriptaid or DMSO for 12 h. Cells were
then mock infected or infected with P/V-CPI- at an MOI of 10 and cultured in media containing either
1 µM scriptaid or DMSO. IRF-3 immunostaining and DAPI nuclear staining was performed at 22 hpi
and imaged at 40×magnification (A). Samples from the experiment displayed in panel A were used to
determine the number of cells displaying intense nuclear staining as a percentage of the population (B).
For each sample, five random fields were counted and averaged, with error bars denoting standard
deviations. (C,D) A549 (C) and H1299 (D) cells were treated as described in panel A. At 24 hpi, cell
lysates were evaluated for IRF-3 phosphorylated at Ser396, total IRF-3 and β-actin by Western blotting.

IRF-3 is phosphorylated in the cytoplasm prior to nuclear translocation to activate the IFN-β
gene [39]. Western blotting was carried out to determine if scriptaid treatment altered P/V-CPI-induced
phosphorylation of IRF-3 at residue Ser396. As shown in Figure 7C and D, P/V-CPI- infection induced
phosphorylation of IRF-3 (lane 3), consistent with strong induction of IFN-β synthesis. In lysates from
scriptaid-treated P/V-CPI- infected cells, there was a reduction in IRF-3 phosphorylation but this was
typically not completely removed.

3.6. Post-Infection Treatment of P/V-CPI-Infected Cells with a Panel of HDAC Inhibitors Reveals Two Cell
Killing Profiles

We extended our analysis of the effect of 10 HDAC inhibitors on P/V-CPI- killing of HEp-2 cells,
a human laryngeal cancer cell line. In addition, we tested the hypothesis that treating cells with these
inhibitors after P/V-CPI- infection would enhance cell death. Cells were mock infected or infected at high
MOI with P/V-CPI-, and at 12 hpi were treated with a range of concentrations of 10 different HDAC
inhibitors shown in Figure 8. At 24 h post treatment, cell viability was determined by MTT cell viability
assay. The results shown in Figure 8 are organized into two groups which reflect the differential effect of
HDAC inhibitors on the viability of mock infected versus P/V-CPI-infected cells. Figure 8 panel A shows
examples of 5 HDAC inhibitors which enhance P/V-CPI- killing but also greatly reduce the viability of
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mock infected control cells. For example, treatment of cells with 50 µM Tubacin or Panobinostat resulted
in ~10% and 40% viability when coupled with P/V-CPI infection, respectively. However, mock infected cell
viability was also reduced to ~50–60% by 50 µM of the HDAC inhibitors (Figure 8A). By contrast, Figure 8
panel B shows examples of drugs such as SBHA, SAHA, and Trichostatin A which had a very modest
effect on the viability of mock infected control cells even at high concentrations of the drug (e.g., 100 µM),
but showed strong loss of viability in P/V-CPI- infected cells. These data suggest that not all HDAC
inhibitors will function optimally with P/V-CPI- infections, and the relative effectiveness of each drug may
differ between different human airway cancer cells.
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4. Discussion

We have previously shown that infection with the cytoplasmic-replicating RNA virus P/V-CPI-can
sensitize airway cancer cells to chemotherapeutic DNA damaging agents through the modulation of
DNA damage response pathways [26]. This prior finding led us to test the hypothesis that P/V-CPI-
infection would also sensitize cancer cells to treatment with other chemotherapeutic agents that alter
gene expression, DNA metabolism and stress responses. Here we show that airway cancer cells treated
with a variety of HDAC inhibitors show dose-dependent enhanced cell killing by the P/V-CPI- mutant
virus as well as two other negative strand RNA viruses. This enhanced killing is due to the upregulation
of caspase-dependent death pathways that include, at least in part, the response to dsRNA. In addition,
treatment with the HDAC inhibitor scriptaid repressed IFN-β production which is normally potently
induced by P/V-CPI- infection and led to increased viral spread through the cell population.

HDAC inhibitors have shown promise as chemotherapy agents. While four of these chemical
inhibitors have been approved by the FDA for hematologic cancers, there are disadvantages on their
use as single agents such as less success in solid tumor therapies [40]. Therefore, numerous ongoing
clinical trials are investigating HDAC inhibitors and additional forms of cancer therapies, such as
other chemotherapies, radiation, and immunotherapies [30]. One such promising combination therapy
is HDAC inhibitors and oncolytic viruses. Due to the pleiotropic effects of HDAC inhibitors on
various pathways, their mechanism of action is often complex when coupled with oncolytic viruses.
For example, valproic acid was shown to act synergistically with the DNA viruses adenovirus, herpes
virus, and vaccinia virus; however, it antagonized the potency of a different strain of adenovirus [41–45].
The proposed mechanisms of enhanced cell death with HDAC inhibitors and DNA oncolytic viruses
are very diverse, such as amplified viral replication (including increased viral entry due to increased
receptor expression), reduced antiviral responses, increased apoptosis or autophagy, increased NF-kB
activity, increased cell cycle arrest, and increased oxidative stress [46–48].

Our study was prompted by an interest in how HDAC inhibitors could be used with a novel
oncolytic virus based on a cytoplasmic replicating parainfluenza mutant. Shulak et al. [49] previously
showed in prostate cancer cell lines that the combination of HDAC inhibitors with VSV infection
resulted in an increase in virus replication and caspase dependent death, as well as a decrease in IFN-α
and ISG expression. HDAC inhibitors were shown to induce NF-κB-regulated genes and increased
NF-κB dependent autophagy, which led to enhanced death. In pancreatic cancer cell lines, Ellerhoff

and co-workers [50] found synergistic effects of HDAC inhibitors and measles virus infection on cell
death, however there was no alterations in virus growth or in IFN signaling pathways. Our results
with P/V-CPI- and airway cancer cells differs from these two prior reports by showing that scriptaid
pre-treatment: (1) enhanced killing through caspase-dependent pathways (versus autophagy for
VSV; [49]), (2) promoted virus spread through a cell population, and (3) reduced IFN-β production
and ISGs expression through a block at or upstream of IRF-3 nuclear translocation.

Our studies show the effect that an HDAC inhibitor can have on RNA virus activation of IFN
pathways. P/V-CPI- is a potent inducer of IFN-β, due to alterations in both the V protein and the P
protein component of the viral polymerase [16,34], and it is restricted in spread due to the paracrine
and autocrine effects of IFN-β [25]. As reviewed by Eckschlager et al. [29] and Suraweera et al. [30],
HDAC inhibitors have a tumor cell specificity and show minimal effects on healthy cells. Therefore,
healthy cells should be able to produce IFN and induce an anti-viral state upon P/V-CPI- infection,
thereby maintaining tumor specificity of our proposed combination therapy. Here we show that
Scriptaid treatment reduced IFN-β production from P/V-CPI-infected cells to background levels,
and enhanced low MOI growth and killing of a cell population. While prior work has shown that
HDAC inhibition can in some cases alter IFN signaling [51], we showed that with this virus/cell system,
HDAC inhibitors directly limited IFN induction but did not directly affect ISG expression. Virus
induced IRF-3 nuclear translocation was blocked by scriptaid treatment, suggesting an alteration
in cytoplasmic sensing or signaling versus more distal effects on nuclear transcription of the IFN-β
gene. While IRF-3 phosphorylation at a key regulatory site was reproducibly decreased by scriptaid
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treatment, it is not clear that this was sufficient to account for the nearly complete loss of IFN-β
production. Future work will address the specific step in IFN-β induction altered by HDAC inhibition.

HDAC inhibitors can regulate expression of proteins involved in apoptosis, including an increase in
pro-apoptotic protein family members, e.g., Bid, Bim, Bmf, Bad, and Noxa [52–55]. Conversely, HDAC
inhibitors can result in a decrease in anti-apoptosis proteins such as Bcl-2 and Bcl-w, as well as in select
caspase inhibitors, such as X-linked inhibitor of apoptosis (XIAP), survivin, and cellular FLICE-like
inhibitory protein (c-FLIP) [56–58]. Signals that activate the extrinsic apoptosis pathway have also
been shown to increase following HDAC inhibitor treatment [59–61]. For example, Nakata et al. [62]
found levels of death receptor 5 to be upregulated following HDAC inhibitor treatment, leading to
increased caspases -8, -10, -9, and -3 activation and apoptosis induced by Tumor Necrosis Factor (TNF)
related apoptosis ligand (TRAIL). While at this point it is unclear how HDAC inhibitors promote
P/V-CPI-medicated increases in caspases, there is a potential mechanism linked to scriptaid-induced
decreases in cellular inhibitors of apoptosis. This is supported by our previous findings that expression
of cIAP-1, XIAP, and survivin are all decreased by P/V-CPI- infection and that chemical inhibition of
survivin (with YM155) or XIAP (with Embelin) enhanced killing of a P/V-CPI- persistently infected cell
line [26].

dsRNA produced during the course of virus infection can be a potent inducer of cell death [38],
through pathways that can involve both caspase-8 and -9 [63]. Here we show that P/V-CPI-induced
killing is decreased in an A549 cell line engineered to express the reovirus sigma 3 protein which
sequesters dsRNA, and this decreased killing is seen in both untreated and scriptaid treated A549-sigma
3 cells. This suggests that scriptaid does not activate alternative death pathways, but rather amplifies
death pathways already activated by P/V-CPI-.

Scriptaid treatment promoted airway cancer cell killing by P/V-CPI-, but also by two other negative
strand RNA viruses we tested – LACV and VSV. While the mechanism by which WT PIV5 can replicate
to very high levels in most cell types but not induce a cytopathic effect is currently unknown, it was
nonetheless expected that HDAC inhibitors would not alter this phenotype in airway cancer cell
lines. Scriptaid treatment had a very strong effect on LACV cytopathic effect. What was surprising,
however, was our finding that HDAC inhibitors did not accelerate killing by infection with hPIV2
or ZIKV, both of which are associated with strong cytopathic effects. Since a number of groups are
proposing the use of ZIKV as an oncolytic vector [64], this result may warrant further in-depth study
to investigate variables such as HDAC inhibitors other than scriptaid, other cancer cell types, or the
length of treatment and infection.

The timing of HDAC inhibitor treatment can play a role in the effectiveness of the combination
treatment. For example, pretreatment before viral infection can improve viral yields, however
concurrent treatment eliminated this effect [41,65]. Due to the multifaceted nature of HDAC inhibitors,
our studies showcase the necessity of personalized medicine by characterizing tumors to better indicate
the proper treatment options. Which therapies to combine, the timing and length of treatments are
imperative factors that need to be considered when utilizing a combination approach with HDAC
inhibitors and oncolytic viruses.
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