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Abstract

Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like
all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress
across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV
nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human
dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of
nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique
PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term
Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and
these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution
sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This
method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages
(sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and
revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes
were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron
tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear
domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this
new strategy to investigate events during virion assembly at the single cell level.
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Introduction

Varicella-zoster virus (VZV) is an alphaherpesvirus that causes

varicella (chickenpox) and herpes zoster (shingles) [1]. The host

range of VZV is restricted to humans and its life cycle in the human

host depends upon tropism for skin, lymphocytes and neurons in

sensory ganglia, where it establishes latency [1,2]. VZV pathogen-

esis can be investigated in vivo using xenografts of human dorsal root

ganglia (DRG) and skin in a severe combined immunodeficiency

(SCID) mouse model [3,4]. Since VZV infectious particles are

highly cell-associated, VZV spreads from cell to cell, accompanied

by extensive cell-cell fusion and syncytia formation in vitro and

polykaryocyte formation in DRG and skin in vivo [5–7].

All herpesviruses, and many other DNA viruses like adenovi-

ruses, papillomaviruses or polyomaviruses, replicate in the host cell

nucleus. During VZV infection, genome copies are synthesized in

nuclear replication compartments and genomic DNA is packaged

into icosahedral nucleocapsids formed by ORF40, the major

capsid protein, and smaller capsid surface proteins, such as

ORF23 protein. After assembly, nucleocapsids egress across the

nuclear membrane for secondary envelopment in the cytoplasm

and are then released as enveloped infectious virus particles [1,8].

PML protein has many different isoforms and is a major

organizing component of these nuclear domains, which vary in

shape, size, and molecular composition. PML isoforms share a

conserved N-terminus, which is involved in PML oligomerization

and contains a characteristic RBCC/TRIM motif. Different PML

isoforms have unique C-terminal domains, which may be

important in isoform-dependent functions [9,10].

PML-NBs have been implicated in controlling the replication of

several alphaherpesviruses [11–21]. PML-NBs are targeted for

disassembly in VZV-infected cells in vitro and in human

epidermal cells of skin xenografts infected in vivo by a mechanism

involving the interaction of SUMO-interacting domains (SIM) of

the VZV immediate early protein ORF61 with sumoylated PML

protein [21]. The targeting of PML-NBs for disassembly promotes
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VZV replication and spread in vivo in human skin xenografts and

depletion of PML protein enhances VZV replication in cell

culture, indicating a role for PML in the host cell defense [16,21].

Whereas PML protein undergoes little degradation in VZV-

infected cells, other alphaherpesviruses, including HSV-1, pseu-

dorabies virus (PRV), bovine herpes virus type 1 (BHV-1) and

equine herpesvirus type 1 (EHV-1) target PML for immediate

proteosome-mediated degradation through functions of viral ICP0

ubiquitin ligase-like proteins, albeit with different degrees of

efficiency [18]. HSV-1 appears to be most strongly regulated by

PML isoforms I and II, based on their capacity to partially reverse

the increase in plaque formation of an ICP0-null mutant observed

in PML-depleted cells [17]. Recent work showed that HSV-1

ICP0 preferentially targets SUMO-modified isoforms of PML but

also triggers PML I degradation independently of SUMO

modification [19]. Interestingly, PML degradation also appears

to be promoted by the US3 serine/threonine kinases of HSV-2

and PRV [20].

In the case of VZV, we found that if PML nuclear bodies are

not dissociated effectively, these structures function to sequester

VZV nucleocapsids in differentiated human cells within DRG and

skin xenografts in vivo and in cultured cells [22]. Large ring-like

PML-NBs created cages that contained nucleocapsids sequestered

in the nuclei of neurons and satellite cells [22]. These PML cages

in virus-infected cells resembled PML clastosomes, which seques-

ter aberrant polyglutamine (polyQ) proteins, such as Huntingtin

(Htt), in several neurodegenerative disorders [23,24]. Thus,

entrapment of VZV nuclecapsids may reflect a more basic

cytoprotective function of PML in sensing and containing nuclear

aggregates of aberrant proteins in a ‘nuclear safe house’, similar to

the function of nuclear aggresomes [25,26]. Further work

demonstrated that of several PML isoforms tested, only PML IV

promoted the sequestration of VZV nucleocapsids through an

interaction with the ORF23 capsid surface protein, and that this

process significantly inhibited VZV replication in vitro [22].

Quantitative immuno-electron microscopy analysis of ultrathin

sections indicated that the majority (about 95%) of VZV

nucleocapsids were found in PML cages, suggesting a surprisingly

high efficiency of PML mediated capsid sequestration [22].

However, since ultrathin sections cannot reveal the shape and

volume of PML cages, it was not possible to determine their

sequestration capacity, that is, how many VZV nucleocapsids may

be sequestered inside individual PML cages. Furthermore, because

ultrathin (50–100 nm) cross-sections through a nucleus may

represent ,1% of the diameter of a typical mammalian cell

nucleus the sequestration efficiency, defined as the proportion of

all nucleocapsids present in a complete individual nucleus that are

sequestered within PML cages, could not be determined.

The goal of this study was to develop an EM imaging method

with a high enough resolution to precisely identify, locate and

count VZV nucleocapsids and at the same time, allow the efficient

3D reconstruction of large volumes of host cell nuclei, including

complete PML cages. Here we describe a novel 3D imaging and

reconstruction strategy that we term Serial Section Array-

Scanning Electron Microscopy (SSA-SEM). Using this method

together with electron tomography, we were able to create 3D

reconstructions of complete nuclei of herpesvirus-infected cells and

of PML cages with sequestered VZV nucleocapsids. Determining

the shape and the volume of host cell nuclei and PML cages

together with the precise 3D localization of several thousand VZV

nucleocapsids enabled us for the first time to quantitatively

estimate the sequestration capacity and efficiency of individual

PML nuclear cages. The application of this strategy to resolve

questions about PML-NB entrapment of VZV nucleocapsids is a

proof of concept for its use to address other questions in virology

and cell biology.

Results

PML cages with sequestered VZV nucleocapsids can be
visualized by scanning EM

As we have shown previously [22], PML cages in VZV-infected

cells appear as ring-like structures that contain ORF23 capsid

protein by confocal microscopy using antibodies to PML and

ORF23, the small capsid protein (Figure 1A). At the higher

resolution obtained by immunogold-TEM, mature (C-type cap-

sids) and immature (A-and B-type capsids) can be identified that

are embedded within and surrounded by densely immunogold-

labeled PML positive material (Figure 1B). Next, we employed a

high-contrast sample preparation protocol in order to be able to

identify PML cages solely by their distinct morphology in samples

not suitable for immunogold labeling. Similar to the densely

labeled PML shell visible by immunoTEM (Figure 1B), a shell of

amorphous electron dense material surrounding clusters of VZV

nucleocapsids was visible in the high-contrast embedded samples

(Figure 1C, green line). Sequestered mature C-type capsids and

immature A-and B-type capsids could be distinguished clearly

(Figure 1D). Importantly, the electron dense PML-positive shell

surrounding sequestered VZV nucleocapsids was also visualized

when the same sample was studied using a high-resolution

scanning electron microscope (SEM) equipped with a field

emission gun (FEG) and a back-scattered electron detector (BSE-

detector) (Figure 1E) and the SEM resolution was sufficient to

distinguish between mature and immature nucleocapsids

(Figure 1F). Therefore, the distinctive morphological profiles of

nuclear PML cages that contain sequestered nucleocapsids could

be identified unequivocally by TEM as well as SEM. These results

made it possible to perform the large volume and high-resolution

Author Summary

Varicella-zoster virus (VZV), the cause of varicella and
zoster, is a human herpesvirus that replicates in the host
cell nucleus where viral genomes are packaged into virion
nucleocapsids. We have recently identified antiviral PML
(promyelocytic leukemia) nuclear cages that sequester VZV
nucleocapsids and inhibit formation of infectious particles.
Here we developed a novel three-dimensional (3D)
imaging and reconstruction strategy, termed Serial Section
Array-Scanning Electron Microscopy (SSA-SEM) that to-
gether with electron tomography made it possible to
derive 3D reconstructions of complete herpesvirus infect-
ed host cell nuclei and of PML cages with ultrastructural
precision for the first time. We determined the 3D
distribution of several thousand nucleocapsids within
reconstructed volumes of single host cell nuclei and in
PML cages as well as their sequestration efficiency and
sequestration capacity: more than 98% of nucleocapsids
were entrapped within PML cages and individual PML
cages could sequester nearly 3,000 nucleocapsids which
were cross-linked by an irregular electron-dense meshwork
within the PML cages. This 3D analysis provides a proof of
concept for using SSA-SEM to investigate virion assembly
at the whole cell level and further elucidates our
observation that PML cages are antiviral nuclear domains
which block VZV nucleocapsid egress from the infected
cell nucleus.

3D EM of VZV Infected Cell Nuclei and PML Domains
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3D reconstruction of VZV-infected cell nuclei and PML cages

aided by SEM imaging.

Serial section array-scanning electron microscopy (SSA-
SEM)

VZV-infected cell nuclei with diameters of about 5–10 mm and

PML cages of 0.5-5 mm diameter [22] are too large to be fully

reconstructed by conventional electron tomography approaches that

usually use 100–300 nm sections. Although a serial ultrathin section

approach in combination with TEM analysis could be used to

reconstruct whole nuclei or cells, this approach has proven very time

consuming and has several technical disadvantages. Since the area on

one TEM grid is very small, several grids must used if imaging more

than 10–20 serial sections is necessary to create a large volume

reconstruction; TEM grids are easily damaged and damage to just one

grid means that the whole series of sections before and after the missing

grid cannot be used for the 3D reconstruction experiment. TEM

sections are also prone to folding when placed on the grid, which causes

distortions in the 3D reconstruction. In contrast, large samples fit into

the microscope for SEM and long ribbons of ultrathin sections can be

deposited on glass slides.

We developed SSA-SEM as a method that provided both a high

enough resolution to identify and precisely locate virion capsids and at

the same time allowed the efficient 3D reconstruction of large volumes

of host cell nuclei and complete PML cages (Figure 2). SSA-SEM

combines principles and strategies of related methods such as

immunofluorescence (IF) array tomography [27,28], serial block

face-SEM [29] and focus ion beam (FIB) or iron abrasion SEM

[30,31]. Ribbons of ultrathin serial sections were acquired by

ultramicrotomy. We used 100 nm sections to avoid double counting

of VZV nucleocapsids, which have a diameter of approximately

100 nm, in consecutive sections. Ribbons of serial sections were

transferred onto gelatin-coated glass-slides (Figure 2A), followed by

heavy metal counterstaining and a final carbon coating step to avoid

charging during SEM imaging. The serial section array was then

imaged with a high-resolution SEM using a BSE detector, which

generates TEM-like images of cell structures with a contrast dependent

mainly on the high atomic weight and differential adsorption of heavy

metal stains to cellular proteins, membranes and nucleic acids

(Figure 2B). Consecutive SEM imaging of serial sections created

ordered stacks of unaligned digital images (Figure 2C). These stacks

were then computationally aligned (Figure 2D). The aligned images

were then segmented by manual or automatic (threshold) tracing of the

morphology of structures of interest, e.g. nucleocapsids and PML cages

(Figure 2E). From this data, a 3D model was generated that shows the

shape of PML cages and the distribution of virion capsids within the

reconstructed nuclear volume (Figure 2F).

Large volume 3D reconstruction of VZV-infected cell
nuclei by SSA-SEM

Using SSA-SEM we first analyzed a VZV-infected melanoma

cell nucleus in which endogenous PML was expressed (Figure 3A–

E and Video S1). The shape of the infected cell nucleus and the

nuclear volume were determined by tracing the outer boundary of

the nucleus in all 50 consecutive sections, encompassing a total

thickness of about five microns and a nuclear volume of about

95 mm3. The 3D reconstruction revealed an irregular shape of the

nucleus characterized by several indentations and deep invagina-

tions (Figure 3B and Video S2). If visualization was limited to the

original two-dimensional sections, these invaginations might be

misinterpreted as ‘vesicles’ or ‘vacuoles’ within the nuclear matrix

(Figure 3A and Video S1). Morphological tracing and 3D

modeling revealed the location and distribution of the electron

dense heterochromatin, which is located primarily at the periphery

of the nucleus (Figure 3C–E, blue); also seen is the nucleolus in the

lower center of the nucleus (Figure 3C–E, brown) and the mature

and immature nucleocapsids (Figure 3C–E, red and yellow

spheres, respectively). 3,467 (82%) immature capsids and 756

(18%) mature capsids were identified within the serial sections and

their positions were precisely modeled in the reconstructed nuclear

volume (Figure 3C–E and Video S2). This work revealed that

mature and immature capsids were not segregated into different

nuclear domains; instead, they were mixed randomly and were

evenly distributed within the nuclear volume outside of the

heterochromatin and the nucleolus and were excluded from the

deep nuclear imaginations (Figure 3E and Video S2).

These SSA-SEM results were confirmed by two more 3D

models of large volumes of VZV-infected cell nuclei, which were

derived by morphological segmentation of 18 consecutive TEM

sections of 100 nm thickness (Figures 3F and 3G; Video S3). In the

reconstructed nuclear volume in Figure 3F, which accounted for

46.2 mm3, 109 (25.65%) mature and 316 (74.4%) immature

nucleocapsids were identified and 102 (7.6%) mature and 1,238

(92.4%) immature capsids were identified in the nuclear volume in

Figure 3G (43.4 mm3) (Figure 3G and Video S3). Similar to the

nucleus in Figure 3A–E, most nucleocapsids were distributed

evenly throughout the reconstructed nuclear volume; no extended

clusters of aggregated nucleocapsids were visible. The quantifica-

tions of structures shown in Figure 3 are summarized in Table 1.

Individual PML nuclear cages sequester thousands of
VZV nucleocapsids

We next used SSA-SEM to analyze VZV-infected melanoma

cells that express PML IV when induced with doxycycline,

together with endogenous PML [22]. Inducing PML IV creates

conditions that allow enough PML cages to persist in VZV-

infected cells for 3D ultrastructural analysis. Using SSA-SEM we

first identified a typical VZV syncytium in which infected cells are

fused into a polykaryon (Figure 4A, left panel). A nucleus that

contained two distinct electron dense PML cages with numerous

sequestered VZV nucleocapsids was identified within the syncy-

tium (Figure 4A, middle and right panel). Next, 18 consecutive

100 nm serial sections through this nucleus were imaged by SSA-

SEM and then traced and segmented as illustrated in Figure 2.

Figure 1. Visualization of PML cages and VZV nucleocapsids by confocal microscopy, TEM and SEM. (A–F) Melanoma cells that
expressed doxycycline-induced PML IV were infected with VZV for 48 hours. (A) Analysis by confocal microscopy: permeabilized cells on coverslips
were immunostained for PML (green) and ORF23 capsid protein (red); nuclei were stained with Hoechst (blue). Scale bar, 10 mm. (B) Immunogold TEM
analysis: cells were high-pressure frozen, freeze-substituted, embedded in LR-White resin and then labeled with anti-PML polyclonal rabbit antibody
and Protein A conjugated with 15 nm gold particles. Note the dense PML-gold labeling (arrows) in the amorphous layer (surrounded by a green line)
that encloses the sequestered capsids. (C and D). Standard TEM for morphological analysis: cells were aldehyde-fixed, ‘en block’ stained for high
contrast and then embedded in epoxy-resin. Note the electron dense amorphous PML layer (surrounded by green line) that encloses the clustered
capsids. (D) Three types of capsids (A, B, C-type capsids, red arrows) can be distinguished by TEM. (E and F) Scanning EM analysis with a back-
scattered electron detector (BSE) of the same sample as in C. Note the electron dense PML layer (surrounded by a green line) that encloses the
sequestered capsids. (F) The three types of capsids (A, B, C-type capsids, red arrows) can also be distinguished by BSE-SEM. Scale bars in B–F are
500 nm.
doi:10.1371/journal.ppat.1002740.g001

3D EM of VZV Infected Cell Nuclei and PML Domains
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Inspecting different sections in the series (Figure 4B and Video S4)

suggested a spherical shape of the PML cages. Tracing and 3D

modeling (Figure 4C–F and Video S5) of the electron dense

heterochromatin (blue), all nucleocapsids (yellow spheres) and

mature capsids (only in Figure 4E and F, orange), and the outer

surface of the electron dense shell of the PML cages (green) was

performed with all 18 sections (stack thickness approximately 1.8

microns). The 3D model revealed that only six (0.2%) of a total of

3,062 nucleocapsids located within the reconstructed nuclear

volume (63 mm3) were not aggregated together with the other

nucleocapsids (yellow spheres) (Figure 4C and D). 3,056 nucleo-

capsids (99.8%) were in clusters enclosed by the two PML cages

(green) present in this nuclear volume. Interestingly, each of the

PML cages, whose reconstructed volumes were about 6.2 mm3

(upper cage, Figure 4D) and 4.6 mm3 (bottom cage in Figure 4D)

contained more than a thousand nucleocapsids: 1,732 and 1,324,

respectively. This information made it possible to estimate the

packing density of capsids within the two PML cages, the mean of

which was 284 nucleocapsids/mm3. A 3D model of the upper PML

cage at higher magnification identified the position of both mature

and immature capsids and revealed that both types were randomly

packed within the PML cage (Figure 4E–F). Of note, both PML

cages were associated with electron dense heterochromatin (blue)

in the periphery of the nucleus (Figure 4D).

These results encouraged us to attempt a 3D reconstruction of

the complete volume of a VZV infected cell nucleus in order to

visualize and quantify the shape, location, size and number of all

PML cages and capsids present. We succeeded in imaging a

ribbon of 82 consecutive serial sections (100 nm thickness) through

a nucleus (Figure 5A and Video S6). Both the first and last sections

contained large areas of heterochromatin, indicating that these

sections were cut through the nuclear periphery at the top or

Figure 2. Outline of the serial section array scanning electron microscopy (SSA-SEM) method. SSA-SEM enables the three-dimensional
reconstruction of cell nuclei and PML domains combined with the visualization and quantification of VZV capsids with ultrastructural precision. (A)
Ribbons of ultrathin serial sections are placed on gelatin-coated glass slides and then carbon-coated to prevent charging effects during SEM imaging.
The indicated area (red square) contains about 60 consecutive sections. A standard TEM slot-grid (arrow) commonly used in serial section TEM and a
ten-cent coin are shown for size comparison. (B) Low magnification view of a ribbon of serial sections imaged by SEM using a back-scattered electron
detector (BSE). (C) Using BSE-SEM, regions of interest (ROI), such as whole cells, nuclei or PML-domains can be identified and then repeatedly imaged
in consecutive sections, yielding a stack of unaligned digital images of the ROI. (D) The stack of digital images must be aligned, either manually or
automatically, for later 3D reconstruction. (E) Structures of interest, such as electron dense heterochromatin (blue), PML domains (green) and VZV
capsids (yellow) are manually or automatically (threshold) traced in each serial section for quantification of numbers, areas or volumes and for the
visualization of size, shape and distribution of segmented structures in the final 3D model (F).
doi:10.1371/journal.ppat.1002740.g002
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Figure 3. Three-dimensional distribution of VZV nucleocapsids in cell nuclei without PML cages. Melanoma cells were infected with VZV
for 48 h and processed for SSA-SEM (A–E) or serial section TEM (F and G). A) BSE-SEM images of four representative sections (s20, s30, s40, s50) from a
series of 50 consecutive 100 nm sections are shown. A nuclear indentation is outlined and marked with a blue arrow. See also Video S1. (B) 3D model
of the shape of the VZV infected nucleus (grey). Upper panel (front view): the cross section plane and a deep invagination (blue arrow) of the nucleus
are visible. The middle panel (side view) and bottom panel (rear view) reveal the irregular shape of the nucleus with numerous indentations. (C) View
of the same nucleus at different angles in transparent mode. Color code: transparent grey, boundary of the nucleus; transparent blue, electron dense
heterochromatin; brown, nucleolus; red spheres (mature capsids, C-type) and yellow spheres (immature capsids, A and B-type). A total of 4,223
capsids were identified and visualized. (D) Higher magnification view; color code as in C, but nuclear envelope not shown. The dense
heterochromatin (solid dark blue) hides nucleocapsids that are located deeper in the nuclear volume. (E) Same view as in D, but with transparent
heterochromatin: the distribution of capsids throughout the nucleus is revealed. See also Video S2. (F and G) Two different nuclei that were
reconstructed from serial sections imaged by TEM. The color code is the same as above. Insets show representative images from the TEM series. The
3D models show the distribution of 425 (F) and 1,340 capsids (G), respectively. See also Video S3. All scale bars are 5 mm.
doi:10.1371/journal.ppat.1002740.g003
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bottom of the nucleus, respectively. Therefore, we estimate that an

almost complete nuclear volume is represented in this stack of

serial sections and in the 3D reconstruction. 3D modeling of the

shape of the nucleus from tracing the outer boundary of the

nucleus on each section revealed an irregular surface with a wide

valley-like indentation (Figure 5B and E). Inspection of the original

SSA-SEM images of the serial sections through this nucleus

revealed that this wide indentation was directly adjacent to a very

prominent ER network in the cytoplasm (Figure 5A, red arrow

and Video S6). The total reconstructed nuclear volume was about

291 mm3 and contained four distinct PML cages (Figure 5A, black

arrows 1–4) of irregularly globular shapes (solid green) (Figure 5C

and F) of very different sizes and with volumes that ranged from

about 0.8–10 mm3 (Table 1). 5,597 nucleocapsids were traced and

precisely localized within the reconstructed volume; 5,527 (98.7%)

were sequestered within the PML cages (yellow spheres) (Figure 5D

and G) and only 70 (1.3%) nucleocapsids (red spheres) were

outside of PML cages (Figure 5C–I) (Table 1). Therefore, this

comprehensive large volume nuclear reconstruction (Video S7)

proved that PML cages are extremely efficient in reorganizing and

sequestering thousands of VZV nucleocapsids. Depending on their

size, individual PML domains were found to sequester from about

126 capsids to more than 2,700 nucleocapsids with an average

packing density of 249664 SD/mm3 (N = 4) (see also Table 1).

Again, the four PML cages were found in the periphery of the

nucleus associated with the electron dense heterochromatin

(Figure 5A, H, I and Video S8).

PML protein is present in the periphery and the core of
PML cages and binds to entrapped VZV capsids

The electron density of the PML positive shell of nuclear PML

cages allowed tracing and reconstruction of the shape (3D surface

view) of this compartment by SSA-SEM; however the 3D

distribution of PML protein within PML cages was not revealed

using this approach. Therefore we used a serial section

immunoTEM (ss-immunoTEM) approach to investigate quanti-

tatively and in three dimensions how PML protein is distributed

within the shell and in the core of the PML cages, where the

nucleocapsids are entrapped. Seven consecutive sections (100 nm)

through HPF/FS-treated and LRwhite embedded cells that

contained PML cages with entrapped VZV capsids, were labeled

with a PML specific antibody and Protein A conjugated to 15 nm

gold particles, and then imaged by TEM (Figure 6A). The results

of tracing and modeling of the PML labeling (small green spheres),

mature capsids (red spheres) and immature capsids (yellow spheres)

and the electron dense heterochromatin (blue) are shown in

Figure 6B, C and Video S9. About 5,219 PML gold particles, 63

mature capsids and 403 immature capsids were identified; 272 of

the entrapped nucleocapsids were directly associated with PML

gold particles (half-green spheres). The 3D reconstruction clearly

reveals a ring-shaped ‘cloud’ of dense PML-labeling that

corresponds to the electron dense shell of PML cages as seen in

the high-contrast embedded samples analyzed by SSA-SEM

before. Significant amounts of PML gold labeling were also found

in the core of the PML cage (Figure 6A, right panel and Figure 6C)

where 58% of the entrapped nucleocapsids were directly

associated with PML gold particles (half-green spheres). Therefore

PML protein is not only a structural component of the electron

dense shell of PML cages but also binds to nucleocapsids

entrapped within the core of the PML cages.

VZV nucleocapsids are entrapped in an electron-dense
meshwork in PML cages

The observation by ss-immunoTEM that PML protein was

present in the shell and in the center of PML cages, where it was

found directly associated with many VZV capsids, suggested that

PML protein is not only a structural component of the electron

dense shell of PML cages, but may also be involved in the

immobilization or cross-linking of sequestered VZV nucleocapsids.

To address this hypothesis, we investigated the ultrastructure of

PML cages and of sequestered nucleocapsids by electron

tomography, which provided a higher resolution than SSA-

Table 1. Quantification of structures identified in 3D reconstructions of VZV infected host cell nuclei.

Figure/Object Volume ( mm3)
Number of all
capsids

Number of free
capsids

Number of
sequestered capsids

Capsid density
(capsids/mm3)

Figure 3A–E/Nucleus 1 95 4,223 (100%) 4,223 (100%) 0 44.4

Figure 3F/Nucleus 2 46.2 425 (100%0 425 (100%) 0 9.2

Figure 3G/Nucleus 3 43.4 1,340 (100%) 1,340 (100%) 0 30.9

Figure 4B–D/Nucleus 4 63 3,062 (100%) 6 (0.2%) 3,056 (99.8%) 48.6

Figure 4B–D/Cage 1 (top) 6.2 1,732 279.4

Figure 4B–D/Cage 2 (bottom) 4.6 1,324 287.8

Figure 5A–G/Nucleus 5 291 5,597 (100%) 70 (1.3%) 5,527 (98.7%) 19.2

Figure 5A–G/Cage 1 0.8 126 157.5

Figure 5A–G/Cage 2 10 2,780 278

Figure 5A–G/Cage 3 5.8 1,778 306.5

Figure 5A–G/Cage 4 3.3 843 255.5

Average capsid packing density of PML cages 1–4 of nucleus 5 (capsids/mm3) 6 SD 249664 (N = 4)

Average capsid packing density of all reconstructed PML cages (capsids/mm3) 6 SD 261653 (N = 6)

Average capsid density in all reconstructed nuclear volumes (capsids/mm3) 6 SD 30617 (N = 5)

The number of free or sequestered nucleocapsids identified in VZV infected host cell nuclei and the volume of the analyzed nuclei and PML cages were determined by
counting the corresponding traces in all serial sections that were used to generate the 3D models. Capsid densities were calculated by dividing the number of
nucleocapsids with the corresponding volume (mm3) of the PML cage or nucleus. The left column indicates the corresponding figures where the quantified objects are
visualized.
doi:10.1371/journal.ppat.1002740.t001
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SEM, albeit at the cost of allowing analysis of only a much smaller

(thinner) sample volume. The samples for tomography consisted of

HPF/FS-treated and epoxy resin-embedded VZV infected mela-

noma cells that expressed PML IV together with endogenous PML

[22]. We first recorded dual-axis tomograms from 80 nm sections

of VZV infected cell nuclei with PML cages (Figure 7A–E). The

3D models were generated by analyzing digital tomogram slices as

was done for SSA-SEM, combining manual tracing and automatic

threshold-based tracing. EM tomography revealed that all

nucleocapsids within PML cages were embedded in an irregular

electron dense meshwork with numerous fibrous structures

emanating from the nucleocapsids and often cross-linking adjacent

capsids (Figure 7A and Video S10). These irregular fibrils were

even better visible when the contrast was inverted (Figure 7B,

white arrows) and were then traced automatically by applying a

threshold (green outline) (Figure 7C) in order to reconstruct a 3D

model of the irregular meshwork (green) within PML domains

(Figure 7D, E and Video S11). The 3D volume information of

tomograms from 80 nm sections is very limited because of the

small z-dimension of the section. In order to reveal the precise

arrangement and packing of nucleocapsids within the center of the

PML cages and to confirm the presence of an irregular electron

dense meshwork entrapping VZV nucleocapsids, we next recorded

dual-axis tomograms from 300 nm thick sections through PML

cages. A volume view representation of a representative tomogram

(Figure 7F and Video S12) and an ortho-slice view of the same

volume (Figure 7G and Video S12) shows the packing of

nucleocapsids in several layers and that, in contrast to paracrystal-

line inclusion bodies of nucleocapsids observed in some HSV-

infected cells [22], those entrapped in PML cages were rather

loosely configured, were usually not in direct contact, and the

space between them was filled with an irregular electron dense

meshwork and fibers. Threshold-aided tracing and 3D recon-

structions of the irregular meshwork (green) (Figure 7J–K), and of

mature (red) and immature (yellow) VZV nucleocapsids showed

that all traced capsids were tightly associated with the irregular

meshwork that also cross-linked adjacent capsids (Figure 7I–K and

Videos S13 and S14). This cross-linking of adjacent capsids was

also visible in the original digital tomogram slices (green arrows)

(Figure 7L) and confirmed our observations from the 80 nm

tomography reconstructions.

Discussion

In this work, we developed Serial Section Array-Scanning

Electron Microscopy (SSA-SEM), a novel three-dimensional (3D)

imaging and reconstruction strategy, and applied the technique to

the analysis of VZV-infected cells. Using SSA-SEM and EM

tomography, we have reconstructed the nuclei of host cells infected

with this representative herpesvirus and, for the first time, revealed

the numbers and precise location of thousands of VZV nucleo-

capsids, visualized the 3D shape and ultrastructure of nuclear

PML cages that entrap nucleocapsids, and provided quantitative

estimates of the volume, sequestration efficiency and sequestration

capacity of these PML cages. The large volume reconstruction of

nuclei in VZV-infected cells also provided basic information on

how VZV infection affects the shape of the host cell nuclei and

how subnuclear domains like electron dense heterochromatin or

PML cages and nucleocapsids are spatially related. Of interest, our

3D analysis revealed that PML cages with entrapped capsids were

consistently located at the periphery of the nucleus and associated

with domains of electron dense heterochromatin, suggesting that

the formation of PML cages and VZV capsid sequestration are

initiated adjacent to these domains.

Our experimental challenge, which has many similarities to

obstacles encountered in addressing other virology and cell biology

questions, consisted in how to combine an efficient approach for

the large volume 3D reconstruction of infected cell nuclei and

complete PML cages with the high ultrastructural resolution

necessary to localize VZV nucleocapsids and differentiate mature

from immature capsids. Infected cell nuclei have diameters of

about 5–10 mm and PML cages are about 0.5–5 mm [22]. These

structures are about one order of magnitude too large to be readily

reconstructed by conventional electron tomography approaches

that usually use 100–300 nm sections. Recent technical and

computational improvements have enabled some specialized

laboratories to apply serial-sectioning tomography for the recon-

struction of large organelles and even complete cells by merging

individual tomograms from consecutive sections into a single large

volume reconstruction [32]. However, this approach is very labor-

intensive so that only a few 3D reconstructions can be generated

and this limitation may raise questions about whether these models

are fully representative of the structures of interest.

SSA-SEM combines a sample preparation strategy (serial

section arrays) similar to the method used in immunofluorescence

(IF) array tomography with imaging and detection principles (high

resolution SEM with back scattered electron detection) that have

been used in serial block face (SBF)-SEM or focus ion beam (FIB)-

SEM [27–29,31,33]. In principle, the latter two methods could

also be used to analyze herpesvirus-infected cell nuclei or PML

cages. In fact, Feierbach et al. used SBF-SEM to locate structures

reminiscent of actin filaments and nucleocapsids in cells infected

with HSV-1 and PRV, which have caspids that are similar to VZV

capsids in size and shape [34]. Bennett et al. used FIB-SEM to

locate human immunodeficiency virus (HIV) particles in surface-

connected tubular conduits in HIV-infected macrophages [30].

However, these approaches require highly specialized equipment

that may not be readily accessible. Most importantly, these

techniques are destructive imaging methods that destroy the

sample block during image stack acquisition by step wise FIB-

milling or cutting the sample surface to allow successive surface

imaging at different sample levels, while discarding the serially-cut

sections. SBF-SEM and FIB-SEM may therefore not be ideal for

valuable samples that are difficult to obtain or to prepare. In SSA-

SEM, serial sections are secured on a glass slide, creating stable

arrays that can be stored and imaged repeatedly, allowing the

acquisition of several image series of the same sample at different

Figure 4. Three-dimensional distribution of VZV nucleocapsids in host cell nuclei with PML cages. Melanoma cells that express
doxycycline-induced PML IV were infected with VZV for 48 h and processed for BSE-SEM imaging. (A) BSE-SEM images at different magnifications of a
syncytium of VZV infected melanoma cells. Left panel: low magnification view of a syncytium; middle panel: one nucleus of the same syncytium with
two PML cages; right panel: higher magnification view of a PML cage with sequestered VZV capsids. Black squares indicate areas that are shown at
higher magnification in the panels to the right. Scale bars are 5 mm. (B) Five representative images (s1, s5, s9, s13, s17) from a series of 18 consecutive
sections through the nucleus shown in A, middle panel. See also Video S4. (C and D) 3D models based on tracing and segmentation in all 18 sections
of electron dense heterochromatin (blue); nucleocapsids (yellow spheres) and PML cages (green, shown only in D). 1,732 and 1,324 capsids were
identified in the upper and lower PML cage, respectively). Scale bars are 5 mm. See also Video S5. (E and F) 3D models of the upper PML cage. Color
code as above, but immature capsids (A and B-type capsids) are shown as yellow spheres and mature capsids (C-type) in orange; the PML cage is
transparent green (shown only in F). Scale bars are 2 mm.
doi:10.1371/journal.ppat.1002740.g004
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magnification, resolutions, contrast modes or with different

equipment. A major advantage of SSA-SEM is that the interior

of cells and tissue become exposed at the section surface, enabling

the use of immuno-histochemistry protocols to localize proteins or

nuclei acids within the context of the 3D ultrastructure of cells or

tissues.

Our 3D reconstructions confirmed that most PML nuclear

bodies in VZV infected cells expressing endogenous PML are

disassembled efficiently during the course of infection. This process

involves the interaction of SUMO-interacting domains (SIM) of

the VZV ORF61 protein with sumoylated PML [21]. As a result,

most of the several thousand VZV nucleocapsids that were

produced in VZV-infected cells appeared randomly distributed in

the reconstructed nuclear volume when examined by SSA-SM. As

noted, other alphaherpesviruses disrupt PML nuclear bodies and

in most cases, also eliminate PML protein by rapid ICP0-mediated

degradation [18,19].

However, when PML disassembly is incomplete, as it is in VZV-

infected cells in skin and neural cells in vivo, nucleocapsids become

sequestered in PML cages. Systematic random sampling analysis

of hundreds of ultrathin sections through different PML cages

suggested that .95% of all types of VZV nucleocapsids (A, B and

C-type) were efficiently sequestered in PML cages [22]. Never-

theless, random ultrathin sections do not reveal the 3D shape and

volume of single PML cages because these sections (50–100 nm)

may encompass only 1–10% of the diameter of PML cages.

Therefore, techniques used in the earlier study did not allow an

assessment of the size, volume and shape of PML cages or how

many VZV nucleocapsids may be sequestered within individual

PML cages. Furthermore, since ultrathin cross-sections through a

nucleus encompass only a very small fraction of the nuclear

volume, the sequestration efficiency of PML cages could not be

determined for single nuclei. These limitations were addressed by

using SSA-SEM to reconstruct the shape and volume of individual

PML cages, which demonstrated that up to several thousand

(2,780) nucleocapsids can be sequestered by single PML cages.

Furthermore, quantitative analysis of several thousand nucleocap-

sids in reconstructed volumes of single nuclei showed that more

than 98% of all capsids could become entrapped in PML cages,

proving their very high sequestration capacity and explaining the

antiviral activity of PML IV [22]. Our method to estimate the

sequestration capacity and efficiency of PML cages made it

possible to provide information beyond just a morphological

description and demonstrates that SSA-SEM can be used in

quantitative analyses of virus interactions with nuclear structures.

Given the high sequestration capacity of PML cages, now

established by single 3D nuclear analysis and by quantitative

random sampling analysis of hundreds of ultrathin cross-sections,

it is somewhat surprising that infectious VZV titers were reduced

only by about 50% in cell lines expressing PML IV [22]. These

results indicate that only very few VZV infectious particles are

needed to successfully enter and replicate in adjacent cells. This

explanation is consistent with the observation that only very few

PRV genomes are required to establish nuclear replication

compartments and initiate productive replication, as shown using

recombinant PRV, which is also an alphaherpesvirus, carrying a

Brainbow cassette [35]. VZV does not release virus particles into

the supernatant in cell culture and spreads only from cell to cell by

a mechanism that may be facilitated by extensive syncytia

formation [5,7]; therefore, even the few nucleocapsids that may

escape sequestration in PML cages should be sufficient to infect

adjacent cells in vitro. In contrast, in the human host, VZV must

infect complex tissues and overcome the barriers of intrinsic and

adaptive immunity, which is likely to depend on production of

larger numbers of infectious virus particles. Therefore the PML-

mediated nuclear sequestration of many VZV capsids observed in

human skin or DRG may be expected to have a more substantial

antiviral effect [22]. The quantitative analysis of the different types

of capsids present within infected cell nuclei revealed that the

majority (70–90%) were immature (A and B-type capsids) while

only a minority was in a mature stage (C-type, 10–30%). We

speculate that large numbers of immature nucleocapsids help to

outcompete the limited sequestration capacity of PML cages,

giving mature capsids a better chance to egress from the nucleus.

These observations also suggest that the relatively few mature

virions observed in VZV infected cells in vitro is not just a tissue

culture phenomenon.

Using conventional EM tomography, we obtained the first

insights about the 3D ultrastructure of PML cages, suggesting how

VZV nucleocapsids may be kept entrapped in these nuclear

domains. Tomographic 3D reconstructions revealed the presence of

an electron dense meshwork surrounding sequestered nucleocapsids

and fiber-like like structures, that often cross-linked adjacent

nucleocapsids, suggesting that capsids were entrapped by restricting

their mobility and ‘gluing’ them together. The 3D analysis of PML-

labeled sections by serial section immunoTEM showed that PML

protein was present both in the periphery of the cage (the ‘shell’) and

associated with the capsids entrapped in the center of PML cages.

PML protein which is the main structural component of PML

nuclear bodies, forms homo-and heterooligomers [10]; therefore at

least part of the electron dense meshwork is likely to consist of PML-

oligomers that crosslink and embed capsids in a protein meshwork.

The PML-positive meshwork and fibers were in general directly

associated with the edges of VZV capsids, which is consistent with

our previous biochemical data that demonstrated an interaction of

PML with the small outer capsid protein ORF23 [22]. Many other

proteins resident in PML-nuclear bodies, e.g. hDaxx or Sp100, may

be part of this meshwork [9].

Cryo-tomography is an alternative that would enable a 3D

reconstruction of PML cages at even higher resolution and more

native conditions (avoiding resin embedding and heavy metal

staining) but this approach can be predicted to encounter major

Figure 5. Large volume-reconstruction of a VZV infected cell nucleus with four PML cages. Melanoma cells that express doxycycline-
induced PML IV were infected with VZV for 48 h and processed for BSE-SEM imaging. (A) Five representative BSE-SEM images (s5, s20, s30, s47, s70)
from a series of 82 consecutive sections through a VZV nucleus with four PML cages (1–4, black arrows) with sequestered VZV capsids. A valley-like
indentation of the nucleus (blue outline and arrow) and the endoplasmic reticulum (ER) are marked. See also Video S6. (B–D and E–G, respectively)
show 3D models of the nucleus in two angles (100 degrees rotation to the left). (B and E) Shape of the nucleus based on tracing its outer boundary
(grey). (C and F) The shape of the nucleus (transparent grey) is overlaid with the dense heterochromatin (transparent blue). PML cages 1–4 (solid
green) and VZV capsids that escaped sequestration (red spheres) are visible in the interior of the nucleus. (D and G) Same view as above, but the
nuclear envelope and the PML domains are completely transparent. This reveals the location of all VZV capsids (5,597) identified in this nucleus; red
spheres represent free capsids (70) and yellow spheres represent sequestered capsids (5,527). Scale bars are 5 mm. See also Video S7. (H and I) 3D
models of PML cages (transparent green) from the same nucleus at higher magnification that reveal the dense packaging of capsids (yellow) and the
close association of PML cages with the electron dense heterochromatin (blue). Red spheres represent free capsids. Scale bars are 2 mm. See also
Video S8.
doi:10.1371/journal.ppat.1002740.g005
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experimental challenges. Frozen-hydrated sections through cell

nuclei will be required, the identification of PML cages will be very

demanding as these structures are not abundant, and identification

would need to occur at a very low electron dose that creates noisy

imaging conditions. Molecular docking of known crystal structures

to electron densities will also be difficult, because of the many

other proteins present in PML nuclear domain and currently only

the PML RING domain has been crystallized [36], whereas the

PML IV C-terminal domain is critical for nucleocapsid seques-

tration [22].

In summary, we were able to create complete reconstructions of

herpesvirus-infected cell nuclei and PML nuclear domains in three

dimensions for the first time using 3D SSA-SEM and EM

tomography. This study supports and extends our recent discovery

and characterization of PML cages that efficiently sequester VZV

nucleocapsids in cell culture and in differentiated human skin and

neural cells infected in vivo and represents a novel antiviral

mechanism, distinct from the established role of PML in

controlling several alphaherpesviruses shortly after virus entry by

limiting early viral gene transcription. Visualization of the shape

and measurements of the volumes of host cell nuclei and PML

cages together with the 3D localization of VZV nucleocapsids with

ultrastructural precision enabled us to determine the sequestration

efficiency and capacity of PML nuclear cages. This work

contributes not only to a more comprehensive understanding of

the antiviral activity of PML cages against VZV, a pathogenic

human herpesvirus, but also provides a novel method to undertake

the 3D reconstruction and quantitative investigation of nuclear

PML domains that have also been found to be associated with

capsids of papillomaviruses and polyomaviruses [37–39]. The

method has broad relevance for addressing other questions in

virology and cell biology where large volume 3D reconstruction

with high precision imaging of intracellular structures is needed.

Materials and Methods

Cells and viruses
The human melanoma cell line (MeWo, ATCC number: HTB-

65) was grown in Dulbecco’s modified Eagle’s medium supple-

mented with 10% fetal bovine serum, nonessential amino acids

(100 mM) and antibiotics (penicillin at 100 U/ml and streptomycin

at 100 mg/ml). Melanoma cells were passaged fewer than 25 times.

Melanoma cells expressing doxycyline-inducible PML IV were

constructed using the pRetro-X-Tet-On-Advanced vector system

and pRetro-X-Tight-Pur plasmid (Clontech Laboratories) with the

PML IV plasmid pcDNA3-PML IV as described recently [22].

The stable cells were induced with 5 mg/ml doxycyline for 24 hr

before infection with VZV. The virus was recombinant Oka

(rOka) derived from the wild type low passage parent Oka strain

(pOka). Viral infection was done with cell-associated VZV at a

ratio of 1/20 (infected cells/uninfected cells) for 48 hr.

Antibodies and Confocal Immunofluorescence
Microscopy (IF)

Cultured cells on glass coverslips were fixed in 4% paraformal-

dehyde in PBS for 20 min at room temperature. Cells were

blocked and immunostained as described previously [5]. Antibod-

ies used for confocal microscopy were: mouse monoclonal anti-

PML (PG-M3) from Santa Cruz Biotech and rabbit polyclonal

anti-VZV-ORF23 described previously [5,22]. Secondary anti-

bodies were Alexa Fluor 488 and Alexa Fluor 594 conjugated

donkey anti-mouse or donkey anti-rabbit antibodies (Invitrogen).

Infected cultured cells were imaged using a Leica TCSSP2 confocal

laser scanning microscope (Heidelberg, Germany). Microscope

Figure 6. PML protein is associated with entrapped VZV
capsids inside PML cages. Melanoma cells that express doxycy-
cline-induced PML IV were infected with VZV for 48 hours and then
high pressure frozen, freeze-substituted, embedded in LR-White resin
and labeled with anti-PML polyconal rabbit antibody and Protein A
conjugated with 15 nm gold particles. (A) A representative TEM image
from a series of seven consecutive 100 nm sections is shown. The area
in the blue square (left panel) is shown at higher magnification in the
right panel. PML specific gold labeling (green arrows) identifies the PML
cage (surrounded by a green line, left panel) in the nucleus. Scale bars
are 500 nm. (B) The 3D model shows the electron dense heterochro-
matin (blue) and the location of mature capsids (63; red spheres),
immature capsids (403; yellow spheres) and all PML-specific gold
particles (5,219; small green spheres) that were identified in the serial
sections. Entrapped mature capsids with associated PML labeling are
shown as red/green spheres and immature capsids with PML labeling
are shown as yellow/green spheres. (C) Same 3D model as in B but at
higher magnification and in a different angle. See also Video S9.
doi:10.1371/journal.ppat.1002740.g006
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objectives were 406/1.0 (Numerical Aperture, N.A.) or a 636/1.4

(N.A.) Plan Apochromat objectives. Images were scanned at

102461024 pixels with at least four times frame averaging and the

pinhole adjusted to one airy unit. Brightness and contrast were

adjusted using Photoshop CS3 (Adobe) or iPhoto (Apple).

Sample preparation for Transmission Electron
Microscopy (TEM), immuno-TEM and tomography

For standard TEM, samples were fixed in 4% paraformalde-

hyde and 2% glutaraldehyde in 0.1 M phosphate buffer (ph 7.2)

and embedded in epoxy-resin. For immuno-TEM or EM

tomography samples were fixed in 4% paraformaldehyde and

0.1% glutaraldehyde in 0.1 M phosphate buffer (ph 7.2) and then

high-pressure frozen (HPF) in a Leica EM PACT2 and freeze

substituted (FS) in either LR-white or Epoxy resin (Embed812),

respectively. Frozen specimen carriers with cells were placed into

frozen cryovials containing acetone with 0.1% glutaraldehyde and

0.1% uranyl acetate (for LR White embedding) or in acetone with

1% osmium tetroxide and 0.1% uranyl acetate (for Epon

embedding). The frozen vials were then placed into a Leica AFS

for the freeze-substitution procedure and then embedded in either

or LR-White resin for immuno-TEM or epoxy resin Embed 812

for EM tomography. Sections (80–300 nm) were prepared with a

diamond knife (Diatome) using an ultramicrotome (Ultracut,

Leica). For immunogold-labeling LRwhite sections were pre-

blocked in DIG-blocking solution (Roche) for 30 min. Primary

antibodies and Protein A-gold particles (obtained from CMC,

Utrecht, the Netherlands) were diluted in blocking solution and

sections were incubated for 1 h or 30 min, respectively, at RT.

Rabbit polyclonal anti-PML antibody (Santa Cruz Biotech) was

used at 1:10 dilution. Sections were stained with 3.5% aqueous

uranyl acetate for 15 minutes and with 0.2% lead citrate for one

minute and air-dried. Sections were analyzed using a JEOL 1230

transmission electron microscope (TEM) at 80 kV and digital

photographs were captured with a GATAN Multiscan 701 digital

camera.

Serial section array scanning electron microscopy (SSA-
SEM)

VZV-infected cells were fixed in 4% paraformaldehyde/2%

glutaraldehyde in 0.1 M phosphate buffer (pH 7.2) for 24 hr and

cell pellets were stabilized by embedding in 10% gelatine. The

samples were washed with ultrapure water and then postfixed with

2% osmium tetroxide reduced with 1.5% (w/v) potassium

ferrocyanide for 2 hr at room temperature. The samples were

then washed again, followed by one hour incubation with 1% (w/

v) tannic acid, washing in ultrapure water and a final ‘‘en block’’

staining with 3.5% (w/v) uranyl acetate over night. The samples

were then dehydrated in a series of ascending ethanol concentra-

tions (30%–100%), treated with propylene oxide and finally

embedded in epoxy resin Embed 812 (Electron Microscopy

Sciences, Inc.). The procedure for the preparation of Serial

Section Arrays (SSA) was similar to the method described for

fluorescence array tomography [27,33,40]: serial sections (100 nm

thickness) were cut with a jumbo histo diamond knife (Diatome)

and collected onto precleaned glass slides that had been coated

with a solution of 0.3% gelatine with 0.1 g/l chromium potassium

sulphate. To enable SEM imaging, the SSAs were finally counter

stained with uranyl acetate and lead citrate and then heavily

carbon coated (two cycles of 30 seconds until the surface color was

light brown) using a Benchtop Turbo III apparatus (Denton

Vacuum, LLC) and attached to SEM stubs using colloidal graphite

or adhesive copper tape (both from EMS, Inc).

The arrays were first pre-scanned with a Hitachi S-3400N VP-

SEM to assess the quality of the ribbons of serial sections and to

find regions of interest (ROIs). ROIs were mapped at a

magnification from 1006 (whole section image) to 10,0006
(image of cell nucleus with resolved capsids) using an accelerating

voltage of 10 kV, a working distance of 8.5 mm and the back-

scattered electron (BSE) detector. For the final acquisition of high-

resolution digital image stacks from serial sections, the arrays were

transferred to a Zeiss Sigma FE-SEM that is equipped with a field

emission gun (FE). The mapped ROIs were identified and then

imaged using the BSE detector at magnifications from 5,000–

40,0006 with an accelerating voltage from 6 kV–10 kV and a

working distance from 6–7 mm; images were scanned at

204861536 pixels, with at least 2 times line averaging.

3D visualization of SSA-SEM image stacks
SSA-SEM image stacks were automatically aligned (registration)

in rigid mode using the ‘StackReg’ plugin in the Fiji/ImageJ

software package (http://fiji.sc/wiki/index.php/Fiji). Aligned

images were saved as image sequence files and then imported

into the 3D reconstruction program ‘Reconstruct’(http://

synapses.clm.utexas.edu/tools/reconstruct/reconstruct.stm) [41].

Segmentation of cells and infected nuclei was accomplished by

manual classification and tracing the boundary contours of

ultrastructures of interest. The visualization of the 3D shape of

cell nuclei (grey), heterochromatin (blue), protein aggregates

(brown) and PML domains (green) was achieved by representing

the traces of these objects as Boissonnat surfaces using ‘‘Recon-

struct’’ [41]. Cross-sectioned nucleocapsids, which are rotation-

symmetric icosahedral structures, were traced and modeled as 3D

Figure 7. Electron tomography of PML cages reveals the cross-linking of VZV capsids by an electron-dense meshwork. Melanoma
cells that express doxycycline-induced PML IV were infected with VZV for 48 h and then high pressure frozen, freeze-substituted and embedded in
epoxy-resin. 80 nm sections (A–E) or 300 nm sections (F–L) were investigated by dual-axis electron tomography. (A) A representative tomographic
slice shows the periphery of the nucleus with the electron dense heterochromatin (blue bottom area) and part of the PML cage (light green area)
containing numerous VZV capsids. A light electron-dense fibrous meshwork (grey) is visible within the PML-domain. These fibers are directly
associated with capsids (arrows) and can cross-link them. (B) The area in the black square in A is shown at higher magnification in inverted mode, e.g.
electron dense structures appear bright. Arrows depict fibrous material associated with VZV capsids. (C) Same image as in B but with traces for 3D
reconstruction shown: capsids (yellow) were traced manually; electron dense meshwork (green) was traced automatically by thresholding. See also
Video S10. (D and E) show 3D models of the VZV capsids (yellow) associated with the electron-dense meshwork (green). Scale bars are 200 nm. See
also Video S11. (F) Volume view with inverted contrast of a reconstruction from a dual-axis tomogram of a 300 nm section. The arrangement of VZV
capsids within a PML cage is visible. (G) Same reconstruction as in F but in orthoslice mode that reveals the arrangement of capsids in the interior of
the reconstructed volume. (H) Volume view of a part of the tomographic reconstruction that was then traced and segmented (I) to reveal the position
of capsids and the electron dense meshwork in a 3D model. (I) Traces on one representative digital tomographic slice: immature capsids (yellow),
mature capsids (red), electron dense fibers and meshwork (green). (J) 3D model shows the packaging of capsids (protein meshwork is green/
transparent for unobscured view of capsids). (K) 3D model shows capsids with associated electron-dense meshwork (green) at higher magnification.
(L) Representative tomographic slice images that show protein fibers (green arrows) associated with VZV capsids. Scale bars are 200 nm (A–D and F–
J) and 100 nm (E, K and L).
doi:10.1371/journal.ppat.1002740.g007
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spheres with 100 nm diameters. A section thickness of 100 nm was

deliberately chosen to avoid double counting of the same capsids

(which have a diameter of about 100 nm) in consecutive sections.

Because of the anisotropic resolution in the serial section

reconstructions the position of VZV nucleocapsids is more

precisely modeled in the x–y dimension than in the z-dimension

(100–200 nm resolution). Volumes of reconstructed nuclei and of

PML cages were calculated and the number of VZV capsids and

PML gold particles were counted using the corresponding traces in

the ‘Reconstruct’’ software. The 3D models were saved as 360u
image series and then exported into Fiji/ImageJ, where the files

were compressed (JPEG) and saved as movie files (.avi).

TEM tomography
VZV infected cells were fixed and high pressure frozen (HPF),

freeze substituted (FS) and embedded in epoxy resin (Embed812)

as described above (TEM sample preparation). 80 nm or 300 nm

sections were cut with a diamond knife (Diatome) using an

ultramicrotome (Ultracut, Leica) and placed on Formvar and

carbon coated 75mesh TEM copper grids (TedPella). Sections

were stained with 3.5% aqueous uranyl acetate for 15 minutes and

with 0.2% lead citrate for one minute and air-dried. Finally, the

sections were coated on both sides of the grid with 15 nm colloidal

gold particles (Ted Pella) as fiducial markers by repeated dipping

of the grids in the colloidal gold solution followed by air drying.

The 80 nm thick sections were imaged on a JEOL 1400 TEM

(JEOL USA, Inc.) at 120 kV equipped with a dual-axis

tomography holder. The double-tilt series were recorded with

the ‘SerialEM’ software package (http://bio3d.colorado.edu/

SerialEM/) using a tilt range of 665u at 1.5u angular increments

[42]. The image pixel size ranged from 0.43–1.3 nm. The 300 nm

thick sections were imaged on a Titan ETEM (FEI company,

USA) operated at 300 kV using a dual-axis tomography holder.

Double tilt series were recorded with a tilt range of 665u at 1.5u
angular increments using the Xplore3D software (FEI). Image

pixel size was 1.4 nm at the specimen level.

The series of dual-axis tilt images were aligned, reconstructed by

weighted back-projection and then merged into dual-axis tomo-

grams using the software package IMOD 4.1 (http://bio3d.

colorado.edu/imod/) [43,44]. The stack of digital tomogram slices

(.rec file) was imported into Fiji/ImageJ and saved as image

sequence file that was then imported into the ‘Reconstruct’

software for tomogram segmentation and 3D modeling. VZV

capsids were traced manually and visualized using Boissonnat

surfaces. The electron dense meshwork within the PML cages was

traced automatically applying a threshold and the ‘wild fire’ tool in

the ‘Reconstruct’ software; 3D visualization of the meshwork was

also achieved using Boissonnat surfaces [41]. Volume views and

ortho-slice views of the tomograms were generated by importing

the digital tomogram slices (.rec file) into Fiji/ImageJ and applying

the ‘volume viewer’ plug-in.

Statistical analysis
Graph Pad Prism (version 5.0) statistical software was used for

quantification and statistical analysis.

Supporting Information

Video S1 Corresponds to Figure 3A and shows an animation

through a z-series of 100 nm thick serial sections imaged by BSE-

SEM illustrating the interior of the nucleus of a VZV infected

melanoma cell. VZV capsids are visible as 100 nm particles.

(AVI)

Video S2 Corresponds to Figure 3B–F and shows animations of

the segmented volume of the nucleus shown in Figure 3A and in

Video S1. The sequence of the animations in the video

corresponds to the views seen in Figure 3B, C, D and E, in this

order. The 3D models show the outer boundary of the nucleus

(grey), the electron dense heterochromatin (blue), the nucleolus

(brown) and the location of all mature capsids (red spheres) and

immature capsids (yellow spheres).

(AVI)

Video S3 Corresponds to Figure 3G and shows the animation of

the segmented volume of the nucleus of a VZV infected melanoma

cell that was reconstructed from a stack of serial sections (100 nm

thick) imaged by TEM. The 3D model shows the electron dense

heterochromatin (blue), the nucleolus (brown) and the location of

all mature capsids (red spheres) and immature capsids (yellow

spheres).

(AVI)

Video S4 Corresponds to Figure 4B and shows an animation of

an image stack obtained by SSA-SEM illustrating the interior of

the nucleus of a VZV infected melanoma cell that contains

numerous VZV capsids sequestered in two electron dense PML

cages. VZV capsids are visible as 100 nm particles.

(AVI)

Video S5 Corresponds to Figure 4C and D and shows

animations of the segmented volume of the nucleus shown in

Figure 4B and in Video S4. The sequence of the animations

corresponds to the views seen in Figure 4C and D. The 3D models

show the electron dense heterochromatin (blue), protein aggre-

gates (brown), VZV capsids (yellow spheres) and two PML cages

(green). The last animation in the sequence also reveals the

boundary of the reconstructed volume (grey).

(AVI)

Video S6 Corresponds to Figure 5A and shows an animation

through an image stack obtained by SSA-SEM, illustrating the

interior of the nucleus of a VZV infected melanoma cell that

contains .5,500 VZV capsids sequestered in four spherical PML

cages. VZV capsids are visible as 100 nm particles.

(AVI)

Video S7 Corresponds to Figure 5B–G and shows animations of

the segmented volume of the nucleus shown in Figure 5A and in

Video S6. The sequence of the animations corresponds to the

views seen in Figures 5B and E (shape of the nucleus, grey),

Figures 5C and F (heterochromatin, transparent blue; PML cages,

solid green and unsequestered VZV capsids, solid red) and

Figures 5D and G (heterochromatin, transparent blue; unseques-

tered VZV capsids, solid red and sequestered capsids, solid yellow).

To reveal the sequestered VZV capsids, the PML cages are shown

completely transparent in the last animation.

(AVI)

Video S8 Corresponds to Figure 5H and I and shows animations

of the segmented volume of the nucleus shown in Figure 5A and in

Video S6. It shows the close association of PML cages (transparent

green to reveal the sequestered capsids) with the dense

heterochromatin (solid blue) in the periphery of the nucleus.

Unsequestered VZV capsids are visible as solid red spheres.

(AVI)

Video S9 Corresponds to Figure 6B and C and shows

animations of the segmented volume of a PML cage with

sequestered VZV capsids that was reconstructed from seven serial

100 nm immuno-TEM sections. The sequence of the animations

corresponds to the views seen in Figures 6B and C, and shows
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heterochromatin (blue), PML gold labeling (green particles),

mature capsids (red spheres) and immature capsids (yellow

spheres). VZV capsids with associated PML gold labeling are

shown as half-green spheres.

(AVI)

Video S10 Corresponds to Figure 7A and shows a stack of

digital slices obtained from the tomographic reconstruction of a

80 nm section through a host cell nucleus with VZV capsids

sequestered in a PML cage. The video shows the digital slices first

in normal mode (electron dense structures appear dark) and then

in inverted mode (electron dense structures appear bright, for

better visibility of the fibers and the meshwork that are associated

with the VZV capsids.)

(AVI)

Video S11 Corresponds to Figure 7D and E and shows

animations of segmented areas of the tomographic slices shown

Figure 7A–C. The animations reveal the close association and

cross-linking of VZV capsids (yellow spheres) with electron dense

material (green) within PML cages.

(AVI)

Video S12 Corresponds to Figure 7F and G and shows

animations of a tomographic reconstruction of a 300 nm section

through a PML cage with sequestered VZV capsids. The video

shows first the animated volume view of the tomogram revealing

the arrangement and packaging of capsids, followed by an

animated ortho-slice view (revealing views of cross-sections

through the middle of the reconstructed volume). Then the stack

of digital slices of the tomogram is shown in inverted mode

(electron dense structures appear bright) and finally the same stack

is shown in normal mode (electron dense structures appear dark).

(AVI)

Video S13 Corresponds to Figure 7J and shows animations of

the segmented tomographic volume shown in Figure 7H (which is

part of the tomogram shown in Figure 7F). The animations reveal

the arrangement and packaging of mature (red) and immature

(yellow) capsids in the reconstructed volume. The electron dense

meshwork of the PML domain is shown in transparent green.

(AVI)

Video S14 Corresponds to Figure 7K and shows animations of

the segmented tomographic volume shown in Figure 7H. The

animations reveal the arrangement of mature (red) and immature

(yellow) capsids and show their association and cross-linking with

an electron dense meshwork (solid green) in the reconstructed

volume of a PML cage.

(AVI)
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