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A B S T R A C T

Olfactory receptor (OR) 1A2 is the member of largest superfamily of G protein-coupled receptors (GPCRs). OR1A2
is an ectopically expressed receptor with only 13 known ligands, implicated in reducing hepatocellular carcinoma
progression, with enormous therapeutic potential. We have developed a two-stage screening approach to identify
novel putative ligands of OR1A2. We first used a pharmacophore model based on atomic property field (APF) to
virtually screen a library of 5942 human metabolites. We then carried out structure-based virtual screening
(SBVS) for predicting the potential agonists, based on a 3D homology model of OR1A2. This model was developed
using a biophysical approach for template selection, based on multiple parameters including hydrophobicity
correspondence, applied to the complete set of available GPCR structures to pick the most appropriate template.
Finally, the membrane-embedded 3D model was refined by molecular dynamics (MD) simulations in both the apo
and holo forms. The refined model in the apo form was selected for SBVS. Four novel small molecules were
identified as strong binders to this olfactory receptor on the basis of computed binding energies.
1. Introduction

Our sense of olfaction is a consequence of chemosensory events led by
interaction of 405 olfactory receptors (ORs) with numerous odorants, in a
combinatorial manner (Trimmer and Mainland, 2017). ORs are the
largest superfamily of the seven transmembrane (TM) domain G
protein-coupled receptors (GPCRs), with 18 families and 300 sub-
families. Similar to non-olfactory GPCRs, the ORs signalling cascade is
initiated once odorants bind to inactive ORs. Upon odorant binding, a
specific G protein is activated, which then initiates the olfactory signal
transduction cascade (Buck and Axel, 1991). Besides roles in olfaction,
ORs are now known to be involved in wide variety of chemosensory
processes, especially in non-olfactory, i.e. ectopic tissues. However, they
are not fully functionally characterized as yet in the majority of tissues,
owing to difficulties associated with their heterologous functional
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expression (Tsai et al., 2017). Also, the evidence for their ectopic
expression is at the mRNA level and not at the protein level in several
tissues (Jabeen et al., 2019a). Among their diversified functions in the
human body are mediation of rennin secretion and blood pressure,
negative chronotropic effect on fetal and adult heart, serotonin release
within gut enterochromaffin cells, inducing melanocyte pigmentation
and differentiation, and sperm migration (Dalesio et al., 2018).

Besides exhibiting important functions within healthy tissues, ORs
are known to be associated with pathophysiological conditions. OR7C1
maintains colon cancer initiating cells, OR51B5 leads to the inhibition
of cell proliferation in K562 cells, OR51E1 acts as a tumour biomarker
for lung carcinoids (LC) in somatostatin receptor-negative tumour pa-
tients, OR2J3 activation by helional induces apoptosis and inhibits cell
proliferation in non-small-cell lung cancer, OR51E2 acts as a biomarker
for prostate cancer (Dalesio et al., 2018) and OR10H1 is the potential
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biomarker for urinary bladder cancer (Weber et al., 2018a). Recently,
968 cancer cell lines were investigated for the expression of 301
selected OR genes with 49% showing expression of at least one OR
(Ranzani et al., 2017). Moreover, OR14I1 is proposed to be the receptor
for human cytomegalovirus (HCMV) infection (Xiaofei et al., 2019).
Therefore, ORs might be the potential targets for the pharmaceutical
industry. Following clinical trials, a ligand for OR2AT4, Sandalore®, is
now regarded as a therapeutic alternative to treat hair loss (Jimenez
et al., 2020). Sandalore® as well as another OR2AT4 ligand, Brahmanol
have wound-healing properties (Busse et al., 2014). Also, Santalol and
Sandranol are OR10H1 ligands, that are used in German clinics to treat
bladder cancer although the compounds are not clinically tested yet
(Weber et al., 2018a). Preclinical studies are currently under way on
Azelaic acid, a ligand for the mouse OLFR544, for obesity and subcu-
taneous fat reduction (Lee et al., 2019).

Defining the odorant-receptor pairs is critical for understanding smell
perception and for functionally characterizing ectopically expressed ORs
in non-nasal tissues (Weber et al., 2018a). Given the vast array of odorant
molecules, the ~400 human ORs and combinatorial coding complexity, it
is a challenging task to define receptor-odorant pairs (Bavan et al., 2014).
Difficulties in heterologous expression of ORs and current unavailability
of experimentally resolved 3D structure of any OR have further
hampered our understanding of molecular mechanism underlying
physiological and pathophysiological roles of ORs (Jabeen et al., 2019a).
Only four members of the ORs are known as proteins, with the remaining
ORs regarded as “missing proteins” since they lack significant proteomics
evidence (Baker et al., 2017). 107 ORs have some kind of orthogonal
evidence including deorphanization, with 87 ORs having known ligands
(Jabeen et al., 2019a). Of the deorphanized ORs, six (OR1A1, OR1G1,
OR2W1, OR51E1 OR51E2, OR52D1) have sufficient known agonists and
are suitable for the application of machine learning (ML), in order to
further extend their chemical space. ML has already been applied to
OR1G1 (Jabeen and Ranganathan, 2019), OR1A1, OR2W1 and OR51E1
(Bushdid et al., 2018). The remaining deorphanized ORs have limited
agonist data and are not suitable for ML. For these ORs, a ligand-based
pharmacophore method coupled with structure-based virtual screening
(SBVS) is the preferred approach. Homology modelling can be used for
SBVS in the absence of experimental structures for ORs. However, there
are several challenges associated with modelling ORs. Firstly, ORs show
low sequence identity (<30%) with the currently available experimental
GPCR structures (Alfonso-Prieto et al., 2019), although more than 18%
non-olfactory GPCRs can be modelled with a 35% sequence identity
cutoff for homology modelling (Stevens et al., 2013). Secondly, although
ORs share some common motifs with other GPCRs in almost every TM,
the CWxP motif in TM6 which is known as a toggle switch for GPCRs and
an ionic block between TM3 and TM6 are absent in all ORs (de March
et al., 2015a), confounding the alignment of OR TM regions with tem-
plate structures.

To identify novel ligands for ORs with limited experimental ligand
profile, structure-based virtual screening (SBVS) using a homologymodel
of OR51E2, based on the structure of the human adrenergic beta-2-
receptor (β2-AR), has been used to discover novel agonists (Abaffy
et al., 2018). Recent in silico approaches coupled with in vitro assays have
elucidated the ligand-binding cradle for different ORs (Geithe et al.,
2017; Ahmed et al., 2018; Wolf et al., 2017) and contributed to our
understanding of the OR activation mechanism (de March et al., 2018).
Multiple templates, such as human M2 muscarinic receptor (Stevens
et al., 2013), β2-adrenergic receptor (Abaffy et al., 2018), and bovine
rhodopsin (de March et al., 2015a) and (Geithe et al., 2017), have also
been used to model ORs. The VS performance has greatly been impacted
by template selection (Rataj et al., 2014), specifically when sequence
identity is extremely low. It is therefore critical to consider additional
parameters for appropriate template selection in order to build reliable
homology models.
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OR1A2 (UniProtID: Q9Y585) is an OR, known to be ectopically
expressed in several tissues at transcript level including blood, brain,
heart, liver, pancreas among others as indicated by GeneCards (GCID:
GC17P003197) (Stelzer et al., 2016). OR1A2 has been heterologously
expressed and identified at the protein level in Huh7 cells, a model sys-
tem for hepatocellular carcinoma, where the activation of OR1A2 by
(S)-(�)-citronellal leads to calcium signalling and reduction in cell pro-
liferation (Massberg et al., 2015). Currently, the known odorant space of
OR1A2 is comprised primarily of 13 ligands (terpenes, alcohols and al-
dehydes; Supporting information: Table S1), which are all agonists.

In the current study, we have carried out in silico screening of a
dataset of 5942 metabolites from serum, bile, urine, saliva, feces, and
cerebrospinal fluid (CSF) from the humanmetabolome database (HMDB)
(Wishart et al., 2018), against OR1A2 using a two-stage virtual screening
approach, illustrated in Fig. 1. During the first stage, we have selected
potential ligands most similar to the known OR1A2 ligands, using a 3D
pharmacophore-based atomic property field (APF) superposition (Weber
et al., 2018b) approach. In the second stage, we have used
structure-based virtual screening (SBVS) using a homology model of
OR1A2 to select the metabolites obtained through APF screening. Our
earlier homology modelling approach for GPCRs (Jabeen et al., 2019b)
has been extended to ORs in the current study, to select the bovine
rhodopsin template, rigorously identified by a biophysical approach
proposed here, based on multiple parameters including sequence iden-
tity, query coverage, resolution, hydrophobicity, ligand profile, and
binding site comparison. The top five ligands from SBVS were subjected
to molecular dynamics (MD) simulations, with four putative ligands
identified, with greater binding affinity than the control ligand.

2. Methods

2.1. Data acquisition, atomic property field superposition and stage 1
screening

The total 13 experimentally known ligands (Supporting information:
Table S1) for OR1A2 reported in the literature (Massberg et al., 2015;
Schmiedeberg et al., 2007) were downloaded from PubChem (Kim et al.,
2016). We utilized the APF technique, incorporated in the ICM software
(MolSoft v.3.8-5, LLC) (Abagyan et al., 1994), for Stage 1 screening. APF
is a 3D pharmacophoric potential which is implemented as a grid.
Through APF superposition common features of active compounds can be
well utilized enough to generate a 3D pharmacophore. APF superposition
consider continuous property distribution and uses atomic properties
vectors that can be compared in more flexible manner. Seven properties
are used by the APF method for superposition, comprising hydrogen
bond donors, hydrogen bond acceptors, sp2 hybridization, lipophilicity,
size, electropositivity/negativity and charge (Totrov, 2008).

(S)- (�)-citronellal was selected as the ligand template for the su-
perposition based on APF, as it has been reported to be more potent
agonist as compared to the other ligands (Schmiedeberg et al., 2007).
The rest of the known agonists were flexibly super-positioned to the
template using APF, with the effort parameter set to 3 and the ring
sampling enabled. A consensus pharmacophore was then developed
using the APF-based super-positioned agonists. A total of 5942 serum,
bile, urine, saliva, feces, and CSF metabolites were downloaded from
HMDB (Wishart et al., 2007) and indexed according to ICM format. The
first-stage screeningwas carried out on the basis of APF superposition. All
the ligands with an APF score �100 were retrieved. The APF score is
based on pseudo-energy computed as mentioned in Eq. (1):

EAPF ¼ �
X
i

ϕj
i Pi ðrjÞ (1)

where ϕj
i is the property vector with j representing atom located at rj and

Pi(r) is the 3D property potential with i representing the components.



Fig. 1. Workflow of integrated virtual ligand screening for OR1A2.
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2.2. Biophysical approach for template selection on the basis of
hydrophobicity profile

For the second stage SBVS, OR1A2 has no experimental structure,
requiring a structural model to be generated. We propose a multi-step
biophysical approach for appropriate OR template selection. In the first
step, high quality GPCR X-ray structures (resolution � 2.5 Å) were
shortlisted. Secondly, hydrophobicity profile and sequence identity be-
tween the target and each template were computed. For the set of
selected templates from the second step, query coverage between the
template and the target was calculated and the best templates identified.
Subsequently, the ligand profile of the selected templates from step 3 and
the target were compared. In the last step, ligand-binding similarity was
calculated between the target and candidate templates. Also, the models
were generated with each candidate template, shortlisted at step 3, and
the predicted binding sites (PBS) compared by mapping available
mutagenesis data.

The hydrophobicity profiles for each helix of the candidate templates
and target were generated using Eisenberg scale. Each transmembrane
(TM) sequence of the template and target were aligned by tethering
center residues together. A moving window approach was used; wherein
the average value over all the residues in a window is taken and ascribed
to the center residue of the window. For the Eisenberg scale, the window
size was set to 11 for identification of putative transmembrane α-helices
(Wallace et al., 2004). For each alignment, we have computed the dif-
ference in hydrophobicity per residue, using the sum of squared differ-
ence (SSD) (Eqs. (2) and (3)):

Hn ¼
Xnþ5

i¼n�5
hi=11 (2)

SSD¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

n¼1

�
Htemplate;n � Htarget;n

�2q
(3)

where, Hn is the calculated hydrophobicity for the aligned template/
target residue in the nth position of the alignment and hi is the hydro-
phobicity of the ith residue from the Eisenberg scale. This value is
normalized by dividing it by the number of residues, to evaluate the best
template, as the SSD value is dependent on the number of residues in the
helix and will not be reflective of the best fit unless a per-residue value is
considered.

The ligand profile for the selected templates and the known ligands
for OR1A2 was generated sing PubChem fingerprints. The PubChem
fingerprints were computed using Knime (Berthold et al., 2009) for
chemical similarity comparison. The Tanimoto score was used as a sim-
ilarity measure.
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2.3. Homology modelling

The homology models for human OR1A2 was built using Modeller
9.18 (Webb and Sali, 2017). Single and multiple template models were
generated, based on the selected templates, with sequence alignment
manually adjusted using MEGA7 (Kumar et al., 2016) by aligning centre
residues, class A GPCR conserved motifs and cysteine residues forming a
disulphide bridge (Wolf et al., 2017). Predicted transmembrane regions
were taken from the GRoSS sequence alignment of all known GPCRs
sequences (Cvicek et al., 2016). The ligand of each template was initially
copied to the OR1A2 model and removed later to create an empty
binding pocket within OR1A2. 50 models were generated for each tem-
plate and with multiple templates. The models with lowest Modeller
objective function was selected for further analysis.

2.4. Model refinement

We first performed the local refinement within the predicted binding
pocket of the generated models. We docked three potent agonists,
Helional, Octanal, and (S)- (�)-citronellal one by one into the predicted
binding pocket and performed the local refinement through induced-fit
docking using ICM. For overall refinement, we performed MD simula-
tions of the (S)-(�)-citronellal bound models as well as apomodels. Since
OR1A2 is the membrane receptor, the built models were inserted into the
membrane for refinement by MD simulations. The initial orientation of
OR1A2 model in the membrane was taken from the PPM server (Lomize
et al., 2012). The homology model was inserted into a lipid bilayer
membrane (of 128 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcho-
line (POPC) molecules), solvated with 0.15 M NaCl via the
CHARMM-GUI server (Jo et al., 2008). For the apo model, the total
molecular system comprised of 55093 atoms including 128 POPC mol-
ecules, 29 Naþ ions, 36 Cl- ions and 10,994 water molecules. The Monte
Carlo method was used to place the ions and a CHARMM36 force field
was assigned to the membrane system. The membrane was equilibrated
at constant pressure and temperature (NPT ensemble; 303.15K). The
molecular system for the holomodel was composed of total 54574 atoms
including 128 POPC molecules, 28 Naþ ions, 35 Cl- ions and 10,812
water molecules.

The lipid bilayer embedded model was subjected to MD model
refinement with local structural improvements. The MD simulations
were carried out through Assisted Model Building with Energy Refine-
ment (Zhou et al., 2019) 16 package (Case et al., 2016), with the ff14SB
force field (Maier et al., 2015) for the receptor and the lipid14 force field
(Dickson et al., 2014) for the lipid bilayer. The membrane-embedded
OR1A2 model was inserted into a rectangular box and the TIP3P water
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model (Jorgensen et al., 1983) was employed for solvating the system.
Three subsequent steps of energy minimization process were performed
during 7,000 iterations. During each minimization step the algorithm
was switched from steepest descent to conjugate gradient after 1000 it-
erations, with restraints on the receptor atomic coordinates of a force
constant of 10 kcal mol�1Å2, for the first two minimization steps alone.
No restraints were imposed on the 3rd minimization step. The system
temperature was then gradually raised to 310.15 K in three steps (100,
210.15, 310.15) of heating for 205 ps, with restraints applied on the
receptor and the lipid part of the membrane. The heating step was fol-
lowed by 6 ns system equilibration. Production phase was simulated at
310.5 K to yield 40 ns trajectory recorded at each ns. GPU-accelerated
Particle-Mesh Ewald Molecular Dynamics (PMEMD) was used wher-
ever periodic boundary conditions were applied.

2.5. Stage 2 screening

The refined OR1A2 model was used for Stage 2 screening based on
molecular docking. Molecular docking was performed with ICM soft-
ware. The binding pocket was predicted though ICMPocketFinder (An
et al., 2005) and selected on the basis of available mutagenesis data of
ligand-binding residues for OR1A2 (Schmiedeberg et al., 2007).

The ligand's covalent geometry was relaxed and flexible ring sam-
pling level was set to 2. Charges were auto-assigned by ICM. Ten con-
formations were generated for each ligand. The conformation within the
vicinity of binding pocket and having the lowest ICM score was selected.
The ICM score is calculated as per Eq. (4):

ΔG¼ΔEIntFF þ TΔSTor þ α1ΔEHBond þ α2ΔEHBDesol þ α2ΔESo1E1 þ α4ΔEHPhob

þ α5QSize

(4)

where ΔEIntFF is change in van der Waals interactions of ligand and re-
ceptor and the internal force-field energy of the ligand, TΔSTor represents
the free energy changes due to conformational energy loss upon ligand
binding, ΔEHBond is the hydrogen bonding interactions, ΔEHBDesol is
hydrogen bond donor-acceptor desolvation energy, ΔESolEl represents
solvation electrostatic energy upon ligand binding and ΔEHPhob is the
hydrophobic free energy gain while QSize is the size correction term
proportional to the number of ligand atoms (Neves et al., 2012). The top
five predicted ligands with the highest ICM scores retrieved after Stage 2
scanning were selected for further analysis using MD simulations.

2.6. Molecular dynamics simulation for the stage 2 receptor-ligand
complexes

The topology and coordinate files for the receptor were generated
using Amber's Tleap program. The ff14SB force field was used for
OR1A2, lipid14 force field was used for the lipid bilayer and the force
field parameters for all six ligands (control and 5 predicted) were
generated by the general Amber force field (gaff) (Wang et al., 2004)
using the Antechamber program. Three minimization steps were per-
formed with the same parameters as mentioned in Section 2.3, to
remove steric clashes. The first two steps of minimization were con-
ducted with restraints on the receptor and the ligand while the third
step was without any restraint. The minimized complexes were sub-
jected to MD simulations with a protocol similar to that detailed in
Section 2.3. Trajectory analysis including root mean square deviation
(RMSD), root mean square fluctuation (RMSF) and energy calculations
was carried out using the CPPTRAJ (Roe and Cheatham, 2013) module
of Amber16, while visualization was done with MDplot (Margreitter
and Oostenbrink, 2017).
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2.7. Molecular mechanics generalized born surface area (MMGBSA)
based affinity prediction

The MMGBSA method (Gohlke and Case, 2004) was employed for
binding affinity prediction between the predicted ligands and the re-
ceptor, OR1A2. The method is based on the force-field utilizing the
molecular mechanics, the Generalized Born solvation model and a sol-
vent accessibility method for estimating the binding free energies over
the snapshots of MD trajectories. The MMGBSA binding free energy was
calculated as in Eq. (5), using the MMPBSA python script in Amber16:

ΔG�
MMGBSA ¼ðGcomÞi �ðGrecÞi � �

Glig

�
i

(5)

where ðGcomÞi, ðGrecÞi; ðGligÞi are the average values of ΔG�
MMGBSA for the

receptor-ligand complex, the receptor and the predicted ligand for i
snapshots of the MD trajectories. 500 snapshots were extracted from last
5ns of the MD trajectories. All the MMGBSA calculations were single-
trajectory MD simulation i.e. no MD simulations were executed for free
ligands.

3. Results and discussion

3.1. Bovine rhodopsin is the appropriate template for homology modelling
of OR1A2

The common methods for template selection are based on local or
global sequence similarity (Castleman et al., 2019). However, there exist
low sequence identity between available GPCR structures and ORs
(Nagarathnam et al., 2014). Thus, sequence identity is not the only
measure considered for GPCRs homology modelling as shown in multiple
GPCR modelling studies. Phylogenetically close relatives may not always
be the best templates and low homology templates have also performed
equally well in virtual screening runs (Rataj et al., 2014; Urmi et al.,
2017; Perry et al., 2015).

We applied our proposed biophysical approach for GPCR template
selection to select the appropriate template for OR1A2.We considered all
available GPCR structures listed in the Protein DataBank (PDB). As per
GPCRdb (P�andy-Szekeres et al., 2018) statistics, at present, 346 experi-
mental GPCR structures are available in the PDB, representing 64 unique
receptors. From these structures, we selected 11 inactive GPCR X-ray
structures as candidate templates (Supporting information: Table S2).

A few GPCRs have experimentally resolved structures available in
both active and inactive states (Weis and Kobilka, 2018). Agonist binding
favours active conformational state, which is less stable than the inactive
state. The salt bridge present between the positively charged Arg (R3.50)
and the negatively charged Aspartic or Glutamic acid (D/E6.30) stabilizes
the inactive conformation in GPCRs. The binding of the G protein to its
binding site, to the intracellular regions of GPCRs, improves the agonist
binding affinity. Similarly, agonist binding enhances G protein affinity to
the receptor. However, as stated by Weis and Kobilka (Weis and Kobilka,
2018), the “differences between the inactive and active structures in the
orthosteric site are remarkably subtle,” so the ligand-binding orthosteric
site is preserved once the ligand binds to the inactive GPCR. The
ligand-binding site is linked to G protein coupling site through residues
within an activation pathway (Zhou et al., 2019). We considered the
inactive conformation because biochemically, OR signalling necessitates
ligand binding to the inactive receptor (Buck and Axel, 1991) for acti-
vation and OR models based on inactive templates have resulted in the
discovery of novel ligands for mammalian ORs (Bavan et al., 2014;
Abaffy et al., 2018; Baud et al., 2011), and are thus adequate for virtual
screening. The selection of candidate templates was based on the best
resolved structure (�2.5 Å) from each of the available GPCRs. Using high
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resolution structures as templates for homology modelling provides
improved side chain and rotamer positions in the model (Crasto, 2010).

We then generated the hydrophobicity profiles for TM regions of each
of 11 candidate template and target sequences (OR1A2). Since low
sequence identity exists between available GPCR templates and ORs, a
hydrophobic similarity measure might be useful for selecting the tem-
plate for GPCRs. It has been shown previously that the sequences with
similar pattern of hydrophobic residues are often structural homologues
even if the sequence identity is as low as 7% (Baud et al., 2011). Also, the
seven TM domains are the most structurally conserved feature among
GPCRs. The hydrophobicity profile is based on hydrophobicity corre-
spondence (HC) which is represented as SSD per residue for each TM.
According to the Eisenberg scale, SSD >0.1 per residue indicates poor
correspondence between the target and the template. Each of the 11
candidate templates were scored on the basis of SSD per residue for each
helix and the overall sequence identity (Supporting information:
Table S3). Template 1U19 has minimum sequence identity but good HC
with OR1A2 except for TM6. All the templates showing minimum HC
among all candidate templates with any TM of OR1A2 were taken to the
next step (PDBIDs 5IU4, 6HLP, 1U19, 5ZKC, 2RH1 and 3ODU).

We then calculated query coverage between the six shortlisted tem-
plates and OR1A2. Query coverage is an important factor to be consid-
ered for homology modelling (Jabeen et al., 2019b). Based on query
coverage assessment (Supporting information: Table S4), we shortlisted
four templates: bovine rhodopsin (PDBID:1U19) (Crasto, 2010), beta-2
adrenergic receptor (PDBID:2RH1) (Wacker et al., 2017), adenosine re-
ceptor A2a (PDBID: 5IU4) (Wolf and Grünewald, 2015) and muscarinic
acetylcholine receptor M2 (PDBID: 5ZKC) (Vaidehi and Bhattacharya,
2016). The final alignment between OR1A2 and the candidate template
sequences is shown in Supporting information: Fig. S1.

Since ligand similarity should also be considered for building good
homology models (Nagarathnam et al., 2014), we calculated the simi-
larity between the ligands in the candidate templates and the known li-
gands of OR1A2, by ranking their Tanimoto scores, based on PubChem
fingerprints (shown in (Fig. 2). Retinal (ligand for 1U19; PubchemID:
638015) showed good similarity, with reasonably good Tanimoto scores
to known OR1A2 ligands, as compared to ZMA (ligand for 5IU4; Pub-
ChemID: 176407), methscopolamine, ligand for 5ZKC; PubChemID:
71183) and (S)-carazolol (ligand for 2RH1: PubChem ID: 13023332).http
s://pubchem.ncbi.nlm.nih.gov/compound/176407), methscopolamine,
ligand for 5ZKC; PubChemID: 71183) and (S)-carazolol (ligand for 2RH1:
PubChem ID: 13023332). (Fig. 2).
Fig. 2. Comparison of ligand profiles fo
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The traditional “orthosteric” binding site is a site where agonists, a
partial agonists and antagonists bind to GPCRs. Agonist binding to the
orthosteric site leads to the receptor's activation and allosteric modula-
tion (Wacker et al., 2017). The GPCR orthosteric site lies on its extra-
cellular side and spans mainly TM2-TM7, and the extracellular loop 2
(ECL2) (Wolf and Grünewald, 2015). The activation of a GPCR by an
agonist brings about conformational changes within the intracellular
side, specifically to TM5, TM6, and TM7, with respect to TM3 (Vaidehi
and Bhattacharya, 2016), although the orthosteric binding site un-
dergoes only a slight conformational change (Weis and Kobilka, 2018).
The presence of a disulphide bridge between TM3 and ECL2 is highly
conserved characteristic feature among class A GPCRs, contributing to
receptor stability, and this disulphide bridge is also present within ORs.
This feature restricts the conformational change within the extracellular
part during GPCR activation, so that the extracellular part stays similar in
inactive and active conformations (Venkatakrishnan et al., 2013). The
traditional orthosteric binding site within GPCRs comprises 24 residue
positions, namely 3.28, 3.29, 3.32, 3.33, 3.36, 3.37, 4.52, 5.39. 5.40,
5.43, 5.44, 5.47, 5.53, 6.44, 6.48, 6.51, 6.52, 6.55, 6.58, 7.31, 7.34, 7.38,
7.41, and 7.42 (Chan et al., 2019), in the Ballesteros–Weinstein
numbering scheme for GPCRs (Ballesteros and Weinstein, 1995). Ac-
cording to the site directed mutagenesis data available for human ORs
(Launay et al., 2012; Keller et al., 2007; Noe et al., 2017; Gelis et al.,
2012; Wolf et al., 2017; Geithe et al., 2017; Schmiedeberg et al., 2007;
Ahmed et al., 2018) and mouse ORs (Yu et al., 2015; Baud et al., 2015;
Thach et al., 2017) residue positions 3.33, 3.36, 3.37, 5.43, 5.47, 6.48,
6.51, 6.52, 6.55, 7.41, and 7.42 are important for ORs as well. We
computed the similarity between GPCR orthosteric binding site of all
templates and OR1A2 using GPCRtm (Rios et al., 2015), which is an
amino acid substitution matrix specifically designed for GPCRs. The
template 1U19 showed the maximum score (2) followed by 5ZKC (-5),
5IU4 (�7), and 2RH1 (�16).

We then compared the ligand-binding site residues of the templates
with the residues important for ligand binding (hot spots) in OR1A2 in
detail. OR1A2 has mutagenesis data available for only five residue po-
sitions (A183.36, K1093.37, S1123.40, S1554.56 and V2055.46) which is
insufficient for binding site analysis. Thus, we considered the mutagen-
esis data for OR1A1, a closest homolog of OR1A2 (Sequence identity:
83.5%) as well, for the binding site analysis. There is 46% similarity
between OR1A2 and 1U19 in the hot spot residues, followed by 2RH1
(38%), 5ZKC (23%) and 5IU4 (15%). Moreover, positions 3.36, 3.37,
5.46, and 6.48 are important for ligand binding in 1U19 and in 5ZKC.
r OR1A2 and candidate templates.

https://pubchem.ncbi.nlm.nih.gov/compound/176407
https://pubchem.ncbi.nlm.nih.gov/compound/176407


Fig. 3. Mean backbone atom deviation and mean atomic fluctuation for resi-
dues within 7 TM helices for 1U19-based apo model, in Å.
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Binding pockets of all four templates are dissimilar but positions 3.33 and
6.48 are important for ligand binding in all four templates (Supporting
information: Table S5).

In the final stage of template selection, we generated 250 models for
OR1A2. 50 models were generated for each of the four selected templates
and 50 models were generated using multiple templates (as per align-
ment shown in Supporting information: Fig. S1). We performed ligand-
supported modelling for each template. Final models were selected
after examining the DOPE score, visual inspection for structural features
like disulphide bonding, integrity of the seven TMs and Ramachandran
plot analysis. After modelling, the included ligand was removed from
each of the templates and (S)- (�)-citronellal was docked into the pre-
dicted binding of each model. The OR1A2 site-directed mutagenesis data
for (S)- (�)-citronellal was used as a control, to check the presence of
important ligand-binding residues within the predicted binding pockets
of the models during docking runs. We further refined the binding pocket
by docking two more experimentally known ligands for OR1A2 that are
helional and octanal. We were able to recover 7/12 hot spot residues
using 1U19-based OR1A2 model followed by 6/12 with 5ZKC model, 5/
12 with 2RH1, 3/12 for multiple template-based model and none for
5IU4 based model (Supporting information: Fig. S2). The in-depth
comparison of resolution, HC between TMs of target and candidate
templates, ligand profiles, and binding pocket analysis supported a 1U19-
based model for further analysis (Supporting information: Table S6).
Previously, the inactive conformation of bovine rhodopsin has been used
for OR model building on the basis of which mutagenesis data has been
derived for ORs such as OR1A1, OR1A2 (template: 1F88) (Schmiedeberg
et al., 2007), OR2AG1 (template: 1U19) (Venkatakrishnan et al., 2013),
and OR51E2 (template: 1U19) (Wolf et al., 2017), consistent with the
biochemistry of OR signalling (Buck and Axel, 1991). Our template se-
lection for OR1A2 through the biophysical approach described here is in
accordance with earlier studies selecting bovine rhodopsin as the
appropriate template for homology modelling of ORs.

3.2. Homology model refinement for structure based virtual screening

Though GPCRs crystal structures show better performance in docking
than homology models, refined homology models combined with
induced fit docking have shown comparable performance to crystal
structures (Chan et al., 2019). Therefore, we performed the overall
refinement of 1U19-based model through MD simulations. We refined
models both in apo and holo forms. Initially, 89.9% of the residues were
in favoured regions according to the Ramachandran plot embedded into
PSVS server (Ballesteros and Weinstein, 1995), which were latterly
improved to 91.2% with the refinement. The overall RMSD values for the
backbone atoms of both 1U19-based apo model and 1U19-based holo
model indicates that the receptor underwent rapid deviations during the
first 4 ns (Supporting information: Fig. S3). The standard deviation of
backbone RMSD for the last 10ns of MD production phase was 0.15 for
1U19-based apomodel and 0.11 for 1U19-based holomodel showing the
stability of both models. For both models, greater atomic fluctuations
were observed in ICL2 and ECL2 (Supporting information: Fig. S4),
compared to the other structural elements. Also, the residues within the
individual TM regions did not show much deviations from the initial
homology model (Supporting information: Fig. S5). The mean deviation
for all the TM regions was within 2 Å with the maximum mean RMSD
value of 1.9 Å for TM7 in 1U19- based apo model. All TM regions are
showing stability at the end of MD production (Fig. 3).

We analysed the predicted binding pockets for bothmodels. After holo
simulation, the ligand-binding pocket was considerably narrow and
relocated towards the OR channel entrance, compared to the apo
conformation (Supporting information: Fig. S6). This finding is consis-
tent with a recent study for two GPCRs, D2 dopamine receptor (D2R) and
5-HT2A serotonin receptor (5-HT2AR) wherein the authors showed
binding site divergence from the initial homology model in holo simu-
lated models (Launay et al., 2012). We docked known ligands to
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1U19-based holo simulated model and could not recover most of the
interactions with the hot spot residues. We were able to recover only one
hotspot residue i.e. Y2516.48 after the refinement of the holo 1U19-based
OR1A2 model (Supporting information: Fig. S7). The holo model simu-
lation system showed less flexibility due to the bound ligand, as noted for
rat muscarinic M3 receptor (Lupala et al., 2018) and for CCR5 (Salmas
et al., 2015). We also performed VS with 1U19-based holo simulated
model. We took the top two predicted ligands and carried out MD
simulation for their complexes with OR1A2. Both ligands were displaced
from the predicted binding pocket and lacked most of the hotspot resi-
dues at the end of 40ns MD simulation. Therefore, we did not proceed
with the holo simulated model (Supporting information: Fig. S8) and
selected 1U19-based apo refined model for SBVS.
3.3. Two-stage screening and docked metabolites

The two computational approaches used in computer aided drug
discovery include SBVS and ligand based virtual screening (LBVS). The
choice of method is largely determined by availability of the information.
Combining the methods for the two approaches are shown to outperform
the individually applied VS method (Svensson et al., 2012). One of the
common methods for LBVS is the generation of 3D pharmacophore. The
generation of good ligand-based 3D pharmacophore depends on molec-
ular alignment which is a challenging task. Since the similar chemical
structures often bind to the similar proteins (Grigoryan et al., 2010),
retrieving the molecules that structurally align to the known agonists
would assist in discovery of novel agonists for a receptor. We have used
the APF superposition method which is based on Monte Carlo minimi-
zation of atomic property field potentials to generate the 3D ligand
pharmacophore. The APF method has shown competitive performance
on benchmarking datasets (Totrov, 2008) and shows better performance
than traditional pocket based docking methods for GPCRs (Kufareva
et al., 2012).

The ligand pharmacophore was built by super positioning the
experimentally known ligands for OR1A2 and predominantly featured
two properties that are lipophilic and charge property (Supporting in-
formation: Fig. S9). Each property was selected for pharmacophore
building when exhibited by 75% of the ligands. Virtual screening using
APF based pharmacophore retrieved 438 metabolites (Supporting in-
formation: Table S7) based on lipophilic and charge properties. These
metabolites were structurally similar to experimentally known agonists
for OR1A2. In order to further screen these compounds SBVS was used.
Since the ICM docking score of the control, (S)-(�)-citronellal and
OR1A2 is �13.686, we used a threshold value of ICM docking score of at
least �10, for virtual screening. The predicted binding pocket for OR1A2
comprises of a combination of hydrophobic, polar and charged residues
depicting the ability to accommodate variety of ligands (Supporting



Fig. 4. OR1A2 ligand binding positions having correspon-
dence with mutagenesis data for various ORs; pink shading
represents overlapping positions in predicted agonists while
blue shading represents overlapping positions in control (6:
(S)-(�)-citronellal). Predicted 1 is pentadecanoic acid, pre-
dicted 2 is hexadecanedioic acid, predicted 3 is 14-methyl-
hexadecanoic acid, predicted 4 is 2-hydroxytetradecanoic
acid while predicted 5 is palmitic acid. Residue positions are
numbered according to the Ballesteros-Weinstein residue
numbering scheme (Ballesteros and Weinstein, 1995).
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information: Fig. S6). The predicted binding pocket is comprised of res-
idues from TM2, TM3, TM5, TM6 and TM7. The canonical binding pocket
for class A GPCRs is proposed to be formed by residues lying in TM3,
TM5, TM6 and TM7 (de March et al., 2015b).

The ICM docking scores of the 13 known OR1A2 ligands (Supporting
information: Table S8) were used to estimate the ICM docking score
threshold for SBVS. Compounds that were docked within the vicinity of
binding pocket and had docking score less than the established threshold
were selected for further analysis. The top five compounds (Supporting
information: Table S9 and Fig. S10); labelled 1–5, with the control
molecule, (S)-(�)-citronellal labelled 6) comprising 14-methylhexadeca-
noic acid, pentadecanoic acid, hexadecanedioic acid, 2-hydroxytetrade-
canoic acid and palmitic acid having ICM score < �10 were selected
for further analysis using MD simulations. Pentadecanoic acid is the
biological marker for dairy food intake and have association with
lowering the type 2 diabetes risk (Imamura et al., 2018). Further, it has
been suggested as a biomarker for nonalcoholic steatohepatitis (NASH)
in non-alcoholic fatty liver disease (NAFLD) patients (Yoo et al., 2017).
Hexadecanedioic acid has known to be activated in human liver (Pet-
tersen and Aas, 1974) and act as a substrate for OATP1B1, a liver
transporter for metabolites (Yee et al., 2016). Moreover, it is also known
to be associated with high blood pressure (Menni et al., 2017). Palmitic
acid is used in the industry for soap production, cosmetics and other uses.
It may also be involved in lipid deposition in HepG2 cells (Zhou et al.,
2018) and have possible implications in obesity, type 2 diabetes, car-
diovascular diseases and cancer (Mancini et al., 2015).

3.4. Dynamics and simulation analysis of the complexes

Docking identified potential receptor binding compounds and clues
for their binding modes to the receptor. To assess the stability of these
complexes, MD was executed. The receptor-ligand complexes were
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subjected to MD simulation with the same protocol as followed for
refinement of the receptor. The trajectories were analysed using
CPPTRAJ. RMSD plots (Supporting information: Fig. S11) for complexes
of OR1A2 with (S)- (�)-citronellal and hexadecanedioic acid indicates
the stability of these complexes throughout the simulation time with
RMSD value below 2 Å. The OR1A2:14-methylhexadecanoic acid com-
plex showed deviations during the first 15 ns, but eventually stabilized,
with a mean RMSD value of 2 Å. The OR1A2:2-hydroxytetradecanoic
acid complex showed the maximum deviations from the initial struc-
ture, with a maximum value of 3.16 Å and started to stabilize after 30 ns,
with a mean RMSD value of 2.3 Å. All the predicted ligands have shown
slight conformational changes, from their initial orientations, illustrating
their rearrangements within the binding pocket to attain stability (Sup-
porting information: Fig. S12). These rearrangements are also evident
from their post-simulation interaction sites differing from their initial
docked sites (Supporting information: Fig. S13). The predicted ligands,
excepting 2-hydroxytetradecanoic acid, tend to adopt more stable con-
formations and locations, by forming hydrogen bonds with the residues
within the receptor's binding pocket. We also analysed the deviations of
control and predicted ligands within the receptor binding pocket. (S)-
(�)-citronellal (control) showed the mean deviation of 0.6 Å while 2-
hydroxytetradecanoic acid and pentadecanoic acid showed the
maximum deviation, with a mean value of 2.3 Å. Hexadecanedioic acid,
14-methylhexadecanoic acid and palmitic acid had mean deviations of
2.0 Å, 2.1 Å and 2.1 Å respectively. 2-hydroxytetradecanoic acid interacts
primarily with ECL2 (Supporting information: Fig. S11). The RMSF
analysis (Supporting information: Fig. S14) indicated the high fluctua-
tions within residues at the N-terminus of the receptor. The residues
within ICL2 and ECL2 also showed fluctuations, as seen in the 3D view
(Supporting information: Fig. S13) but the mean fluctuations were
decreased as compared to the unbound homology model. Thus, ligand
binding has enabled the receptor to become more stable over the



Table 1
Binding free energy (ΔGbind in kcal mol�1) and other energy components for the
control and predicted complexes.

OR1A2 Complex with ΔEvdW ΔEEle ΔESol ΔGgas ΔGbind

(S)-(�)-citronellal (control,
6)

�26.28 �0.87 7.3753 �27.15 �19.78

Pentadecanoic acid (1) �40.20 �8.20 12.42 �48.41 �35.98
Hexadecanedioic acid (2) �39.28 �40.27 42.19 �79.55 �37.36
14-methylhexadecanoic
acid (3)

�45.84 �2.21 8.27 �48.06 �39.78

2-hydroxytetradecanoic
acid (4)

�33.50 �26.03 23.05 �59.54 �36.48

Palmitic acid (5) �41.57 �18.49 17.86 �60.06 �42.19

ΔEvdW: van der Waals energy contribution from MM; ΔEEle: Electrostatic energy;
ΔESol: Sum of the polar and non-polar solvation energies of the molecules esti-
mated by GB; ΔGgas: Gas phase relative free energy; ΔGbind : Final estimated
binding free energy.
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production phase of MD simulations. The RMSD values of all the com-
plexes indicate no drastic changes from the initial conformation after the
40ns MD simulation and all the complexes have attained stability by the
end of 40ns MD production.

We further analysed the residues within OR1A2 that are interacting
with predicted ligands and their correspondence with the positions
having mutagenesis data available for other ORs. Currently, site directed
mutagenesis data is available for OR1A1, OR1A2, OR2M3, OR2T11,
OR5AN1, OR7D4, and OR51E2 (Jabeen et al., 2019a). According to the
available mutagenesis data for OR1A2, positions 3.36 (A108), 3.37
(K109), 4.56 (S155) and 5.46 (V205) have crucial roles within the
ligand-binding pocket and 4 of the top 5 predicted ligands, except
2-hydroxytetradecanoic acid show interactions with these residues as
evident from Fig. 4 and Supporting information: Fig. S13.

3.5. Binding free energy calculation

Binding free energy calculation based on MD trajectories predicts the
binding affinities between the ligands and the receptors. We have per-
formed the binding affinity prediction using MMGBSA. molecular me-
chanics Poisson–Boltzmann surface area (MMPBSA) and MMGBSA have
been successfully applied for improving the virtual screening results but
GB solvation models are more accurate than PB (Genheden and Ryde,
2015). 500 snapshots from the last 5ns simulation for each complex were
analysed for energy convergence to estimate the energetic stability of
these complexes. The binding free energies estimated for each complex is
shown in Table 1. Notably, MM van der Waals values are contributing
markedly to the binding energy for all complexes. The contribution of the
electrostatic energy to the ΔGbind is the least for
OR1A2:(S)-(�)-citronellal, followed by OR1A2:14-methylhexadecanoic
acid and OR1A2:pentadecanoic acid complexes. For OR1A2:hex-
adecanedioic acid complex, contribution of the electrostatic energy to the
ΔGbind is very favourable (most negative), contributing maximally to
ΔGbind. The binding affinity of the predicted compounds 1–5 is better
(lower) than that of the control compound ((S)-(�)-citronellal, 6).

4. Conclusions

Decoding the complex combinatorial code of ORs is yet challenging
provided the huge number of odors and large number of ORs but
essential to elucidate the olfactory recognition process. In silico ap-
proaches are being successfully applied in exploring the chemical space
for deciphering the molecular receptive range of ORs. In this study we
have screened the library of 5942 compounds against OR1A2 by
computational means to identify the putative ligands for the receptor. In
our protocol we have combined the LBVS and SBVS. Further we have
used a combination of parameters including a novel measure of hydro-
phobicity similarity matching for template selection. We suggested that
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Bovine Rhodopsin (PDBID:1U19) is the best template to predict the
OR1A2 homology model. The top predicted ligands retrieved after two-
stage screening are acidic in nature and are structurally similar to the
experimentally known potent ligands for the receptor. Moreover, the
predicted ligands are energetically stable within the binding pocket of
homology model and have better binding energies than experimentally
validated ligands according to the MMGBSA energy calculations.
Therefore, we recommend the in-vitro testing of the predicted compounds
against the OR1A2.
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