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A B S T R A C T   

The increasing global population drives a rising demand for food, particularly fish as a preferred protein source, 
straining capture fisheries. Overfishing has depleted wild stocks, emphasizing the need for advanced aquaculture 
technologies. Unlike agriculture, aquaculture has not seen substantial technological advancements. Artificial 
Intelligence (AI) tools like Internet of Things (IoT), machine learning, cameras, and algorithms offer solutions to 
reduce human intervention, enhance productivity, and monitor fish health, feed optimization, and water 
resource management. However, challenges such as data collection, standardization, model accuracy, inter-
pretability, and integration with existing aquaculture systems persist. This review explores the adoption of AI 
techniques and tools to advance the aquaculture industry and bridge the gap between food supply and demand.   

Introduction 

Since the 21th century, the global population has experienced rapid 
growth. Despite efforts in the agriculture sector to keep up with the 
demand of food, the pace of population growth has outstripped agri-
cultural production (Ahmed et al., 2024). Consequently, this imbalance 
has resulted in an uneven distribution of essential nutrients such as 
protein, fat and calories in the diet consumed by the people (Pradhan 
et al., 2019). According to United Nation’s estimates, there are over 900 
million malnourished people worldwide with one fourth of them being 
children under the age group of four or five. These young children are 
particularly vulnerable to the adverse effects of severe protein and en-
ergy malnutrition (PEM). The primary cause of inadequate access to 
nutritious remains a significant factor contributing to under-nutrition, 
especially among children in many developing countries (UN, 2010). 

Over the past few decades, fish has emerged as a significant protein 
source in many developing countries (Ahmed and Ahmad, 2020; FAO, 
2020; Ahmad et al., 2021. Ahmad et al., 2021a, b; Ahmad et al., 2022). 
The nutritional value of fish is unquestionable as it is rich in high-quality 
protein, essential micronutrients and omega-3 unsaturated fatty acids. 

Notably, fish exhibits more pronounced satiating effects compared to 
terrestrial animal proteins like beef and chicken meat (Uhe et al., 1992). 
Around 60 % of people in developing countries heavily depend on fish 
for at least 30 % of their animal protein intake, while nearly 80 % of the 
population in most developed countries obtain less than 20 % of the 
animal protein from fish (FAO, 2022). However, some Asian countries 
show a relatively higher reliance on fish (Delgado, 2003). Despite fish 
plays a crucial role in sustaining a significant segment of the global 
population, with a major portion of the diet consisting of fish and fishery 
related products (Minar et al., 2012; Chakraborty et al., 2015; Gandotra 
et al., 2017). It’s availability is being compromised by unsustainable 
fishing practices in natural water bodies. This management is contrib-
uting to a deficiency in providing nutritionally adequate food for the 
populations of developing countries. 

Worldwide total catch of fisheries production in 2016 was around 91 
million tons, involving about 79 million tons from marine waters and 
only 12 million tons from inland waters (FAO, 2018). By 2030, an extra 
quantity or quantum of 37 million tons of fish for each year will be 
needed to meet the demand of current degrees of fish utilization for an 
extended world population. As capture fisheries is showing the 
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indications of nearly stagnation for last one decade, there is a dire need 
to tap extra sources of resources that can be achieved through the 
mobilization of water bodies. Aquaculture emerges as a viable solution 
to this challenge, offering the potential to significantly augment overall 
fish production (Allan, 2004; Khursheed et al., 2023). To address the 
growing disparity between demand and supply on a global scale, 
advanced aquaculture technologies represent the sole viable recourse. 

Although different traditional techniques have already been 
employed in aquaculture, but recent technological advancements 
promise to reduce human intervention and enhance aquaculture pro-
ductivity. Notably, AI stands out as a transformative force in the aqua-
culture industry (Mustapha et al., 2021). AI technologies are actively 
employed in monitoring and managing fish health and growth, leading 
to improved feed, diminished risk of disease outbreaks, and enhanced 
overall farm productivity. Geetha and Bhanu (2018) reported that the 
involvement of developmental algorithms and models in AI, enabling 
that conventially necessitate human intelligence, such as learning, 
reasoning and problem-solving. In the realm of aquaculture, AI facili-
tates the analysis of data derived from sensors and cameras to monitor 
fish behaviour, detect signs of disease or stress, employ automatic sen-
sors for measuring fish length and weight, and optimize feeding regimes 
(Barreto et al., 2022; Føre et al., 2018; Tonachella et al., 2022). By 
analyzing this data using AI algorithms, researchers can develop pre-
dictive models that can identify the early signs of disease or stress in fish 
(Gladju et al., 2022). Sharma and Kumar (2021) emphasize the role of 
integrated sensors, biosensors, and AI in minimizing the reliance on 
antibiotics and other medications. Furthermore, AI contributes to the 
formulation of personalized feeding programs tailored to meet the 
nutritional requirements of individual fish, optimizing growth rates and 
fostering improved overall health and well-being (Kaur et al., 2021). It 
can also help to improve the management of fish reproduction, by 
developing predictive models that can identify the optimal conditions 
for spawning and egg production (Chapman et al., 2014; Migaud et al., 
2013). This review comprehensively synthesis the application of AI to 
enhance the efficiency and sustainability of the aquaculture industry, 
particularly in the domains of fish reproduction, feeding, and growth. A 
compilation of prior studies on AI applications is presented in Tables 1 

and 2. Moreover, this paper aims to delve into the myriad applications of 
AI in aquaculture elucidating potential benefits and addressing the 
challenges and limitations that must be surmounted to fully exploit its 
potential. 

Overview of Artificial intelligence (AI) 

AI refers to the simulation or approximation of human intelligence in 
machines. The aim of AI includes computer-enhanced learning, rea-
soning and perception (Xu et al., 2021). In recent years, AI has grown an 
importance in aquaculture research and production, with both start-ups 
and established corporations developing new AI-based applications for 
the industry (The Lutz Report, 2023). Data mining and machine learning 
are two closely related techniques that are commonly used in the field of 
AI to analyze large amounts of data and extract useful insights and 
knowledge. While they share some similarities, there are also few dif-
ferences between the two techniques (Sarker, 2022). Data mining refers 
to the process of extracting patterns and relationships from large data-
sets. It involves using a variety of statistical and computational tech-
niques to identify trends, associations, and anomalies in the data. Data 
mining techniques can be used to explore the data, identify patterns and 
relationships, and develop predictive models that can be used to make 

Table 1 
An overview of some studies related to Artificial Intelligence (AI) in aquaculture.  

S. 
No. 

Area of Research Outcome Reference 

1. AI in aquaculture Effectiveness in traceability, 
feeding, disease detection, 
growth prediction, 
environmental monitoring, 
market information, and others is 
key to increasing aquaculture 
productivity and sustainability. 

Mustapha 
et al., 2021  

2. Deep learning 
techniques 

InceptionV3 pre-trained model 
for classifying three different 
types of abnormal appearance of 
grouper can reach average 98.94 
% accuracy in phase II task. 

Chen et al., 
2022 

3. AI based disease 
detection 

Covers periodical optical 
monitoring of the fishes in the 
farm, detecting the onset of any 
disease, with a minimum time 
lag. 

Darapaneni 
et al., 2022 

4. Intelligent feeding 
technique 

To calculate the shrimp biomass 
and determine the appropriate 
feeding amount by reading the 
sensors in real time. 

Chen et al., 
2022 

5. Intelligent feeding Intelligent equipment can replace 
people, reduce labor intensity, 
reduce risk, and improve work 
efficiency. 

Wu et al., 2022 

6. Internet of Things 
(IoT) systems in 
aquaculture 

Maintaining water quality and 
other parameters within the 
acceptable ranges. 

Rastergari 
et al., 2023  

Table 2 
Use of Artificial Intelligence (AI) in aquaculture.  

Area of application Examples of AI techniques Benefits 

Breeding Machine learning 
algorithms, genetic 
algorithms, neural 
networks 

Improved accuracy in selecting 
breeding pairs, faster genetic 
improvement, reduced cost 
and time of breeding 
programs, increased disease 
resistance 

Feeding 
optimization 

Neural networks, fuzzy 
logic, decision trees, 
genetic algorithms 

Reduced feed wastage, 
improved growth rates, lower 
costs, improved sustainability, 
identification of optimal 
feeding regimes for different 
fish species 

Disease detection 
and management 

Machine learning 
algorithms, image 
recognition, natural 
language processing 

Early detection and diagnosis 
of diseases, improved accuracy 
in diagnosis, reduced 
treatment costs, improved 
disease management 

Water quality 
management 

Expert systems, fuzzy 
logic, neural networks 

Improved water quality 
management, reduced use of 
chemicals and antibiotics, 
improved disease prevention 
and control, reduced mortality 
rates 

Environmental 
monitoring 

Artificial neural networks, 
machine learning 
algorithms, acoustic 
sensors 

Improved understanding of the 
impact of environmental 
factors on fish behavior and 
growth, improved 
sustainability 

Harvesting and 
processing 

Robotics, computer vision, 
machine learning 
algorithms 

Improved efficiency, reduced 
labor costs, improved accuracy 
in grading and sorting fish, 
reduced waste 

Supply chain 
management 

Blockchain, artificial 
intelligence algorithms 

Improved traceability, reduced 
fraud, increased transparency, 
improved efficiency 

Energy 
optimization 

Artificial neural networks, 
fuzzy logic, genetic 
algorithms 

Reduced energy consumption, 
improved sustainability, 
reduced costs 

Aquatic vegetation 
management 

Machine learning 
algorithms, artificial 
neural networks 

Improved understanding of the 
impact of aquatic vegetation 
on fish growth, identification 
of optimal vegetation 
management strategies 

Aquaponics Machine learning 
algorithms, expert 
systems, genetic 
algorithms 

Improved efficiency, reduced 
labor costs, improved 
sustainability, increased crop 
yields  
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decisions based on the data (Wu et al., 2021). 
Machine learning, on the other hand is a subfield of AI that involves 

the development of algorithms and models that can learn from data and 
make predictions or decisions based on that learning (Sarker, 2021). 
Machine learning algorithms are designed to identify patterns and re-
lationships in data, and then use those patterns to make predictions or 
decisions about new data (Choudhury et al., 2021). There are several 
different types of machine learning algorithms, including supervised 
learning, unsupervised learning, and reinforcement learning (Mahesh, 
2020). Supervised learning algorithms are trained on labelled data, 
where the correct answers are known, and are used to make predictions 
or decisions about new data learning (Mahesh, 2020). Unsupervised 
learning algorithms, on the other hand, are trained on unlabelled data, 
where the correct answers are not known, and are used to identify 
patterns and relationships in the data (Patel, 2019). Reinforcement 
learning algorithms are used to train agents to take actions in an envi-
ronment in order to maximize a reward. Both data mining and machine 
learning techniques are widely used in a variety of industries and ap-
plications, including finance, healthcare, marketing, and more (Sarker, 
2021). They are particularly useful in fields where large amounts of data 
are available, and where there is a need to extract insights and knowl-
edge from that data in order to make informed decisions. An overview of 
some studies related to AI in aquaculture is presented in Table 1. 
Considering the revolutionary of AI and machine learning, present re-
view has been designed to summarize the role, importance and future 
perspectives of AI in aquaculture. 

Types of AI 

AI refers to the simulation of human intelligence in machines that are 
programmed to perform tasks that would typically require human in-
telligence, such as perception, reasoning, learning, and decision-making 
(Xu et al., 2021). AI is a broad field that encompasses various subfields 
and applications, and there are several types of AI (Fig. 1). 

Based on functionalities, types of AI are as below; 
Reactive AI: This type of AI is programmed to react to specific sit-

uations or inputs but cannot learn from past experiences or make pre-
dictions about the future (Sarker., 2022). 

Limited Memory AI: This type of AI can learn from past experiences 

and make decisions based on that knowledge, but it has limited memory 
and cannot consider a large amount of data (Xu et al., 2021). 

Theory of Mind AI: This type of AI can understand the beliefs, 
emotions, and intentions of other agents, making it useful for applica-
tions such as social robotics. 

Self-Aware AI: This type of AI has a sense of self and can understand 
its own capabilities and limitations. 

Based on Capabilities following are types of AI; 
Narrow AI: Weak AI, commonly referred to as narrow AI, is limited 

to performing a single narrow task. It advances along the spectrum of a 
single subset of cognitive talents. As machine learning and deep learning 
techniques advance, specialised AI applications are appearing more 
frequently in our daily lives (Sarker., 2022). 

General AI: General AI, also known as strong AI, is capable of un-
derstanding and learning any intellectual task that a human being is 
capable of. It enables a machine to apply knowledge and skills in a va-
riety of contexts. So far, AI researchers have not been able to achieve 
strong AI. They have to figure out how to make machines conscious, 
programming a full set of cognitive abilities. 

Super AI: Outperforms human intelligence and is capable of per-
forming any task better than a human. Artificial super intelligence en-
visions AI evolving to be so similar to human sentiments and experiences 
that it not only understands them, but also elicits emotions, needs, be-
liefs, and desires of its own. Its existence is still speculative. Thinking, 
solving puzzles, making judgements, and making decisions on its own 
are some of the critical characteristics of super AI (Xu et al., 2021; 
Sarker, 2022). 

Potential applications of artificial intelligence in aquaculture 

Aquaculture stands as a rapidly expanding industry that demands 
significant technological advancements to improve farming practises. 
To enhance productivity, the development of novel farming methods is 
imperative and AI emerges as a key in many ways. Nowadays, AI gadgets 
are accessible to provide a more stable environment for the stock. 
Although there are several applications of AI in aquaculture, but here we 
discuss few of them in detail as below: 

1. Use of AI in monitoring water quality. 
Effective water quality monitoring is paramount for the success of 

Fig. 1. Artificial Intelligence (AI) and its types.  
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aquaculture operations (Lindholm-Lehto, 2023), given the multifaceted 
factors influencing it. Some of them are necessary to keep water at least 
as sustainable as possible. Fish activity can be directly impacted by the 
water quality due to the fish’s high reliance on the aquatic environment. 
Monitoring water quality is therefore a crucial problem to take into 
account, particularly in the fish farming industry (Arafat et al., 2020) 
and AI is increasingly being used to help in this area (Lu et al., 2022). 
This section aims to elucidate how AI can be effectively employed in 
monitoring water quality within aquaculture systems. By analyzing data 
from sensors that measure parameters such as temperature, dissolved 
oxygen, pH and ammonia levels (Dupont et al., 2018), AI algorithms can 
detect patterns and anomalies that may indicate problems with the 
water quality (Zhao et al., 2021; Khurshid et al., 2022). This can help 
farmers to take corrective actions before any harm is done to the fish. AI- 
powered water quality monitoring systems can continuously monitor 
multiple parameters in real-time, which can provide more accurate and 
timely information than manual monitoring methods (Javaid et al., 
2022). This allows farmers to respond quickly to any changes in water 
quality, reducing the risk of fish mortality and other negative outcomes. 

AI assumes a pivotal role in developing predictive models that 
anticipate changes in water quality before they occur. It can be helpful in 
analyzing the historical data on water quality and other factors such as 
weather patterns and feeding schedules (Saeed et al., 2022). Besides, AI 
algorithms can predict the likelihood of changes in water quality and 
provide early warnings to farmers. Gunda et al. (2018) have developed 
an AI-based mobile application platform for water quality monitoring 
for bacterial contamination, where they have used a low-cost rapid test 
kit i.e., Mobile water kit for detecting the water quality for bacterial 
contamination. Moreover, AI algorithms can help farmers to optimize 
water quality parameters based on the specific needs of the fish species 
being farmed (Chiu et al., 2022). Aldhyani et al. (2020) developed 
advanced AI algorithms to predict water quality index (WQI) and water 
quality classification (WQC). For the WQI prediction, artificial neural 
network models, namely nonlinear autoregressive neural network 
(NARNET) and long short-term memory (LSTM) deep learning algo-
rithm have been developed. In addition to this, three machine learning 
algorithms, namely, support vector machine (SVM), K-nearest neigh-
bour (K-NN) and Naive Bayes have been used for the WQC forecasting. 
Their results revealed that the proposed models can accurately predict 
WQI and classify the water quality according to superior robustness. 

Moreover, temperature is a critical factor in aquaculture, as it 
directly affects the health and growth of aquatic organisms (Mugwanya 
et al., 2022). AI algorithms can analyze data from temperature sensors 
in fish farms to monitor water temperature continuously. By this tech-
nique, the system can identify patterns and anomalies in the tempera-
ture data and provide real-time alerts to farmers if the temperature 
deviates from the optimal range for the specific fish species being farmed 
(Yang et al., 2021). This will allow farmers to detect changes in tem-
perature quickly and take appropriate actions to maintain optimal 
conditions for the health and growth of the fish (Mustafa et al., 2016; 
Joseph et al., 2019; Chiu et al., 2022). By continuously monitoring the 
temperature, AI algorithms can also provide valuable insights to farmers 
on the impact of environmental changes on the fish and help to prevent 
potential problems that may arise due to changes in temperature (Føre 
et al., 2018). Besides this, AI algorithms can identify trends and patterns 
in the data, which can indicate potential risks to the health and growth 
of the fish (Manoj et al., 2022). This might be explained that when 
temperature increases rapidly, it may indicate a problem with the 
cooling system, which could lead to higher mortality rates for the fish 
(FAO, 2018). 

AI algorithms can also analyze data from other environmental factors 
such as water quality, feed management and weather patterns to provide 
a holistic view of the fish farm’s conditions (Lafont et al., 2019). By 
integrating this data, AI algorithms can provide more accurate and 
comprehensive insights to farmers on how different environmental 
factors can impact the health and growth of the fish (Niloofar et al., 

2021). This can help farmers make more informed decisions on how to 
optimize their fish farm operations and prevent potential problems that 
may arise due to changes in temperature or other environmental factors 
(Gladju et al., 2022). Considering the findings of these studies, it can be 
inferred that AI algorithms can provide valuable insights to fish farmers. 

2. Use of AI in disease detection and prevention 
A pivotal application of AI in bolstering the health and well-being of 

fish within aquaculture system revolves around disease identification 
and control. Numerous studies have focused on the use of AI for disease 
detection and management, optimization of feeding regimes and man-
agement of fish reproduction (Fig. 2). In the realm of aquaculture op-
erations, the increasing utilization of AI is notably evident in the 
identification and treatment of fish infections (Li et al., 2023). AI can be 
used in analyzing the data from sensors and cameras to find indicators of 
illness or stress in fish. Cameras, for instance, can be used to observe fish 
behaviour and spot alterations that can point to stress or disease, such 
decreased activity levels or unusual swimming behaviour. Chen et al. 
(2022) reported that advanced disease identification based on fish 
behaviour and external appearance has been identified as a promising 
field for AI use. In addition, this detection system is based on underwater 
cameras or sensors to capture images that are sent through the cloud to 
the processing unit and scoring system. This gives artisanal farmers 
considerably more time to seek for management solutions (Darapaneni 
et al., 2022). 

Analyzing fish photos for disease indicators is another method of 
applying AI to the identification of disease in fish (Yang et al., 2021). It 
can detect disease symptoms like lesions, odd behaviour, or dis-
colouration by examining fish photos captured by cameras in the fish 
farm (Nik Zad, 2013; Chan et al., 2022). This can help farmers in early 
disease detection and treatment, limiting the demand for antibiotics and 
the risk of outbreaks. This method can assist aquaculturists in identi-
fying fish infections sooner, which can enhance treatment results and 
lessen the disease’s ability to spread to other fish populations. Analyzing 
water quality data for disease indicators is another method of employing 
AI for fish disease identification (Setiyowati et al., 2022). Temperature, 
pH, and dissolved oxygen levels are a few examples of water quality 
variables that can have an impact on fish health and reveal the existence 
of specific diseases. AI programmes can be used to examine data on 
water quality and spot trends that can point out the presence of disease 
(Nayan et al., 2021). AI algorithms can, for instance, assess environ-
mental information like temperature, precipitation, and nutrition levels 
to forecast when and where disease outbreaks are likely to occur (Ela-
varasan et al., 2018). This can assist aquaculturists in taking proactive 
steps to stop the spread of disease and lower the possibility of suffering 
financial losses (Rajitha et al., 2007). Besides, the use of antibiotics and 
other pharmaceuticals may be decreased by using AI tools and tech-
niques to perform early interventions, such as modifying water quality 
indicators or delivering tailored therapies (Holmes et al., 2016). 

Furthermore, several studies explored the use of AI to analyze the 
video data from salmon farms to detect changes in behaviour that may 
indicate stress or disease. The researchers used a deep learning algo-
rithm to identify behavioural patterns in the fish, and were able to detect 
early signs of disease with a high degree of accuracy. Wu et al. (2022) 
studied four major aspects of deep-sea aquaculture including intelligent 
feeding, water quality detection, biomass estimation, and underwater 
inspection. This transitional development has changed the traditional 
manual way to mechanization, then to automation, hence named as 
unmanned intelligent equipment. Use of these intelligent equipment in 
various fields of aquaculture can reduce labour cost, reduce threats and 
can increase working potential. Lee et al. (2000) used fuzzy logic-based 
control system for denitrification in a closed recirculation system. They 
developed a computer-control denitrifying bioreactor for a system 
housing squid for biomedical research. This Fuzzy logic can be used to 
process real-time inputs from sensors used to measure dissolved oxygen, 
oxidation–reduction potential and pH and in turn controls the pumping 
rates and addition carbon feed to the bioreactor. 
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Overall, the use of AI to fish disease detection has the potential to 
dramatically enhance the health and wellbeing of fish populations raised 
in aquaculture. Table 3 shows some techniques which are being used in 
disease detection. However, further research is needed to explore the 
full range of applications of AI in aquaculture, and to develop more 
advanced and sophisticated AI algorithms and models. 

3. Use of AI in biomass monitoring. 
For determining fish health and growth rate during the growing 

stage, biomass is one of the most crucial factors (Li et al., 2020). The 
manual procedure for estimating biomass entails sampling using a 
fishing net or tray, catching each fish, weighing them individually, and 
then calculating the biomass (Martinez-de et al., 2003). It is a time- 
consuming and labor-intensive process, which makes it difficult to es-
timate a larger number of samples for precise biomass estimation (Cai 
et al., 2020). Additionally, it shows a higher level of measurement errors 
brought on by human error. This procedure stresses the fish, which may 
have negative consequences like growth retardation, nerve damage, and 
even death. Manually handling dead fish during post-processing for 
biomass estimation also compromises the texture and quality of the 
product (Zion, 2012). As a result, extensive research has been done to 
investigate alternative techniques for estimating biomass (Li et al., 
2020). The use of AI offers new opportunities for modern aquaculture. 
Meanwhile, combining machine learning and vision can more precisely 
estimate fish’s size, weight, number, and other biological data. 

Machine learning and computer vision have emerged as powerful 
tools in various domains and their application in estimating the weight 
of fish showcases their potential in fisheries management and environ-
mental monitoring (Monkman et al., 2019). Several studies and research 
projects have explored the use of machine learning algorithms to more 
accurately estimate the weight of fish. One notable approach involves 
utilizing computer vision techniques to analyze images of fish and 
extract relevant features for weight prediction. Bravata et al. (2020) 
highlights the implementation of convolutional neural networks (CNNs) 
to process images of fish and predict their weight with high accuracy. 

The study demonstrates the effectiveness of deep learning in capturing 
intricate patterns and characteristics that contribute to weight varia-
tions among different fish species. Another study by Lopez-Tejeida et al. 
(2020) improved a method to obtain fish weight using machine learning 
and NIR camera with Haar Cascade Classifier. They reported that by the 
implementation of hardware and software adds an infrared light and 
pass band filter for the camera successfully, the fish was detected 
automatically, and the fish weight and length were calculated moreover 
the future weight was estimated. 

a. Size estimates: Body lengths of harvested fish are key indices for 
marine resource management. Some fisheries management organiza-
tions require fishing vessels to report the lengths of harvested fish (Tseng 
et al., 2020). Conventionally, body lengths of fish are measured manu-
ally using rulers or tape measures. Such methods are, however, time 
consuming, labour intensive, and subjective. Several researchers have 
used the ImageNet dataset and the Atlantic fish dataset to conduct 
algorithmic research on estimates of fish size. For estimating the length 
of European bass under various architectures, Monkman et al. (2019) 
suggested the R-CNN model. In addition, the author used OpenCV to 
calculate the image and increase accuracy in light of the image distor-
tion. According to the findings, the typical deviation percentage was 2.2 
%. 

b. Age determination: One of the main methods of fish age 
discrimination used presently is the automatic interpretation and 
recognition of fish age using fish otolith images (Bermejo et al., 2007). 
Machine learning has been successfully used for tasks like object 
recognition and other types of image analysis, and it is essential for 
otolith image-based age estimation. In order to determine the age of fish, 
Moen et al. (2018) used deep learning to automatically interpret otolith 
images and converted ImageNet pre-trained parameters to the trained 
CNN model through transfer learning. The experimental outcomes 
showed that the model performed well and could be used to compare the 
accuracy of artificial experts. The model was unable to accurately pre-
dict the youngest fish age area, which resulted in low prediction 

Fig. 2. Applications of Artificial Intelligence (AI) in aquaculture.  
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accuracy for specific ages. 
c. Sex determination: For the identification of the sex of fish, bio-

logical methods were used in the past (Du et al., 2017; Yarmohammadi 
et al., 2017; Webb et al., 2019). These methods had high detection errors 
and caused fish trauma. The machine learning method for identifying 
fish sex does not rely on the quality or age of the fish, but rather on the 
relative morphological parameters of the fish. In parallel, machine 
vision technology can effectively obtain the morphological parameters 
of the fish. For these reasons, the method of combining machine vision 
and machine learning can obviously identify the sex of fish in an 
effective manner (Barulin, 2017). Barulin (2019) conducted a study on 
Sex identification of starlet sturgeon based on based on scute structure 
using Boruta algorithm/Random forest algorithm. The experimental 
results showed that this approach performs well, and they also offer a 
positive outlook for using AI to determine a species sex. 

4. Use of AI in fish feeding. 
The cost of feeding fish accounts for 40–50 % of the total operational 

cost of aquaculture (Ogunlela and Adebayo, 2016), while 60 % of the 
feed that is dispensed into the aquarium becomes particulates (Srivas-
tava and Liu, 2015). These accumulated particles pollute the water, 
which uses oxygen to break them down and release ammonia, nitrogen, 
and other noxious substances that can stunt the growth of fish. While 
measuring the amount of fish feed intake remains a significant chal-
lenge, the amount of feed dispensed to match fish appetite levels plays a 
significant role in increasing fish productivity. 

AI can also help to optimize feeding of fish and AI software can 
calculate the ideal feeding schedule and serving size. This could improve 
feed use, reduce waste, and foster fish growth and health. One important 

area where AI can have a significant impact on fish behaviour, appetite, 
and growth rates is aquaculture feeding optimization. By taking into 
account elements like water temperature, dissolved oxygen levels, and 
the nutritional content of feed, AI may be used to develop prediction 
models that determine the ideal feeding schedule and quantity for a 
certain fish population. Through waste and the chance of overfeeding, 
this can have a detrimental effect on the environment by resulting in 
contaminated water. By reading the sensors in real-time, an optimal 
model for artificial intelligence may be employed to determine the 
shrimp biomass and determine the proper amount (Chen et al., 2022). 

AI can also be used to assess fish behaviour and hunger in real-time in 
addition to optimising feeding schedules. It has been reported that 
cameras and sensors can be used to keep an eye on activities like feeding, 
swimming, and other signs of stress or hunger (Barreto et al., 2022). Fish 
will then receive the ideal quantity of nutrition to support their growth 
and development by using this information to change feeding schedules 
and amounts in real-time (Lafont et al., 2022). Studies have reported 
that AI can also be used to develop individualised feeding plans for each 
fish, taking into account their genetic make-up, age, and body weight 
(Reyed, 2023). Precision aquaculture is a method for maximising growth 
rates and minimising the overall environmental effect of aquaculture 
operations (O’Donncha and Grant, 2019). Using AI for feeding optimi-
zation can significantly increase fish growth rates, appetite, and 
behaviour in aquaculture while lowering waste and having a minimally 
detrimental environmental impact (Føre et al., 2018). 

5. Use of AI in promoting growth rates. 
The optimal temperature for the growth of fish varies, depends on 

the species of fish reared. Maintenance of the optimal temperature, fish 
farmers can promote faster growth rates and larger fish (Uddin et al., 
2022). However, if the temperature rises too high or too low, it can 
negatively impact growth rates (Sivri et al., 2007). There are several 
ways in which growth rates, aquaculture, and AI are interconnected. 
Foremost factor is to monitor growth rate. The growth rates of these 
organisms are critical to the success of the aquaculture industry. AI can 
be used to monitor and manage the growth rates of these organisms, 
ensuring optimal conditions for growth and maximizing production. 

In the current era modern and innovative and technical instrumental 
devices are using stereoscopic observations to measure the size, observe 
the shape, position and behaviour of fish and shrimps. It has been re-
ported that “Sonar cameras” converts sound echoes into video images to 
use them in dark or turbid environments (Li et al., 2020). Studies have 
reported that water quality can be monitored in three dimensional in 
cages and large tanks by using autonomous vehicles that lift and lowers 
the sensor to develop 3-D data profiles (Edan et al., 2009). Whereas 
indoor recirculatory aquaculture system and underwater net-pen pro-
duction environment were found more stable (Using sonar to help 
farmers solve the biomass problem, 2022). 

Moreover, AI can be used to develop predictive models that can 
forecast the growth rates of aquatic organisms (Hmoud Al-Adhaileh & 
Waselallah Alsaade, 2021). To effectively estimate growth rates, these 
models can take into account a variety of environmental variables, 
including water temperature, oxygen concentrations, and nutrition 
availability (Ansari et al., 2021). This can help farmers in reducing waste 
and streamlining their production processes. Based on a fish species’ 
development rate, water temperature, and other environmental condi-
tions, a prediction model can be used to establish the ideal feeding rate 
for that species (Ghandar et al., 2021). In order to help farmers organise 
their operations more efficiently, the model may also forecast the 
anticipated yield and the date of harvest. Predictive models can not only 
increase manufacturing efficiency but also help stop disease outbreaks. 
Predictive models can identify early indications of stress or disease in 
aquatic species through environmental monitoring, enabling farmers to 
take preventative action and lessen the effect on production (Bell et al., 
2022). Predictive modelling is a useful tool for farmers who want to 
maximise output while minimising environmental effect since it can 
boost growth rates, efficiency, and sustainability in aquaculture (Das 

Table 3 
Use of Artificial Intelligence (AI) in disease detection.  

S. 
No 

Disease diagnosis Technique/tool Detection 
Accuracy 

Reference  

Fish parasites 
(Ichthyophthirius 
multifiliis, 
Gyrodactylus 
kobayashii, 
and Argulus 
japonicus) 

Deep learning 
algorithm 
YOLOv4 through 
python 

95.41 % Li et al., 2023  

Difference between 
Infected fish and 
fresh fish 

Support Vector 
Machine (SVM) 
algorithm 

91.42 % 
without 
augmentation 
94.12 % with 
augmentation 

Ahmed et al., 
2022  

WSSV (White Spot 
Syndrome Virus 

Artificial Neural 
network, Fuzzy 
Algorithm 

90 % Fabregas 
et al., 2018  

EUS (Epizootic 
Ulcerative 
Syndrome) 

Machine 
learning 
algorithims 
Principal 
Component 
Analysis (PCA) 
and Histogram of 
Oriented Gra- 
dients (HOG) 

86 % Malik et al., 
2017  

EUS (Epizootic 
Ulcerative 
Syndrome) 

Principal 
Component 
Analysis (PCA) 
and K-menas 
Algorithm 

90 % Chakravorty 
et al., 2015  

Red Spot and White 
spot 

Convolutional 
Neural Network 
(CNN) 

91.67 % for 
white spot 
94.44 % for 
red spot 

Hassan et al. 
2022  

EUS, Red Spot, 
Argulus, Tail and Fin 
Rot, Broken 
antennae rostrum 
and Bacterial Gill 
rot. 

C-means Fuzzy 
logic and K- 
means clustering 

96.48 % for K- 
means 
clustering 
97.90 % for C- 
means Fuzzy 
logic 

Sikder et al., 
2021  
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et al., 2022). Another study examined the use of AI to optimize feeding 
regimes for salmon. They use machine learning algorithms to develop 
personalized feeding programs based on individual fish characteristics, 
and were able to achieve significant improvements in growth rates and 
feed conversion ratios (Barreto et al., 2022). AI algorithms may create 
individualised feeding schedules that satisfy each fish’s unique nutri-
tional needs and maximise growth rates by accessing data on feeding 
behaviour and development rates (Metcalfe, 2019). 

6. Use of AI in sustainability, efficiency and behaviour of fish. 
Aquaculture has the potential to be a sustainable food supply, but it 

needs to be carefully managed to prevent harm to the environment. It 
has been reported that AI can be employed to keep an eye on environ-
mental factors like water quality, fertiliser levels, waste reduction, and 
productivity (Krishnan et al., 2021). The use of AI in aquaculture has the 
potential to boost productivity, promote sustainability, reduce disease 
outbreaks, and improve growth rates, making aquaculture a more viable 
and long-term source of food (Mandal and Ghosh, 2023). Fish feeding 
habits, activity levels, and social relationships can all be affected by 
temperature conditions. Certain fish species have been found to grow 
more aggressive in warmer temperatures. Some fish species are known 
to become more aggressive in warmer temperatures. Well-known ex-
amples are tilapia, a common freshwater fish raised for food that has 
been demonstrated to become more aggressive in warmer temperatures. 
This is thought to be caused by changes in their metabolism, which can 
have an impact on how they behave. Popular sport fish, largemouth bass 
have been seen to become more hostile in warmer water temperatures. 
This is assumed to be caused by changes in their food habits and 
increased metabolic activity. 

The behavior of various fish species in response to temperature 
changes is a fascinating area of study. Bluegills, a popular freshwater 
sunfish, exhibit increased aggression in warmer water likely due to 
heightened competition for resources such as food and habitat (Barber, 
2007). Similarly, Atlantic salmon have been found to become more 
aggressive in warmer climates, which can lead to higher stress levels and 
increased succeptibility to diseases, potentially impacting their overall 
health and productivity (Portz et al., 2006; Svenning et al., 2022).). 
Coldwater fish called yellow perch have been seen to grow more 
aggressive in warmer weather (Stasko et al., 2012). Their feeding habits 
may vary as a result, and there may be more competition for few re-
sources. Depending on the species and the particular environmental 
factors, the effect of rising temperatures on fish aggression may differ. 
Nonetheless, it is widely acknowledged that variations in water tem-
perature can significantly affect fish behaviour as well as their general 
health and wellbeing. 

Several fish species become less active as a result of their slowed 
metabolisms and the need to conserve energy to keep their bodies warm 
in colder climates (Reeve et al., 2022). Which include a few fish species 
that slowdown in cooler weather (Power et al., 1999). Coldwater fish 
like trout become less active when the temperature drops. In order to 
save energy, they are known to seek out warmer water, such as at the 
surface or close to a warm tributary’s outflow (Heggenes et al., 2021). 
Another fish species that slows down in cooler weather is the catfish. As 
the water temperature is more consistent and they can preserve energy, 
they are known to go to deeper parts of a body of water. Freshwater fish 
with a wide tolerance for temperature variation include carp. However, 
they are known to become less active in colder temperatures and will 
often move to deeper areas of a body of water to conserve energy (Ficke 
et al., 2007). Pike are a type of predatory fishes that slowdown in cooler 
weather. They are known to travel to warmer water in deeper parts of a 
body of water where they can conserve energy. Besides, popular sport 
fish, walleye, become less active in cooler weather. In order to preserve 
energy, they are known to seek out warmer water, for example, close to a 
warm tributary’s outflow. 

This shows that depending on the species and the particular envi-
ronmental conditions, the effects of cooler temperatures on fish activity 
might differ (Huntingford et al., 2006). Nonetheless, it is widely 

acknowledged that variations in water temperature can significantly 
affect fish behaviour as well as their general health and wellbeing. 
Consequently, fish producers can encourage healthy behaviours that 
produce fish with better health by maximising the temperature cir-
cumstances (Craig et al., 2017). The Tokyo-based Umitron Corporation 
created the Umitron’s system, a system for tracking swimmer behaviour, 
using AI technology. This system makes decisions about when and how 
much feed should be supplied in each fish cage based on real-time 
observation of swimming behaviour. This approach significantly re-
duces trash production, transportation and logistical needs compared to 
daily feeding as well as feed transformation efficiency. The fish are sold 
under the name “AI Sumagastsuo” in Tokyo (Umitron launches feed 
optimisation and mortality estimation software, 2022). 

7. Use of AI in reproduction 
The study of reproductive mechanisms is crucial across various or-

ganisms, including, humans, animals, and plants, each with unique 
reproductive processes. Temperature plays a significant role in fish 
reproduction as certain species require specific temperature ranges for 
successful spawning. Fishermen can encourage effective reproduction 
and increase the number of fish in their farm by adjusting the temper-
ature conditions. Freshwater or saltwater habitats can be used for 
aquaculture, which can use a variety of techniques include tank-based 
systems, net-pen systems, and integrated multi-trophic aquaculture. It 
has been studied that in aquaculture, AI can be used to enhance feeding 
and water quality, regulate fish populations, and prevent disease out-
breaks (Prapti et al., 2022). Research on reproduction can be used in 
aquaculture to create fresh breeding plans that will boost the wellbeing 
and output of populations of farmed fish. In addition, there have been 
several studies exploring the use of AI for the management of fish 
reproduction. For example, one of the studies developed a predictive 
model to identify the optimal conditions for egg production in striped 
bass. Moreover, previous literature suggests that the use of AI in aqua-
culture has significant potential to improve the efficiency and sustain-
ability of the industry. By enabling more effective management of fish 
reproduction, feeding, and growth (Mustapha et al., 2021), AI can lead 
to improved fish health and well-being, as well as increased productivity 
and profitability for fish farmers (Ubina and Cheng, 2022; Khan et al., 
2018). 

8. Use of AI in breeding programs. 
Based on genomic data, AI can be used to create prediction models of 

fish performance, allowing for more effective and focused breeding 
programmes for qualities like disease resistance and growth rate. AI 
systems may find genetic differences associated with particular features 
by analysing vast amounts of genomic data, and they can then utilise this 
knowledge to create prediction models of fish performance (Dixit et al., 
2023). The performance of various fish populations under various 
environmental situations may thus be predicted using these models, as 
well as the top candidates for breeding to achieve particular objectives 
like disease resistance or growth rate. AI enables breeding operations to 
be more targeted and effective, which saves time and money while 
achieving desired features. By increasing the productivity and sustain-
ability of fish populations, this can have a large positive impact on 
aquaculture and fisheries management (Mandal and Ghosh, 2023). 
Therefore, the use of AI and breeding programmes together has great 
potential to advance the fields of aquaculture and fisheries management 
as well as genetic quality and performance of fish populations. 

9. Use of AI in conservation genetics. 
AI can be used to analyze genetic data from endangered or threat-

ened fish species, enabling better understanding of their genetic di-
versity and potential for conservation. The conservation of these species 
is important for maintaining healthy aquatic ecosystems and preserving 
the biodiversity of our planet. Endangered or threatened fish species 
face many challenges, including overfishing, habitat loss, pollution, and 
climate change. In order to overcome these problems, conservation ge-
netics can play a crucial role in understanding and addressing these 
challenges. 
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Analysis of genetic data using AI algorithms, researchers can identify 
distinct populations within a species, as well as the genetic diversity 
within and among these populations (Vilhekar and Rawekar, 2024).This 
information can be used to develop more effective conservation strate-
gies, such as targeting conservation efforts to areas with high genetic 
diversity or prioritizing the protection of distinct populations that may 
be more vulnerable to extinction (Vilhekar and Rawekar, 2024). Re-
searchers can use AI to track alterations in the genetic diversity of fish 
populations that are at danger of extinction. They can also evaluate the 
success of conservation methods and spot possible dangers to the long- 
term survival of a species by monitoring changes in genetic diversity. 
AI can also assist researchers in finding genetic markers linked to 
characteristics like disease resistance or successful reproduction that are 
crucial for the survival and procreation of fish species (Palaiokostas, 
2021).. Using this knowledge, breeding strategies may be created that 
put an emphasis on maintaining certain qualities and support the species 
long-term survival. In general, the application of AI to conservation 
genetics can assist us in understanding and preserving fish species that 
are in danger of extinction and are crucial to the health of our aquatic 
ecosystems and the lives of those who depend on them. 

Conservation genetics is an important field that aims to understand 
and preserve the genetic diversity of endangered or threatened species. 
AI can be a valuable tool in this field, as it can help researchers analyze 
large amounts of genetic data more efficiently and accurately than 
traditional methods (Xu et al., 2021). By analyzing genetic data using AI 
algorithms, researchers can identify patterns of genetic diversity within 
a species, such as the presence of unique or rare alleles. This information 
can then be used to develop effective conservation strategies, such as 
targeted breeding programs or the establishment of protected habitats. 
Additionally, AI can help researchers identify potential threats to the 
genetic diversity of endangered species, such as the introduction of 
invasive species or habitat destruction (Branco et al., 2023). By identi-
fying these threats early on, conservationists can take action to mitigate 
their impact and preserve the genetic diversity of vulnerable species. 
Overall, the use of AI in conservation genetics has the potential to 
greatly enhance our understanding of endangered and threatened spe-
cies and help ensure their long-term survival. Overall, AI holds the 
promise of revolutionising the research of fish genomes and opening up 
new possibilities for aquaculture, fishery management, and environ-
mental conservation. The ethical ramifications of genetic tools based on 
AI, though, are also a source of worry, and it’s important to make sure 
they’re used sustainably and responsibly. As a result, it’s critical to 
carefully weigh the possible advantages and disadvantages of AI in fish 
genome analysis and to make sure it’s applied in a way that’s advan-
tageous to both people and the environment. 

Hence, AI has the potential to change the aquaculture sector by 
enabling more profitable, efficient, and sustainable production tech-
niques. Yet, there are also worries about the price and availability of AI 
technology, as well as potential moral dilemmas with the treatment of 
animals and the environment. To ensure that AI is utilised responsibly 
and sustainably, it is crucial to thoroughly weigh the potential advan-
tages and hazards of its usage in aquaculture. 

10. Use of AI in fish genome. 
AI has the potential to revolutionise the study of fish genomes by 

enabling a speedier and more precise analysis of genetic data and 
accelerating the development of new genetic tools for use in aquaculture 
and fisheries management (Song et al., 2023). Fish genome research is 
one area where AI has showed considerable potential (Ditria et al., 
2022). AI can assist researchers in swiftly and accurately analysing 
enormous amounts of genetic data due to the growing complexity of 
data analysis techniques and the availability of genomic data (De Alwis 
et al., 2022). In order to detect genetic variations and comprehend the 
activities of particular genes, it can be incredibly helpful for AI algo-
rithms to learn from enormous amounts of data in order to recognise 
patterns and make predictions. 

By detecting desirable genetic features and enabling the selection of 

the best candidates for breeding, AI can assist in aquaculture and fish-
eries management to improve the breeding of fish species. By examining 
genetic diversity and locating genetic markers that can be used to follow 
fish movements and population changes, it can also assist in the moni-
toring of fish populations. AI can also be utilised to create novel genetic 
tools that can be used to improve the health and production of fish, such 
as gene editing technology (Rasal and Sundaray, 2020). AI has the po-
tential to significantly advance the study of fish genomes, leading to 
important breakthroughs in aquaculture and fisheries management. 
Some of the potential applications of AI in fish genome analysis include: 

11. Use of AI in genome sequencing and editing. 
Large volumes of genomic data may be analysed using AI, allowing 

for quicker and more precise genome sequencing and assembly. AI can 
speed up the process of genome sequencing, a critical tool for deter-
mining the genetic makeup of fish species (Ruppert et al., 2019). AI 
algorithms can assist researchers in finding the most pertinent and 
instructive regions of the genome and speed up the synthesis of high- 
quality genome sequences by processing enormous amounts of 
genomic data. This can be very advantageous for fish breeding and se-
lection in aquaculture. For instance, researchers can find desired fea-
tures like disease resistance, rapid growth, and environmental 
adaptation by sequencing the genomes of several fish populations and 
examining genetic variants. Researchers can choose the best candidates 
for breeding with the use of AI, which can make the process much 
quicker and more precise than conventional techniques (Xue et al., 
2023). This will ultimately increase the productivity and sustainability 
of aquaculture operations. In order to advance the research of fish ge-
nomes and enhance aquaculture techniques, AI and genome sequencing 
hold immense potential. 

In order to change fish genomes more effectively and precisely for 
purposes like increased growth and disease resistance, AI can be used to 
design and refine genome editing technologies like CRISPR-Cas9 (Fer-
dous et al., 2022). The science of genome editing, which makes use of 
instruments like CRISPR-Cas9, holds great promise for enhancing fea-
tures in fish species including disease resistance and growth (Houston 
et al., 2020). Unfortunately, developing and refining genome editing 
technologies can take a lot of time and resources. By anticipating the 
most efficient target areas for genome editing and refining the CRISPR- 
Cas9 system’s design for optimum effectiveness and precision, AI can 
speed up this process (Jones and Wilson, 2022). AI systems can discover 
potential off-target effects and reduce the danger of unintentional 
modifications to the genome by evaluating vast volumes of genetic data. 
Researchers can create more effective and precise genome editing tools 
for use in aquaculture and fisheries management with the aid of AI. For 
instance, CRISPR-Cas9 can be used to change existing features to better 
fit changing environmental conditions or to introduce desired genetic 
traits such as disease resistance or increased growth into fish pop-
ulations (Roy et al., 2022). Overall, the development of new genetic 
tools and interventions that can improve the health and resilience of fish 
populations is made possible by the combination of AI and genome 
editing technologies, which has enormous potential for improving the 
productivity and sustainability of aquaculture and fisheries 
management. 

Major challenges 

One problem is the absence of clear data and data sharing guidelines. 
A large amount of high-quality data is required to develop effective AI 
models and algorithms. There is currently a lack of common data for-
mats and protocols to facilitate data sharing across different aquaculture 
enterprises and research institutions. This limits the application of AI in 
aquaculture and creates difficulties in collecting and analysing large 
amounts of data. 

Mustapha et al. (2021) reported that, there are various limitations 
and challenges that may hinder the extensive adoption of AI in aqua-
culture. One of them is security concerns associated with many levels of 
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the interconnected systems and networks that will be required. It re-
quires complex data acquisition to convert it into meaningfully capture 
the complexity and biological interactions found in many production 
systems. Deep learning AI requires large amounts of training data, which 
is typically difficult to come by. For some applications, this is further 
compounded by the turbidity and bio-fouling associated with many 
culture systems. Finally, cost-benefit considerations will largely deter-
mine the extent and pace of AI adoption. But the long term trends for 
adoption are increasingly apparent. 

In order to develop effective AI algorithms and models, large 
amounts of high-quality data are required. However, there is currently a 
lack of standardized data formats and protocols for sharing data across 
different aquaculture operations and research institutions. This makes it 
difficult to collect and analyze large amounts of data, and limits the 
effectiveness of AI in aquaculture. Aquaculture operations involve a 
wide range of variables, such as water quality, temperature, and feed 
inputs, that can interact in complex ways to affect fish health and 
growth. Developing AI algorithms and models that can effectively cap-
ture and analyze these complex interactions is a major challenge that 
will require continued research and development. Developing and 
implementing AI systems in aquaculture can be expensive, particularly 
for smaller-scale operations. There may be a need for investment in 
infrastructure and technology to support the implementation of AI in 
aquaculture. As AI systems rely on large amounts of sensitive data, there 
is a need to ensure that data is securely stored and transmitted, and that 
data privacy is maintained. 

Skill and knowledge gaps 

Data analysis, software development, and aquaculture domain 
knowledge are just a few of the abilities needed to build and implement 
AI systems in aquaculture. Programs for education and training might be 
required to fill in skill and knowledge gaps. These challenges need to be 
addressed if aquaculture is to completely benefit from AI. By creating 
effective AI models and algorithms, addressing concerns with data 
sharing, complexity, cost, privacy, and data security, AI can help 
aquaculture operations become more sustainable and efficient while 
also providing a stable and secure supply of high-quality seafood for the 
growing global population. It can also help close skill and knowledge 
gaps. Another issue is the creation of sophisticated AI models and al-
gorithms that can account for the intricate and dynamic structure of 
aquaculture systems. A few of the several variables that can interact 
intimately in aquaculture operations to affect fish health and growth are 
temperature, feed inputs, and water quality. It will take ongoing 
research and development to create AI models and algorithms that can 
successfully record and evaluate these intricate interactions. 

Conclusion 

Because AI makes it possible to regulate fish growth, feeding, and 
reproduction more effectively and over the long term, the aquaculture 
industry could undergo a total transformation. AI can improve decision- 
making speed and accuracy, decrease the need for antibiotics, and lower 
the negative environmental effects of aquaculture operations. However, 
there are a number of challenges that need to be solved before aqua-
culture can completely benefit from AI. Some of them include the lack of 
standardized data and data communication protocols, as well as the 
need for advanced AI models and algorithms that can account for the 
complex and dynamic nature of aquaculture systems. Notwithstanding 
these challenges, the future of aquaculture AI looks bright. The aqua-
culture industry will likely see an increase in the use of AI as technology 
grows. Thanks to AI, fish production can be managed more effectively 
and sustainably, providing a consistent and safe supply of premium 
seafood for the world’s growing population. 

Future recommendations 

Despite these difficulties, aquaculture AI has a promising future. The 
advancements in sensor technology and data collection techniques have 
made it easier to collect and share high-quality data. Additionally, the 
progress in machine learning and deep learning algorithms allows for 
more sophisticated analysis of large datasets. As these technologies 
continue to evolve in the aquaculture sector, AI is expected to play a 
more significant role in the effective and sustainable management of fish 
production, as well as in improving the overall health and well-being of 
farmed fish. The following suggestions for upcoming research and 
development will help aquaculture fully reap the potential advantages 
of AI: 

Standardization of data and data sharing protocols 

Standardized data formats and protocols must be established in order 
to facilitate data exchange among various aquaculture companies and 
research institutes. This will make it possible to gather and evaluate vast 
volumes of high-quality data and will speed up the creation of efficient 
AI models and algorithms. AI algorithms and models need to be devel-
oped that can effectively capture and analyze the complex interactions 
between variables in aquaculture operations, such as water quality, 
temperature, and feed inputs. AI systems need to be integrated with 
existing aquaculture technologies, such as sensors and cameras, to 
enable real-time monitoring and decision-making. There is a need to 
develop low-cost AI systems that are accessible to smaller-scale aqua-
culture operations, and that can help to improve the efficiency and 
sustainability of these operations. AI can be used to develop predictive 
models that can forecast fish growth, feed requirements, and disease 
outbreaks, enabling more effective and efficient management of aqua-
culture operations. Collaboration between the aquaculture industry and 
academia can help to bridge skill and knowledge gaps, and facilitate the 
development and implementation of AI systems in aquaculture. 

By addressing these recommendations, AI can help to improve the 
efficiency and sustainability of aquaculture operations, and ensure a 
reliable and secure source of high-quality seafood for the growing global 
population. 
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