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and expression profiling of DlRan genes 
during somatic embryogenesis in Dimocarpus 
longan Lour.
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Abstract 

To clone and examine expression profiles of DlRan genes during somatic embryogenesis in Dimocarpus longan Lour. 
Thirty cDNA sequences and two genomic sequences encoding DlRan proteins were isolated from longan embryo-
genic cultures. Structural analysis of DlRan genes revealed that the longan Ran gene family is more expanded than 
that of Arabidopsis. Expression analysis of DlRan genes during somatic embryogenesis uncovered a high abundance 
of DlRan genes in early embryogenic cultures and heart- and torpedo-shaped embryos. The expression of DlRan 
genes in embryogenic calli was affected by exogenous 2,4-dichlorophenoxyacetic acid treatment. DlRan is involved in 
2,4-D induced somatic embryogenesis and development of somatic embryos in longan.
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Background
Ras-related nuclear protein (Ran) is a highly conserved, 
small GTPase family that is essential to multiple cellular 
processes in eukaryotes (Clarke and Zhang 2008). The 
roles of Ran have been extensively researched and well 
documented in animals. In contrast, little is known about 
Ran in plants.

Plant Ran proteins share high homology and perform 
similar functions in the regulation of mitotic progress with 
their counterparts in yeast and animals (Lü et al. 2011; Lee 
et al. 2008; Wang et al. 2006; Zang et al. 2010). Furthermore, 
Ran is involved in mediating responses to external stimuli, 
such as heat, salt and drought stresses (Ferreira et al. 2006; 
Jiang et al. 2007; Xu and Huang 2008, 2010; Yoshimura et al. 
2008; Zang et  al. 2010). Inhibition expression of OsRan2 
in rice leads to pleiotropic developmental abnormalities 
(Chen et al. 2011; Zang et al. 2010). These results suggest 
that Ran is crucial to plant growth and development.

Longan (Dimocarpus longan Lour.), an evergreen fruit 
tree of great commercial value, is distributed in subtropi-
cal and tropical countries (Matsumoto 2006; Zheng et al. 
2009). Longan embryo development is of great scientific 
interest because of its role in fruit quality and yield. The 
developmental regulation of Ran during the middle stage 
of longan somatic embryogenesis (SE) implies a role for 
Ran in this process (Fang et al. 2011). Furthermore, Ran 
has been proposed as a target for breeding and produc-
tion improvement in longan (Fang et al. 2014) because of 
its role in delaying flowering and enhancing cold toler-
ance in other plants (Chen et al. 2011; Wang et al. 2006). 
Nevertheless, cloning and characterization of longan Ran 
has not yet been reported.

In this study, 30 cDNA sequences and two genomic 
sequences encoding DlRan proteins were isolated. We 
analyzed the structures of DlRan genes, and investigated 
their expression profiles during SE and under exoge-
nous 2,4-dichlorophenoxyacetic acid (2,4-D) treatment. 
On the basis of our results, we propose that DlRan is 
involved in cell division during longan SE and partici-
pates in 2,4-D-induced SE through signal transduction.
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Methods
Plant materials
The establishment and maintenance of our longan 
embryogenic callus line “Honghezi” was described in Lai 
et  al. (2000). The synchronization of embryogenic cul-
tures at different developmental stages was carried out as 
described previously (Fang et al. 2014). All cultures were 
kept in dark conditions at 25 ± 1 °C.

RNA extraction
Total RNA was extracted from embryogenic cultures 
using TriPure Isolation Reagent (Roche Molecular Bio-
chemicals, Basel, Switzerland) and then treated with 
DNase I (Takara, China) to remove genomic DNA.

5′ and 3′ rapid amplification of cDNA ends (RACE)
A 469-bp cDNA fragment of DlRan (Ran fragment 1) 
was obtained by reverse-transcription PCR with degen-
erate primers (RanF1 and RanR1) generated according 
to mass spectrographic analysis results in our previous 
study (Fang et al. 2011). 5′ and 3′ RACE were performed 
to generate full-length gene transcripts. The 3′ RACE was 
performed using a First-Strand cDNA synthesis kit (Fer-
mentas). 12 3′-ends of DlRan cDNAs were obtained using 
specific primers designed from Ran fragment 1 (Table 1). 
Multiple alignment of these 3′ ends indicated the exist-
ence of DlRan homologs. A specific primer, RanR2, was 
designed according to the isolated 3′ ends, and a new 
DlRan fragment (DlRan fragment 2) was obtained using 
RanF1 and RanR2. Primers RanF8 and RanF9 were gen-
erated according to DlRan fragments 1 and 2 and used 

for 3′ RACE, yielding three additional DlRan cDNA 3′ 
ends (Table 1). A 5′ RACE was performed using a Gen-
eRacer kit (Invitrogen). Specific primers were designed 
according to the isolated DlRan fragments and 3′-RACE 
products of DlRan and used for 5′ RACE. Primers 
and corresponding 5′-RACE products are indicated in 
Table  1. For amplification of full-length DlRan cDNAs, 
gene-specific primers were generated according to the 
DlRan 5′ and 3′ ends, with cDNAs synthesized from the 
GeneRacer kit used as templates. Specific primers used 
are listed in Table 2 and Additional file 1: Figure S1.

DNA extraction and isolation of genomic DNA encoding 
DlRan
Total genomic DNA was isolated from longan embryo-
genic calli with a Plant Genomic DNA kit (Tiangen, 
China). A 2389-bp DlRan DNA sequence was obtained 
using specific primers (RanF18 and RanR29; Table 2) and 
Takara LA Taq (Takara) and was designated as DlRan3A 
(GenBank accession no. JQ775539). The genomic 
sequence of DlRan3B (JQ279697) has been characterized 
previously (Fang et al. 2013).

Quantitative real‑time PCR analysis
cDNAs were synthesized with random primers and Oligo 
dT Primer using a SYBR ExScript kit (Takara). Real-time 
PCR amplifications were performed on a Lightcycler 
480 system (Roche Applied Science, Switzerland) in 20-µl 
total volumes containing 10 µl of 2× SYBR Premix Ex Taq 
II (Takara), 1 µl cDNA (1:10 dilution), and 0.4 µl of each 
0.20-µM primer. PCR conditions were as follows: dena-
turation at 95 °C for 30 s, followed by 40 cycles of 95 °C 
for 5 s, 60 °C for 30 s and 72 °C for 30 s. Reactions were 
run in triplicate. EF-1a and Fe-SOD, the most stable genes 
selected by Lin and Lai (2010), were used as endogenous 
controls. Expression data were analyzed with geNORM 
(version 3.5) (Vandesompele et  al. 2002). The high 
sequence similarity among isolated DlRan transcripts 
made it very difficult to design specific primers to detect 
their expression. We found that the identified DlRan tran-
scripts could be divided into two types, N (asparagine) 
and D (aspartic acid), based on the tenth residue in their 
predicted amino acid sequences. Specific primers based 
on the 5′-end proximal region of these N and D DlRan 
transcript sequences (Additional file  2: Figure S2) were 
designed and used for qRT-PCR analyses. Primer pairs 
used for qRT-PCR analyses are listed in Table 3.

Treatment of embryogenic calli with 2,4‑D
Embryogenic calli cultured on M0 medium  (Murashige-
Skoog basal salts, 2% sucrose and 6 g/L agar, pH 5.8) supple-
mented with 1 mg 2,4-D/l were transferred and maintained 
for 24 h on M0 medium or M0 medium supplemented with 

Table 1  Specific primers used for 3′ and 5′ RACE and corre-
sponding products

Specific primers Products

Outer primer: RanF2
Nested primer: RanF3

Ran3′-1, Ran3′-2

Outer primer: RanF4
Nested primer: RanF5

Ran3′-3, Ran3′-4, Ran3′-5, Ran3′-6, Ran3′-7, 
Ran3′-8, Ran3′-9, Ran3′-10, Ran3′-11, Ran3′-12

Outer primer: RanF8
Nested primer: RanF9

Ran3′-13, Ran3′-14, Ran3′-15

Outer primer: RanR3
Nested primer: RanR4

Ran5′-1, Ran5′-2, Ran5′-3, Ran5′-4, Ran5′-5

Outer primer: RanR5
Nested primer: RanR6

Ran5′-6, Ran5′-7, Ran5′-8, Ran5′-9, Ran5′-10, 
Ran5′-11

Outer primer: RanR7
Nested primer: RanR8

Ran5′-12

Outer primer: RanR9
Nested primer: RanR10

Ran5′-13, Ran5′-14, Ran5′-15

Outer primer: RanR12
Nested primer: RanR13

Ran5′-16, Ran5′-17

Outer primer: RanR11
Nested primer: RanR13

Ran5′-18
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either 0.5, 1.5 or 2.0 mg/l of 2,4-D. All samples were frozen 
in liquid nitrogen after harvesting and stored at −80 °C.

Bioinformatics analysis
Predicted protein sequences were analyzed and theo-
retical isoelectric points (pIs) and mass values of mature 
peptides were calculated using the PeptideMass program 
(http://us.expasy.org/tools/peptidemass.html). Amino 
acid sequence alignment was performed using DNA-
MAN software. A phylogenetic tree of Ran proteins was 
constructed using MEGA5 software.

Results
Cloning of DlRan cDNAs from torpedo‑shaped somatic 
embryos of longan
Fifteen 3′ ends of DlRan genes were obtained through 3′ 
RACE. Alignment of these 3′ ends indicated the existence 
of sequence polymorphism in DlRan gene open read-
ing frames (ORFs) and 3′ untranslated regions (UTRs) 
(Additional file 3: Figure S3). 18 5′ ends of DlRan genes 
were obtained using RNA ligase-mediated RACE (Addi-
tional file 4: Figure S4). Using primers designed from the 
isolated 5′ and 3′ ends, we isolated 30 DlRan transcripts 
from torpedo-shaped somatic embryos in longan and 
deposited their sequences in GenBank (Table 4).

Sequence analyses and molecular characterization 
of DlRan genes
Sequence analysis indicated that all of the isolated DlRan 
transcripts contained a 663-bp ORF. The 3′ UTRs of the 
isolated DlRan transcripts lack the typical AATAAA 
polyadenylation signal. The isolated DlRan cDNAs 
were divided into nine groups according to their ORF 
sequences (Fig.  1). DlRan3As, DlRan3Bs, DlRan3C-1, 
DlRan3C-2, DlRan3C-3, DlRan3Ds, DlRan3E-1, 
DlRan3F-1 and DlRan3G-1 had unique ORFs (Fig.  1). 

Table 2  Primers used in this study

Name Primer sequences (5′–3′) Name Primer sequences (5′–3′)

RanF1 GTNGGNGAYGGNGGNACNGG RanR7 CACCAGAGGAGCACAAAAAGCAGCAT

RanF2 CGTTTCTACTGCTGGGATAC RanR8 CTGCAACTGTTCTCTATTCAAATGTGT

RanF3 CTGCCAAGAGCAACTACAAT RanR9 TGTTCATCAACCCCAACTCCAACAAT

RanF4 CAGGAGAAGTTTGGTGGTCT RanR10 CAATCACACAATTCCCCATCCTGCT

RanF5 GATGTTACTGCTCGCTTGAC RanR11 AACNTGCTTNGCNTTCACTTGCCT

RanF6 CTCTGCGGAAACAARGTTGATGT RanR12 CANACCCNGCAAAGATNACNGTG

RanF7 GAARCCTTTCTTGTACCTTGCC RanR13 TGATNATNGCACATTGCCCATGGAT

RanF8 CTCTGCGGAAACAARGTTGATGT RanR14 TTTATGAGGCAACACTGGTTCAG

RanF9 GAARCCTTTCTTGTACCTTGCC RanR15 CCCCCTTTTTTTCCATGCAAATT

RanF10 CAAGACCAAAAGCTCTCCCTCTAAT RanR16 CCCCCCCTTTTTTTTTTAGGAG

RanF11 CGCTCTCAGAACCAAACCAAGAAG RanR17 CCCCTTTTTTTACGGAGCAAC

RanF12 GGTGCTTATTGATACATTTCTCC RanR18 CCCCTTGAAA ACCAGATAAA ATG

RanF13 CACTCTAATTGCCTTCCTACTTCGT RanR19 CCCCCTTTTTTTTGGTATGTAAG

RanF14 GGCAGCAGAGAGAGAGAATC RanR20 CCCCCCTTTTTTTTAACAAGACC

RanF15 GATTGGCTGTTGTTTTGAAGAAG RanR21 CCCCTTTTTTTATCCTCAACACC

RanF18 CAAGACCAAAAGCTCTCCCTCT RanR22 CCCCCCCTTTTTTCAGATAATAT

RanR1 GRTCNCCNGCNAGYTTNCGNGC RanR23 CCCCCTTTTTATACTCAACTATC

RanR2 GCATCATCATCGTCATCTGG RanR24 TCCCCATCCTGCTGTTTTACTCGA

RanR3 CCTGTGGAATGTAACCTGCT RanR25 CCCCCCTTTTTTTTTTTTTTTAGGAGAA

RanR4 CCTTCACTTGCCTATTCCTC RanR26 CGGAGCAACGCTTAAAACATCCTACA

RanR5 GTCAAGCGAGCAGTAACATC RanR29 CAGCGTAGGGGGAGCCGAATGAAT

RanR6 AGACCACCAAACTTCTCCTG RanR30 CCAGCCTGCAACTGTTCTCTATTCA

5P CGACTGGAGCACGAGGACACTGA AUAP GCCACGCGTCGACTAGTAC

5NP GGACACTGACATGGACTGAAGGAGTA

Table 3  Primers used for qRT-PCR analysis

Specific primer Primer sequences (5′–3′)

N type DlRans Forward: AAGGACAGCTCTCATGGCTTTGC

Reverse: TGCCTCCATCACCGACGATGAC

D type DlRans Forward: TAGTGATCGTCGGCGATGGTGG

Reverse: TGCAGTGTCCCAGCAATAGAAGCG

Fe-SOD Forward: GGTCAGATGGTGAAGCCGTAGAG

Reverse: GTCTATGCCACCGATACAACAAACCC

EF-1a Forward: GATGATTCCCACCAAGCCCAT

Reverse: GGGTCCTTCTTCTCAACACTCT

http://us.expasy.org/tools/peptidemass.html
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Sequence alignment showed that the first half of 
sequences of DlRan3D-1, DlRan3C-1, DlRan3C-2 and 
DlRan3C-3 were identical to that of DlRan3B-1, while 
the second half of sequences of these cDNAs were iden-
tical to that of DlRan3A-1. In contrast, the first half of 
DlRan3E-1 and DlRan3G-1 sequences were identical to 
DlRan3A-1, and the second half of sequences of these 
cDNAs were identical to that of DlRan3B-1. One frag-
ment of DlRan3F-1 was identical to neither DlRan3A-1 
nor DlRan3B-1 (Fig.  1). These results prompted us to 
explore whether the transcripts identified in the present 
study were alternative spliced isoforms produced by the 

same gene or were instead transcribed from different 
genes.

To determine exon and intron organization of DlRan 
cDNAs, we try to isolate genomic sequences of DlRan 
genes and only 2 DlRan sequences (DlRan3A and 
DlRan3B) were obtained. The comparative analysis of 
DlRan genomic and cDNA sequences indicated that 
DlRan3A-1–DlRan3A-14 was derived from DlRan3A and 
that DlRan3B-1–DlRan3B-3 and DlRan3B-5–DlRan3B-9 
were derived from DlRan3B. As indicated in Fig.  2, 
both DlRan3A and DlRan3B contained 8 exons. Inter-
estingly, the first half of the sequences of DlRan3D-1, 
DlRan3C-1, DlRan3C-2 and DlRan3C-3 were identical to 
the genomic sequence of DlRan3B, while the second half 
of these cDNA sequences were identical to the genomic 
sequence of DlRan3A (Fig.  2). In contrast, the first half 
of sequences of DlRan3E-1 and DlRan3G-1 were iden-
tical to the genomic sequence of DlRan3A, whereas the 
second half of these cDNA sequences was identical to 
the genomic sequence of DlRan3B (Fig.  2). Finally, the 
sequence of DlRan3F-1 was inconsistent with either 
DlRan3A or DlRan3B. Our results suggest that these 
transcripts were encoded by different DlRan genes rather 
than representing alternative spliced products from the 
same gene, thereby implying the existence of multiple 
Ran genes in the longan genome.

All of the isolated DlRan transcripts encoded seven 
predicted polypeptides of 221 amino acid residues with 
similar calculated molecular masses and predicted pIs 
(Table  5). It is noteworthy that DlRan3C-1, DlRan3C-2 
and DlRan3C-3, which contain different ORFs, encoded 
the same protein. The modulation of protein expres-
sion via alteration of mRNA secondary structure has 
been demonstrated to involve the usage of synonymous 
codons (Nackley et  al. 2006). We therefore used Mfold 
(Zuker 2003) to predict the secondary structures of the 
ORFs of these transcripts, which demonstrated that the 
Gibbs free energy for DlRan3C-2 and DlRan3C-3 was 
lower than that for DlRan3C-1.

As shown in Additional file  5: Figure S5, alignment 
analysis revealed that the predicted DlRan proteins are 
highly identical to the identified peptides in our previ-
ous study (Fang et al. 2011). This result indicates that the 
predicted proteins were orthologs of the identified pro-
tein. DlRan members are highly similar to one another, 
differing by a total of only nine amino acids. Multiple 
sequence alignment indicated that the DlRan proteins 
share a significant degree of sequence identity with Ran 
proteins from Arabidopsis thaliana, Medicago trunca-
tula, Zea mays, Vitis vinifera, Allium cepa and Oryza 
sativa (Fig.  3). The characteristic domains of the Ran 
proteins that are known to be involved in GTP-binding 
and hydrolysis, as well as the acidic C-terminal domain 

Table 4  GenBank accession numbers of  Ran cDNAs 
and primer pairs used for their amplifications

Name Accession no. Primer pairs (forward/reverse)

DlRan3A-1 JF461272 RanF10/RanR14

DlRan3A-2 JF461273 RanF10/RanR15

DlRan3A-3 JF461274 RanF10/RanR16

DlRan3A-4 JF461275 RanF10/RanR17

DlRan3A-5 JF461276 RanF10/RanR18

DlRan3A-6 JF461277 RanF10/RanR19

DlRan 3A-7 JF461278 First PCR: RanF10/3P
Nested PCR: RanF11/3NP

DlRan3A-8 JF461279 First PCR: RanF10/3P
Nested PCR: RanF11/3NP

DlRan3A-9 JF461280 First PCR: RanF10/3P
Nested PCR: RanF11/3NP

DlRan A-10 JF461281 First PCR: RanF10/3P
Nested PCR: RanF11/3NP

DlRan3A-11 JF461282 First PCR: RanF10/3P
Nested PCR: RanF11/3NP

DlRan3A-12 JQ861699 First PCR: 5P/RanR25
Nested PCR: 5NP/RanR26

DlRan3A-13 JQ775533 RanF12/RanR24

DlRan3A-14 JQ775532 RanF12/RanR24

DlRAN3B-1 HM773390 RanF18/RanR20

DlRan3B-2 JF461283 RanF18/RanR21

DlRan3B-3 JF461284 RanF18/RanR14

DlRan3B-5 JF461286 RanF13/RanR21

DlRan3B-6 JF461287 RanF13/RanR22

DlRan3B-7 JF461288 RanF13/RanR14

DlRan3B-8 JQ775530 RanF14/RanR30

DlRan3B-9 JQ775531 RanF14/RanR30

DlRan3C-1 JF461289 RanF13/RanR23

DlRan3C-2 JF461290 RanF13/RanR23

DlRan3C-3 JF461291 RanF13/RanR23

DlRan3D-1 JF461292 RanF13/RanR19

DlRan3D-2 JF461293 RanF13/RanR17

DlRan3E-1 JF461294 RanF10/RanR20

DlRan3F-1 JQ775527 RanF10/RanR20

DlRan3G-1 JQ775528 RanF10/RanR20
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Fig. 1  Multiple alignments of the open reading frame sequence of DlRan genes. Sequence fragments consistent with DlRan3B-1 were indicated 
with grey shadow, sequence fragment of DlRan3F-1 that is not consistent with DlRan3B-1 nor DlRan3A-1 were highlighted with underline, different 
bases among the aligned sequences are indicated by colors
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and the effector-binding domain, were detected in the 
deduced DlRan proteins (Fig. 3). As shown in Fig. 3, the 
conserved sequences of these motifs were nearly identi-
cal between DlRan proteins and Ran proteins from other 
plant species, except for AtRan4, which has distinct 
functions in Arabidopsis (Vernoud et  al. 2003). In the 
neighbor-joining phylogenetic tree based on the DlRan 
proteins and Ran proteins from multiple plant species, 
the DlRan proteins, AtRan3 and Ran3-like proteins from 
Glycine max and V. vinifera were clustered into one 
group (Fig. 4). These results suggest that the DlRan pro-
teins are Ran3 homologs.

Expression analysis of DlRan genes during SE in longan
We used qRT-PCR to detect abundances of DlRan tran-
scripts at different developmental stages of longan SE. As 
indicated in Fig. 5, the expression profiles of two types of 
DlRan genes during longan SE were very similar. High 
levels of DlRan transcripts were detected in early embry-
ogenic cultures and heart- and torpedo-shaped embryos. 
The highest levels were found in heart-shaped embryos, 
while the lowest were detected in globular, cotyledonary 
and mature embryos.

The effect of 2,4‑D on expression of DlRan genes in longan 
embryogenic calli
2,4-D is a growth regulator commonly used in the induc-
tion of somatic embryos. However, high concentrations 
inhibit development of somatic embryos in longan and 
other plants (Aiqing et  al. 2011; Lai et  al. 2000). Fur-
thermore, application of 2,4-D in various concentra-
tions is able to synchronize SE in longan (Chen and Lai 
2002). Wang et  al. (2006) have demonstrated that Ran 
is involved in auxin signaling. 1 mg 2,4-D/l is necessary 
to maintain longan calli at embryogenic state (Lai et  al. 
2000). To investigate the effect of 2,4-D on the expres-
sion of DlRan genes, embryogenic calli cultured on M0 
medium supplemented with 1  mg 2,4-D/l were trans-
ferred to M0 medium supplemented with different 

Fig. 2  Alignments of DlRan cDNAs and genomic DNA sequences. a Exon–intron organization of DlRan3A and DlRan3B. Bold lines represent introns, 
grey and texture boxes indicate exons, GTs and AGs represent bases close to the identical sequences, start and termination codons were indicated in 
green and red character respectively. b Schematics of alignments between DlRan cDNAs and genomic DNA sequences

Table 5  Calculated molecular mass and  predicted pI 
of DlRan proteins

Protein name Molecular weight (Da) pI

DlRan3A 25,106.5 6.38

DlRan3B 25,150.6 6.75

DlRan3C 25,105.5 6.65

DlRan3D 25,159.6 6.65

DlRan3E 25,151.5 6.50

DlRAN3F 25,147.6 6.65

DlRAN3G 25,123.5 6.50
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Fig. 3  Multiple alignments of the deduced DlRan sequences with other Ran sequences. Sequences are from A. thaliana (AtRan1, NP_197501; 
AtRan2, NP_197502; AtRan3, NP_200330; AtRan4, NP_200319), M. truncatula (MtRan, ACJ83982), Z. mays (ZmRan, NP_001149221), V. vinifera (VvRan, 
XP_002284967), A. cepa (AsRan2, ABD17864) and O. sativa (OsRan, NP_001043550). Identical and similar amino acid residues among the aligned 
sequences are indicated by green, yellow and grey shading, respectively. Conserved GTP binding and hydrolysis domains (G1–G5) were indicated 
by bold lines. The effector-binding domain (RanGAP-binding) and the acidic C-terminal region (acidic tail) are indicated with asterisks and triangles, 
respectively



Page 8 of 11Fang et al. SpringerPlus  (2016) 5:181 

concentrations of 2,4-D. As indicated in Fig.  6, reduc-
ing the concentration of 2,4-D gradually increased the 
abundance of DlRan gene transcripts. Increasing the 
concentration of 2,4-D to 1.5  mg/l also enhanced the 
accumulation of DlRan genes transcripts. In contrast, 
application of 2.0  mg 2,4-D/l reduced the abundance of 
DlRan transcripts to levels lower than initial values.

Discussion
Characterization of an expanded Ran gene family 
in longan
The Ran gene family comprises a small number of genes 
found in different organisms, namely one member in 
humans and Schizosaccharomyces pombe and four in 
Arabidopsis (Ma 2007; Takai et  al. 2001). In this study, 
30 DlRan cDNAs were cloned from torpedo-shaped 
embryos in longan. Alignments between DlRan cDNA 
sequences and genomic DNA sequences suggested the 
existence of more Ran genes in the longan genome. Phy-
logenetic analysis revealed that seven deduced DlRan 
proteins are closely related to Ran3 from other species. 
Our results suggest that the longan Ran gene family is 
expanded compared with Arabidopsis (Ma 2007). The 
estimated size of the longan genome is 444  Mb (Van-
Buren et  al. 2011), about threefold larger than that of 
Arabidopsis. Nevertheless, the exact number of Ran 
genes in longan cannot be determined until whole 

genome sequencing is completed. Sequence features of 
the longan Ran gene family that may be unique to this 
species and cannot be determined until all Ran genes 
have been isolated from the longan genome.

Regulation of DlRan gene expression
In the present study, DlRan genes were significantly 
upregulated at the heart-shaped embryo stage. At the 
torpedo-shaped embryo stage, DlRan genes were down-
regulated whereas the Ran protein was rapidly upregu-
lated. Our results indicate that the expression patterns of 
DlRan genes were different from that of the Ran protein 

Fig. 4  Phylogenetic relationships of Ran proteins from D. longan and 
selected plant species. Phylogenetic and evolutionary analyses were 
performed using the neighbor-joining method by MEGA5 software 
with 1000 bootstrap replicates. A. thaliana (AtRan1, NP_197501, 
AtRan2, NP_197502, AtRan3, NP_200330), V. vinifera (VvRan3-like, 
XP_002285018), G. max (GmRan3-like, XP_003526422), Cucur-
bita maxima (CmRan, AEK84227), Solanum lycopersicum (SlRan1, 
NP_001234016, SlRan2, NP_001234023), Pisum sativum (PsRan1, 
ABM73376), Lepidium latifolium (LlRan, AEK78856), Allium sativum 
(AsRan2, ABD17865), Z. mays (ZmRan, NP_001149221)

Fig. 5  Relative expression levels of DlRan genes during longan 
somatic embryogenesis determined by qRT-PCR. Expression level 
was normalized to Fe-SOD and EF-1a. Data are mean ± SE (n = 3). a 
Expression level of N type DlRan transcripts (DlRan3B-1–DlRan3B-9, 
DlRanC-1–DlRan3C-3, DlRanD-1and DlRanD-2). b Expression level of 
D type DlRan transcripts (DlRan3A-1–DlRan3A-14, DlRanE-1, DlRanF-1 
and DlRanG-1). EC friable-embryogenic callus, EC II embryogenic 
callus II, ICpEC incomplete compact pro-embryogenic cultures, 
CpECGE compact proembryogenic cultures, GE globular embryos, HE 
heart-shaped embryos, TE torpedo-shaped embryos, CE cotyledonary 
embryos, ME mature embryos. Morphology of these embryogenic 
cultures has been described in previous studies (Lai et al. 2012; Lai 
and Lin 2013)
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identified in our previous study (Fang et  al. 2011; Lai 
et  al. 2012). Discordance between protein and mRNA 
expression is a common phenomenon in eukaryotic cells 
(Skrzycki et al. 2010; Wang et al. 2010). We speculate that 
unidentified post-transcriptional mechanisms participate 
in regulation of DlRan gene expression.

We found that changes in synonymous codon 
usage gave rise to mRNA secondary structure altera-
tions among DlRan3C-1, DlRan3C-2 and DlRan3C-3. 
Although synonymous mutations have no effect on the 
resulting protein sequence, the selection of synonymous 
codons affects the modulation of gene expression and 
cellular functions (Plotkin and Kudla 2011). The differen-
tial usage of synonymous codons among these transcripts 
may be functional, but further tests are required to con-
firm this hypothesis.

Potential functions of DlRan genes during SE in longan
The involvement of Ran in longan SE has been demon-
strated previously (Fang et  al. 2011). Our results indi-
cated that reduction of 2,4-D concentration in the 
medium, which promotes initiation of somatic embryo 
development, enhanced DlRan gene expression. This 
result further supports the involvement of DlRan in lon-
gan SE. Plant Ran is involved in cell proliferation (Lü 
et  al. 2011; Wang et  al. 2006). The sequence alignment 
in the present study indicates that DlRan proteins are 
highly conserved with respect to Ran proteins from other 
plants, suggesting similar functionality. Our expression 
analysis showed that DlRan gene transcripts are more 
abundant during SE stages associated with active cell 
division. The high expression of DlRan genes observed 
at heart- and torpedo-shaped stages may be related to 

the cell proliferation that gives rise to the cotyledons 
and radicle. We believe that DlRan proteins may regulate 
mitotic progress in a manner similar to their homologs in 
other plants.

2,4-D was shown to alter Ran expression when applied 
at different concentrations. Auxin plays pivotal roles 
in SE. 2,4-D, the most commonly used synthetic auxin 
for induction of SE (Karami and Saidi 2010), affects the 
indole acetic acid (IAA) synthetic pathway and pro-
motes IAA accumulation (Michalczuk et  al. 1992a, b). 
Ectopic postembryonic expression of LEC2 has been 
shown to induce somatic embryo formation (Stone et al. 
2001). LEC2 has been proposed to induce SE by pro-
moting auxin activity, and 2,4-D exerts effects similar to 
those of ectopic LEC2 expression (Stone et al. 2008). Su 
et  al. (2009) have suggested that exogenous auxin levels 
play an important role in determining expression pat-
terns of WUS, a correct expression of which is essen-
tial for somatic embryo induction. 2,4-D can induce SE, 
but also inhibits somatic embryo development (Aiqing 
et  al. 2011). Pan et  al. (2010) found that treatment with 
high concentrations of 2,4-D changed the proteome of 
Valencia embryogenic callus. Although the mechanisms 
involved in induction of SE by 2,4-D and the inhibitory 
effect of this auxin on somatic embryo development 
remain to be uncovered, 2,4-D functions by altering 
gene expression in plant cells through signal transduc-
tion. Ran is a vital regulator of nucleocytoplasmic traf-
ficking in plants (Meier and Somers 2011; Merkle 2011). 
Numerous studies have detailed the involvement of Ran 
in plant responses to hormonal and environmental sign-
aling (Ferreira et al. 2006; Jiang et al. 2007; Kriegs et al. 
2006; Lee et  al. 2008; Mahong et  al. 2012; Wang et  al. 

Fig. 6  Expression of DlRan genes under 2, 4-D treatment. Embryogenic calli were treated with M0 supplemented with 0.5, 1.5 and 2.0 mg/l of 2,4-D 
and 2,4-D free medium, respectively. RNA was extracted from embryogenic calli and analyzed by realtime PCR to determine the relative abundance 
of DlRan genes. a Abundance of N type DlRan transcripts, b abundance of D type DlRan transcripts. Abundance was normalized to Fe-SOD and EF-
1a. Significance was tested by one-way ANOVA using SPSS 13.0. Different letters above the bars indicate significant differences according to the least 
significant difference test at 5 % level. Data are mean ± SE (n = 3)
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2006; Xu and Huang 2010; Yoshimura et  al. 2008). Ran 
is involved in auxin signaling (Wang et  al. 2006) and it 
is unsurprising to find that Ran expression is influenced 
by 2,4-D. 1  mg 2,4-D/l is necessary to maintain longan 
calli at embryogenic state, remove or reduce the con-
centration of 2,4-D initiates the development of somatic 
embryos. Nucleocytoplasmic transport and cell division 
are essential during the formation of somatic embryos. 
It is reasonable that the expression of Ran was enhanced 
by reducing the concentration of 2,4-D. Properly increas-
ing the concentration of 2,4-D promote the proliferation 
of longan calli and improve the expression of Ran. How-
ever, 2 mg 2,4-D/l inhibit the growth of longan calli and 
cause browning, which can explain the repression effect 
of 2  mg 2,4-D/l on Ran level. Our results further sup-
port the involvement of Ran in auxin signal transduction. 
Zang et  al. (2010) have suggested that Ran participates 
in abiotic response signaling by modulating the nuclear 
transportation of proteins and RNA. Taking the results 
of these studies and ours into consideration, we speculate 
that DlRan may participate in 2,4-D-induced SE by trans-
mitting 2,4-D signals and may regulate the expression 
of embryogenesis-related genes by controlling nuclear 
trafficking.

In this study, 30 cDNA and two genomic DNA 
sequences of DlRan genes were isolated. We also revealed 
the expression profiles of DlRan genes during SE and 
under exogenous 2,4-D treatment. Our results suggest 
the importance of DlRan genes in longan embryo devel-
opment. Future research should focus on the elucida-
tion of mechanisms involved in regulation of DlRan gene 
expression and the functions of different DlRan genes 
during SE in longan.
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