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Introduction
The phosphoinositide 3-kinase (PI3K) signaling pathway medi-

ates a multitude of cellular responses after extracellular stimula-

tion by peptide growth factors and hormones (Cantley, 2002). 

Deregulation of this pathway is associated with human dis-

eases such as cancer and diabetes (Vivanco and Sawyers, 2002). 

PI3K and its product, phosphatidylinositol 3,4,5-trisphosphate 

(PtdIns[3,4,5]P3), are key signaling molecules in cell motility, 

particularly in chemotaxis, which is a process involved in a 

wide range of cellular responses, including morphogenesis, 

wound healing, immune response, angiogenesis, and metastasis 

of tumor cells (Stephens et al., 2002; Dormann and Weijer, 

2003; Van Haastert and Devreotes, 2004). Upon chemoattrac-

tant stimulation, a PtdIns(3,4,5)P3 gradient is created and main-

tained at the leading edge of cells with amoeboid motility, such 

as leukocytes and Dictyostelium discoideum (Merlot and 

Firtel, 2003). This process involves both localized accumula-

tion and activation of PI3Ks, which generate PtdIns(3,4,5)P3/

PtdIns(3,4)P2, and the phosphatase PTEN, which removes them 

(Servant et al., 2000; Funamoto et al., 2002). PtdIns(3,4,5)P3 

serves as a docking site for a subclass of PH domain–containing 

proteins that are recruited at the leading edge. However, it is not 

clear which PI3K downstream effectors lead to activation of the 

actin polymerization machinery required for cell migration. Akt 

is one of the candidate molecules through which PI3K regulates 

chemotaxis, but the role of Akt in the control of cell polarity and 

chemotaxis has been established only in D. discoideum, where 

Akt phosphorylates PAKa, regulating its subcellular localiza-

tion and myosin II assembly (Chung et al., 2001). Unfortu-

nately, PAK1, the mammalian homologue of PAKa, lacks the 

Akt phosphorylation site, suggesting the existence of a different 

signaling pathway.

One important downstream effector of PI3K is the 3-phospho-

inositide–dependent protein kinase-1 (PDK1; Alessi et al., 1997). 

PDK1 phosphorylates and activates a group of related pro-

tein kinases belonging to the AGC family (Vanhaesebroeck 

and Alessi, 2000). These include isoforms of Akt (Brazil and 

Hemmings, 2001), p70 ribosomal S6 kinase (S6K; Volarevic 
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and Thomas, 2001), p90 ribosomal S6 kinase (RSK; Jensen 

et al., 1999), PKC (Newton, 2003), and serum- and glucocorticoid-

induced protein kinase (SGK; Kobayashi and Cohen, 1999). 

Evidence has indicated that PDK1 is constitutively active, and 

that regulation involves the conversion of substrates to forms 

that can be phosphorylated by PDK1 in agonist-treated cells 

(Toker and Newton, 2000; Mora et al., 2004). For example, the 

phosphorylation of Akt by PDK1 is regulated by the conforma-

tional change induced by engagement of the PH domain to 

the membrane by PtdIns(3,4,5)P3/PtdIns(3,4)P2, which relieves 

 autoinhibition of the active site, allowing PDK1 to access T308 

on the activation loop (Stokoe et al., 1997; Filippa et al., 2000). 

PDK1 also contains a PH domain that binds PtdIns(3,4,5)P3 

with high affi nity and has a crucial role in activation of Akt 

(Anderson et al., 1998; McManus et al., 2004). Other PDK1 

substrates, such as S6K and SGK, which lack a PH domain and 

are phosphorylated by PDK1 at the same ratio in the presence or 

absence of PtdIns(3,4,5)P3, interact with a pocket in the kinase 

domain of PDK1, called the PIF-binding pocket (Biondi et al., 

2001). The prior phosphorylation of S6K and SGK at their 

 hydrophobic motif promotes their interaction with the PIF-

binding pocket of PDK1 and their T-loop phosphorylation (Collins 

et al., 2003). The key role that PDK1 plays in activating certain 

AGC kinase members was substantiated by the fi nding that 

mouse embryonic stem (ES) cells lacking PDK1 fail to activate 

Akt, S6K, and RSK in response to stimuli that trigger the activa-

tion of these enzymes in wild-type ES cells (Williams et al., 

2000). Unexpectedly, although Akt and RSK have been reported 

to play important roles in regulating survival and proliferation, 

ES cells lacking PDK1 were viable (Williams et al., 2000).

Nevertheless, PDK1 is required for normal embryo de-

velopment, as mice embryos lacking PDK1 die at day E9.5 

displaying multiple abnormalities, including lack of somites, 

forebrain, and neural crest–derived tissues (Lawlor et al., 2002). 

PDK1 hypomorphic mice, in which a general and extensive re-

duction of PDK1 expression was obtained by intron insertion of 

a neomycin resistance gene, were viable and fertile, but were 

40–50% smaller than control animals, and their organ and cell 

sizes were also proportionately reduced. Interestingly, activa-

tion of Akt and S6K1 by insulin was normal in the PDK1 hypo-

morphic mice, showing that regulation of cell size by PDK1 is 

independent of insulin’s ability to activate Akt and S6K (Lawlor 

et al., 2002). Moreover, PDK1 knock-in mouse embryos, in 

which the PH domain was disrupted, die at embryonic day (E) 

11.5 (McManus et al., 2004). In these knock-in cells, Akt was 

not activated by IGF1, whereas RSK was normally activated, 

indicating that PtdIns(3,4,5)P3 binding to PDK1 is required for 

Akt, but not RSK activation.

However, the cause of death in PDK1−/− mice appears to 

be a lack of functional circulation. Because the inability to form 

a functional circulatory system might result from the inability 

of ECs to migrate, our initial approach in understanding the role 

of PDK1 in cell migration was to study the vessel formation in 

embryoid bodies (EBs) derived from ES cells lacking PDK1 

and the motility of ECs differentiated from them. Moreover, to 

gain further insights into the role of PDK1, we modulated PDK1 

activity in human ECs using retroviral vectors expressing PDK1 

mutants. Our results suggest that both PDK1 and Akt are in-

volved in EC motility.

Results
Impairment of vessel formation 
in PDK1−/− EBs
The starting point for our investigation was an examination of 

the role of PDK1 in blood vessel formation. We used a well-

 established model of early vascular plexus formation—the ES 

differentiation into EBs (Risau et al., 1988; Vittet et al., 1996).

PDK1−/− mice die at E9.5 displaying multiple abnormalities, 

including the lack of a circulatory system (Lawlor et al., 2002). 

ES cells, in which both copies of the PDK1 gene have been 

 disrupted, are viable and proliferate at the same rate as PDK1+/+ 

(Williams et al., 2000). We generated EBs from PDK1+/+ and 

PDK1−/− ES cells. ES cells were cultured for 5 d in suspension 

to form EBs, and then plated on tissue culture dishes. Gross ex-

amination of EBs revealed differences in size and morphology 

starting from day 3 of differentiation on a gelatin-coated dish 

(Fig. 1 A). EBs from ES PDK1−/− cells exhibited reduced cell 

size and spreading, which were probably caused by defective 

cell motility and adhesion, although we could not exclude pro-

liferation defects.

In PDK1+/+ EBs, CD31-positive ECs aggregated in dense 

clusters that started to form a vascular-like network after 3 d 

(Fig. 1 B). On day 7, the PDK1+/+ ECs organized into tubular 

structures that became more evident, numerous, and branched 

after 10 d (Fig. 1 B).

When PDK1−/− EBs were analyzed 3 d after plating, only 

CD31-positive cell clusters were found without any signs of ves-

sel formation (Fig. 1 B). After 7 d, an immature network of ECs 

began to form in some areas of the EBs (Fig. 1 B). However, 

this network was unable to differentiate in vessel-like structures, 

and after 10 d it regressed, appearing as clusters of ECs with few 

branches (Fig. 1 B).

PDK1 is required for EC migration
To exclude that the observed differences might be a conse-

quence of a reduced number of ECs, we determined whether 

lack of PDK1 modifi ed the number of CD31- and Flk1-positive 

cells in EBs. After 3 d in culture, anti-CD31 staining confi rmed 

the presence of ECs in both PDK1+/+ and PDK1−/− EBs (Fig. 1 C). 

The percentage of CD31-positive cells decreased after 7 and 10 d 

in culture, with no considerable differences between PDK1+/+ 

and PDK1−/− EBs (Fig. 1 C). Similar results were obtained by 

staining with anti-Flk1, suggesting that PDK1 is not essential 

for EC differentiation from ES cells (Fig. 1 D).

Directional migration is a key event in angiogenic remod-

elling during vascular morphogenesis (Poole and Coffi n, 1991). 

The inability of PDK1−/− EBs to form a vascular network, even 

though ES PDK1−/− cells can differentiate into ECs, suggests 

that this phenotype could result from defective cell migration. 

To verify this hypothesis, we performed migration assay with 

cells isolated from PDK1+/+ and PDK1−/− EBs and stimulated 

with VEGF-A. CD31-positive ECs from PDK1−/− EBs weakly 

migrated in response to VEGF-A gradient compared with those 
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from PDK1+/+ (Fig. 1 E). We also observed that, in the absence 

of VEGF-A, ECs derived from PDK1+/+ EBs randomly migrate, 

whereas ECs from PDK1−/− EBs appear completely incapable 

of migration (Fig. 1 E).

The PH domain of PDK1 is essential 
for vascular development and EC migration
Taking advantage of previously made ES knock-in cells in which 

either the PH domain (PHKI/PHKI) or PIF pocket (155E/155E) 

was disrupted, we studied the vascular phenotype of EBs de-

rived from these ES cells (Collins et al., 2003; McManus et al., 

2004). EBs generated from PDK1155E/155E ES cells display nor-

mal vasculature development, similar to that of PDK1+/+ EBs 

(Fig. 2 A). In contrast, PDK1PHKI/PHKI EBs failed to develop 

well-defi ned, cordlike structures, lacking the elaborate organi-

zation displayed by PDK1+/+ (Fig. 2 A). However, compared 

with PDK1−/− EBs, the defective vascular structures of 

 PDK1PHKI/PHKI EBs appeared less severe and did not regress 

 after 10 d (compare Fig. 1 B and Fig. 2 A). The quantifi cation of 

the total length of vessel-like structures at day 7 of differentia-

tion pointed out the impaired vascular development of PDK1−/− 

and PDK1PHKI/PHKI EBs compared with PDK1+/+ and PDK1155E/155E 

EBs (Fig. 2 B).

Migration of CD31-positive ECs derived from these EBs was 

analyzed. As shown in Fig. 2 C, ECs derived from PDK1155E/155E 

EBs migrated in response to VEGF-A as effi ciently as wild-type 

cells, whereas ECs from PDK1PHKI/PHKI EBs displayed migra-

tion defects similar to those of PDK1−/− cells. These results in-

dicate that PDK1 regulates vascular formation and EC migration 

in a PH domain–dependent way.

VEGF-induced EC migration is increased 
by PDK1 overexpression
To further assess the role of PDK1 in cell migration, we studied 

the chemotactic response of human ECs where PDK1 was over-

expressed by retroviral transduction (EC-PDK1). Contrary to 

ECs transduced with vector alone (EC-vector), either EC-PDK1 

or ECs expressing a membrane-tagged form of PDK1 (EC-

PDK1caax) migrated more effi ciently in a gradient of VEGF-A 

(Fig. 3 A). Few cells migrated in the absence of chemoattractant, 

and the overexpression of PDK1 did not increase the number 

of migrating cells; in some batches of EC-PDK1caax, we ob-

served a relatively higher number of migrating cells in basal 

conditions compared with EC-vector, but not a statistically 

signifi cant amount. To distinguish between chemotaxis toward 

VEGF-A gradient and random motility induced by VEGF-A, 

we added the same concentration of VEGF-A in both the upper 

and lower compartments of the Boyden chamber. The results 

clearly showed that PDK1 and PDK1caax were not able to sig-

nifi cantly enhance random migration (Fig. 3 A).

This result was supported by time-lapse videomicroscopy 

experiments, in which ECs were homogenously stimulated with 

Figure 1. Knock-out of PDK1 affects early 
vascular development in EBs and EB-derived 
EC migration. (A) Representative phase-contrast 
images of EBs derived from PDK1+/+ and 
PDK1−/− ES cells at day 0 and 3 of differen-
tiation. (B) EBs PDK1+/+ and PDK1−/− at 3, 7, 
and 10 d of differentiation were fi xed and an-
alyzed by indirect immunofl uorescence with 
rat α-CD31 antibody; antigen–antibody com-
plexes were detected with Cy2-conjugated 
donkey α-rat IgG. (C and D) FACS analysis of 
cells derived from EB PDK1+/+ and PDK1−/− at 
different differentiation stage (3, 7, and 10 d) to 
evaluate percentage of CD31- and Flk1-positive 
cells, respectively; data were plotted as the 
mean ± the SD of the percentage of positive cells 
from three independent experiments. (E) ES cells 
PDK1+/+ and PDK1−/− were differentiated into 
EBs for 3 d; they were then disaggregated, 
and cells were used in a chemotaxis assay, 
in the presence of a gradient of fi bronectin 
(20 μg/ml) in combination (black bars) or not 
(white bars) with 30 ng/ml VEGF-A. Migration 
index is calculated assigning a value of 1 to 
the number of PDK1+/+ CD31-positive cells 
that migrated toward fi bronectin; data were 
plotted as the mean ± the SD of fi ve inde-
pendent experiments. Statistical signifi cance 
(*, P < 0.01) is shown for VEGF-A–stimulated 
EC-PDK−/− compared with EC-PDK1+/+. Images 
are representative of fi ve independent experi-
ments. Bars, 100 μm.
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VEGF-A. Fig. 3 B shows that neither PDK1 nor PDK1caax were 

able to increase random motility compared with EC-vector.

We considered whether the PDK1-enhanced migration 

might refl ect increased activation of PDK1 by VEGF-A. The 

regulatory mechanisms controlling PDK1 activity are poorly 

understood. PDK1 has been reported to be constitutively active 

in resting cells and autophosphorylated at S241 (Casamayor 

et al., 1999). According to these previous data, we observed that 

S241 was basally phosphorylated in ECs, and that stimulation 

with VEGF-A did not modify the phosphorylation level (Fig. 

3 C, top). The high level of S241 phosphorylation of EC-PDK1 

compared with EC-vector depends on the high expression level 

of exogenous proteins, as demonstrated by the amount of myc-

tagged protein (Fig. 3 C, bottom). We then examined the phos-

phorylation of Akt, which is the main substrate of PDK1. Upon 

stimulation with VEGF-A, T308 of Akt was very poorly phos-

phorylated in EC-vector (Fig. 3 D, fi rst row, and Fig. S1 A, avail-

able at http://www.jcb.org/cgi/content/full/jcb.200607053/DC1). 

In contrast, we found that in EC-PDK1 and EC-PDK1caax the 

level of phosphorylation was already detectable without stimu-

lation and increased upon VEGF-A stimulation (Fig. 3 D, fi rst 

row, and Fig. S1 A). Interestingly, S473 of Akt, which is not 

a substrate of PDK1, showed similar levels of phosphorylation 

in unstimulated EC-vector, EC-PDK1, and EC-PDK1caax; in 

the presence of VEGF-A, the level of phosphorylation increased 

in all different cell types at the same rate (Fig. 3 D, second row, 

and Fig. S1 B). To evaluate the kinase activity of Akt we looked 

at the phosphorylation of two substrates: GSK3β and FKHR/

AFX. As shown in Fig. 3 D, the phosphorylation of GSK3β and 

FKHR/AFX in PDK1 and PDK1caax ECs increased in either 

basal condition and upon VEGF-A stimu lation, and it partially 

correlated with the phosphorylation of T308, but not with that 

of S473 of Akt. Collectively, these results indicate that Akt 

phosphorylation level at T308 correlates with the EC’s ability to 

migrate, whereas the role of S473 seems to be marginal.

It was important to be sure that the increased migration 

did not result from effects on proliferation or survival. A high 

level of Akt activity was reported to confer EC survival in the 

absence of attachment (Marte and Downward, 1997). More-

over, in some cell lines, PDK1 regulates cell proliferation and 

survival, although ES PDK1−/− cells do not display any growth 

defects (Flynn et al., 2000; Cho et al., 2001). To determine 

the effects of PDK1 on these biological processes, we studied 

the growth and the survival rate of ECs expressing the wild-

type and the membrane-tagged PDK1 mutant. PDK1 expression 

caused slight increase of VEGF-A–induced cell  prolifera tion 

Figure 2. The PH domain of PDK1 is essential for 
vessel formation in EBs and for EB-derived EC migration. 
(A) EB PDK1+/+, PDK1PHKI/PHKI, and PDK1155E/155E at 3, 7, 
and 10 d of differentiation were fi xed and analyzed by 
indirect immunofl uorescence with rat α-CD31 antibody; 
antigen–antibody complexes were detected with Cy2-
 conjugated donkey α-rat IgG. Images are representative 
of fi ve independent experiments. Bar, 100 μm. (B) 10 EB 
PDK1+/+, PDK1−/−, PDK1PHKI/PHKI, and PDK1155E/155E at 7 d 
of differentiation from 5 different experiments were ana-
lyzed with imaging software to measure the total length 
of vessel-like structures. Data were plotted as the mean ± 
the SD. Statistical signifi cance (*, P < 0.01) is shown for 
PDK−/− and PDK1PHKI/PHKI EBs compared with PDK1+/+ 
EBs. (C) ES cells PDK1+/+, PDK1PHKI/PHKI and PDK1155E/155E 
were differentiated into EBs for 3 d; they were then dis-
aggregated, and cells were used in a chemotaxis assay, 
in the presence of a gradient of 20 μg/ml fi bronectin in 
combination with 30 ng/ml VEGF-A (black bars) or not 
(white bars). Migration index is calculated assigning a 
value of 1 to the number of PDK1+/+ CD31-positive cells 
that migrated toward fi bronectin; data were plotted as 
the mean ± the SD of fi ve independent experiments; sta-
tistical signifi cance (*, P < 0.01) is shown for VEGF-A–
 stimulated EC-PDK1PHKI/PHKI compared with EC-PDK1+/+.
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only after 96 h of stimulation (Fig. S2 A, available at http://www

.jcb.org/cgi/content/full/jcb.200607053/DC1). As for prolif-

eration, cell viability in the absence of serum and growth fac-

tors was not dramatically increased by PDK1 and PDK1caax 

expression (Fig. S2 B).

The promigratory effect of PDK1 requires 
its PH domain and catalytic activity 
and is PI3K dependent
PDK1 contains a C-terminal PH domain, a centrally located 

catalytic domain, and a 50-aa N-terminal region that binds a 

Ral-GEF (Tian et al., 2002). Additionally, recent studies indi-

cate that the ability of PDK1 to phosphorylate S6K, SGK, and 

RSK is dependent on a docking site, the PIF pocket, which is 

located on the small lobe of the PDK1 kinase domain (Biondi 

et al., 2001). To determine which region was required for PDK1-

induced migration, PDK1 mutants of these regions of the  protein 

were produced and tested for their ability to modulate VEGF-A–

induced EC migration (Fig. S3, available at http://www.jcb.org/

cgi/content/full/jcb.200607053/DC1). ECs expressing PDK1 

kinase-dead (PDK1-KD), PDK1 lacking the PH domain (PDK1-

∆PH) or the Ral-interacting domain (PDK1-∆50), and PDK1 with 

a mutation on the PIF pocket (PDK1-L155E) were assayed for 

migration properties in a Boyden chamber in the absence or 

presence of VEGF-A as chemoattractant. The PDK1-KD mutant 

lost the ability to enhance EC migration (Fig. 4 A), and, in some 

experiments, it even exhibited a reduced motility compared with 

EC-vector (not depicted). As expected, the kinase-dead mutant 

was unable to enhance the phosphorylation of T308 of endoge-

nous Akt (Fig. 4 B, fourth row).

ECs transduced with PDK1-∆50 and PDK1-L155E were 

assayed in a similar manner and still showed an increased mi-

gration when stimulated by VEGF-A (Fig. 4 A). In contrast, 

PDK1-∆PH did not function in enhancing EC migration 

(Fig. 4 A). When tested for the ability to phosphorylate Akt, it 

showed levels of T308 phosphorylation comparable with that of 

EC-vector (Fig. 4 B, fourth row).

As we have previously shown for PDK1 and PDK1caax, 

the expression of all PDK1 mutants did not change the level of 

S473 Akt phosphorylation in both unstimulated and VEGF-A–

stimulated conditions (Fig. 4 B, fi fth row).

The experiments described above suggested that, in addi-

tion to the kinase activity, the presence of the PH domain is also 

required for the promigratory effect of PDK1.

Because it has been demonstrated that the PH domain of 

PDK1 binds with high affi nity to PtdIns(3,4,5)P3 and this inter-

action enhances its ability to activate Akt (Alessi et al., 1997), 

we investigated the potential involvement of PI3K, the enzyme 

generating Ptdins(3,4,5)P3, in the mechanism of PDK1-induced 

migration. Treatment with the inhibitor of PI3K, LY294002, 

 reduced both basal and VEGF-A–stimulated EC migration 

(Fig. 5 A). The inhibition of PI3K activity completely abolished 

the effect of PDK1 and PDK1caax expression on EC migration, 

suggesting that production of PtdIns(3,4,5)P3 is necessary for 

PDK1 activation and the subsequent promigratory effect.

As PtdIns(3,4,5)P3 is required for both PDK1 and Akt 

 activity, the inhibitory effect of LY294002 was not attributable 

exclusively to one of them. To clarify this point, we treated ECs 

expressing Akt-myr, which is a membrane-targeting mutant 

form of Akt that is PtdIns(3,4,5)P3 independent, with LY294002, 

and we observed the phosphorylation level of T308 of Akt. 

In unstimulated conditions, T308 is highly phosphorylated, 

whereas a little increase was observed after VEGF-A stimula-

tion (Fig. 5 B). Unexpectedly, the inhibition of PI3K activity 

with LY294002 did not decrease the phosphorylation level 

of T308 of Akt, but exclusively inhibited the phosphoryla-

tion increase stimulated by VEGF-A (Fig. 5 B). These results 

(Fig. 5, A and B) clearly show that during VEGF-A–stimulated 

 migration, PI3K activation is required for both PDK1 and 

Akt activity.

To assess the role of Akt in the PDK1-induced migration, 

we performed experiments with ECs infected with lentiviral 

vectors carrying shRNA sequences designed to silence the ex-

pression of Akt. The best performing sequence among those 

Figure 3. Overexpression of PDK1 enhances VEGF-
 induced EC migration. (A) ECs infected with retroviruses 
carrying wild-type PDK1 (PDK1), membrane-targeted 
PDK1 (PDK1caax), and not carrying anything (vector) 
were used in chemotaxis assays in the presence of 
10 ng/ml VEGF-A, added in the lower compartment of 
the chamber (medium/VEGF-A) or in both the upper and 
lower ones (VEGF-A/VEGF-A). Migration index is calcu-
lated assigning a value of 1 to the number of vector cells 
migrated in absence of stimulus; data were plotted as the 
mean ± the SD of six independent experiments. Statistical 
signifi cance (*, P < 0.01) is shown for VEGF-A–stimulated 
EC-PDK1 and PDK1caax compared with vector ECs. 
(B) ECs infected with the indicated retroviruses were 
plated on gelatin, with or without 100 ng/ml VEGF-A. 
Time-lapse videomicroscopy was performed, and images 
were recorded every 10 min for 6 h. Velocity values 
shown are means of 60 cells from three different experi-
ments. Data were plotted as the mean ± the SD. (C and D) 
Cells were serum deprived for 2 h, and then stimulated or 
not stimulated with VEGF-A for 10 min; 50 μg of each 
 lysate was immunoblotted with the indicated antibody. 
Western blots shown are representative of fi ve experi-
ments performed with similar results.
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tested caused a decrease in Akt expression of 
70% (Fig. 5 C). 

The reduction of Akt expression paralleled the reduced ability 

to migrate in response to VEGF-A in both EC-vector and EC-

PDK1 (Fig. 5 C).

PDK1 localizes at the leading edge 
of migrating ECs
PDK1 has been shown to move to the plasma membrane 

in response to platelet-derived growth factor and insulin 

(Anderson et al., 1998; Egawa et al., 2002). However, other studies 

have not supported these reports (Currie et al., 1999). To deter-

mine the subcellular localization of PDK1 in ECs responding to 

VEGF-A, we stained EC with anti-myc and -PDK1 Abs. In un-

stimulated cells, PDK1 was localized in the cytoplasm and peri-

nuclear region (Fig. 6 A). Once the cells were stimulated with 

VEGF-A, a PDK1 fraction translocated to the plasma membrane 

(Fig. 6 B). As expected, EC-PDK1caax showed a strongly marked 

plasma membrane localization in both stimulated and unstimu-

lated cells (Fig. 6, D and C). Deletion of the PH domain of PDK1 

resulted in a loss of its ability to localize to the plasma membrane 

upon VEGF-A stimulation (Fig. 6, F and G, for quantifi cation).

The association of PDK1 with the plasma membrane in 

stimulated cells and its involvement in the process of directional 

cell migration prompted us to test whether PDK1 localized at 

the leading edge of migrating cells. After wounding a confl uent 

monolayer of EC-PDK1, we detected PDK1 in the lamellipodia 

at the leading edge of migrating cells in the direction of the 

wound (Fig. 7 A). In contrast, PDK1-∆PH failed to move to 

the leading edge, whereas PDK1caax was localized all around 

the plasma membrane (Fig. 7, B and C).

To test whether PDK1 phosphorylated Akt in the lamelli-

podia at the leading edge, we stained a wounded monolayer of 

PDK1-transfected murine embryonic fi broblasts (MEFs) with 

anti-PDK1 and anti-pT308Akt antibodies. The level of phos-

phorylation on T308 of Akt increased at the wound edge and 

colocalized with PDK1 on large regions of the plasma mem-

brane (Fig. 7, D–F). In this experiment, MEFs were used in-

stead of ECs to avoid the interference of GFP of infected 

ECs. The MEF behavior was similar to that of ECs in migration 

assays (unpublished data) and in translocation of PDK1 to 

plasma membrane in response to PDGF (Fig. S4, available at 

http://www.jcb.org/cgi/content/full/jcb.200607053/DC1).

Spatial distribution of PDK1 
and Akt regulates chemotaxis
These fi ndings suggested that both PDK1 and Akt move to the 

leading lamellipodia, where Akt is phosphorylated by PDK1. It 

has been demonstrated in different cell types that motility and 

chemotaxis rely on the activation of PI3K, and chemotactic fac-

tors elicit intracellular PtdIns(3,4,5)P3 gradients in the plasma 

membrane. Therefore, the localization of PDK1 at the leading 

edge could be a consequence of an intracellular gradient of 

PtdIns(3,4,5)P3, mediated by the binding of PtdIns(3,4,5)P3 

to the PH domain of PDK1. To further investigate the impor-

tance of PDK1 localization at the leading edge in cell motility, 

we compared behaviors of ECs expressing membrane-targeted 

mutants of PDK1 (PDK1caax), Akt (Akt-myr), and PI3KCA 

(p110caax) in chemotaxis experiments. The expression of the 

membrane-targeted catalytic subunit of PI3K did not increase 

EC migration, but rather, in some experiments, slightly inhib-

ited chemotaxis (Fig. 8 A). Similar results were obtained by 

 Funamoto et al. (2002), who observed chemotaxis defects after 

the expression of membrane-targeted PI3KA in D. discoideum 

PI3K1/2-null cells.

In contrast, when we transduced EC with membrane-

 targeted Akt, a strong increase in migrating cells both in the 

 absence and presence of VEGF-A was observed (Fig. 8 A). This 

increase in motility is characterized by the presence of multiple 

pseudopodia (unpublished data).

These fi ndings raise the question of whether restricted 

 activation of PDK1 and Akt to the leading edge is critical for the 

chemotaxis process or not. We considered the possibility that 

PDK1 and Akt interact with each other in a manner that depends 

on PtdIns(3,4,5)P3. In this model, the correct membrane local-

ization of both occurs in response to lipid. To address this issue, 

we transduced ECs with PDK1caax and Akt-myr together, 

 expecting that PDK1–Akt complex might form in higher concen-

trations, but that neither component could be localized properly. 

Figure 4. The promigratory effect of PDK1 requires its PH domain and its 
catalytic activity. (A) ECs were infected with retroviruses carrying PDK1 
with a deleted PH domain (∆PH), PDK1 with of the fi rst 50 amino acids 
 deleted (∆50), PDK1 kinase-dead (KD), PDK1 mutated in the PIF pocket 
(L155E), and retroviruses not carrying anything (vector); these cells were 
used in chemotaxis assays in presence of a gradient of VEGF-A (10 ng/ml). 
Migration index is calculated assigning a value of 1 to the number of 
vector cells migrated in the absence of stimulus; data were plotted as the 
mean ± the SD of six independent experiments. Statistical signifi cance 
(*, P < 0.01) is shown for VEGF-A–stimulated EC-PDK1-∆50 and PDK1-L155E 
compared with vector ECs. (B) Cells were serum deprived for 2 h, and then 
stimulated or not stimulated with VEGF-A for 10 min; 50 μg of each lysate 
was immunoblotted with the indicated antibody. Western blots shown are 
representative of fi ve experiments performed with similar results.
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These cells showed a reduced VEGF-A–induced migration 

compared with EC-PDK1caax or EC-Akt-myr alone (Fig. 8 A). 

However, ECs expressing Akt-myr transduced with wild-type 

PDK1 did not change their ability to migrate in comparison 

with nontransduced cells, demonstrating that the inhibitory ef-

fect was not caused by the double infection (Fig. 8 A).

Finally, we analyzed by immunofl uorescence the localiza-

tion of PDK1 and pT308Akt in a wounded monolayer of double-

infected EC. We detected both PDK1 and pT308Akt on the 

lamellipodia at the leading edge of migrating EC-PDK1 (Fig. 8, 

B and C, respectively). In ECs carrying both PDK1 and Akt-

myr, a gradient of phosphorylated Akt along the cells was still 

present (Fig. 8 E), in accordance with the localization of PDK1 

at the leading edge (Fig. 8 D). On the other hand, when PDK1 

was forced to the whole plasma membrane by infecting the cells 

with PDK1caax, phosphorylated Akt was mainly localized at the 

front of migrating cells (Fig. 8 G). When both PDK1 and Akt were 

constitutively linked to the membrane, the staining of pT308Akt 

was evident along the entire surface of the cells (Fig. 8 I).

These data, together with chemotaxis results (Fig. 8 A), 

suggest that proper membrane localization of both PDK1 and 

Akt are required to correctly instruct the chemotaxis process.

Discussion
Cells with altered PI3K or PTEN activity can usually migrate, 

but exhibit a signifi cantly reduced ability to move directionally 

toward a chemoattractant gradient (Comer and Parent, 2002). 

However, the mechanism behind how PtdIns(3,4,5)P3 accu-

mulation is followed by the formation of leading edge is still 

 obscure. Although it has been described as a positive feedback 

loop between PtdIns(3,4,5)P3 and Rac GTPase, resulting in en-

hanced formation of membrane protrusions at the leading edge, 

relatively little is known about how PI3K downstream effectors 

regulate cell migration in response to external stimuli (Merlot 

and Firtel, 2003; Affolter and Weijer, 2005). Moreover, there 

is not yet a consensus about the importance of localized PI3K 

signaling during migration of mesenchymal cells (e.g., fi broblasts 

and EC) that do not adopt an amoeboid movement, and espe-

cially not when tyrosine kinase receptor signaling is involved 

(Affolter and Weijer, 2005; Schneider and Haugh, 2005).

In this study, we found that PDK1, a PtdIns(3,4,5)P3-binding 

protein, plays an important role in the regulation of cell migra-

tion stimulated by VEGF-A, a ligand of the tyrosine kinase 

VEGF receptor 1 and 2. We observed that cells lacking PDK1 

exhibited a reduced motility, and completely lost their ability to 

migrate in response to a chemoattractant in vitro. The role of 

PDK1 in cell migration is controlled by its PH domain because 

knock-in cells with a mutated PH domain, and therefore unable 

Figure 5. The promigratory effect of PDK1 is PI3K-dependent and re-
quires Akt. (A) ECs infected with retroviruses carrying wild-type PDK1, 
membrane-targeted PDK1, and not carrying anything (vector) were used in 
chemotaxis assays in the presence of 10 ng/ml VEGF-A; 50 μM of the 
PI3K inhibitor LY294002 was added to the lower chamber, in combination 
or not with VEGF-A, and to the cells in the upper chamber. Migration index 
is calculated assigning a value of 1 to the number of vector cells migrated 
in the absence of stimulus; data were plotted as the mean ± the SD of six 
independent experiments; statistical signifi cance (*, P < 0.01) is shown 
for LY294002-treated+ VEGF-A–stimulated cells compared with VEGF-A–
 stimulated cells. (B) EC-Akt-myr were serum deprived for 2 h, pretreated or 
not with 50 μm LY294002 for 45 min, and then stimulated or not with 
30 ng/ml VEGF-A for 10 min; cells were lysed, and overexpressed Akt-myr 
was immunoprecipitated with α-HA antibody; immunocomplexes were 
separated by SDS-PAGE and immunoblotted with indicated antibody. 
Three independent experiments were acquired with the molecular imager 
ChemiDoc XRS, and densitometric analysis was performed with Quantity 
One software. Data were plotted as the mean ± the SD of the percentage 
of adjusted volume. Statistical signifi cance is shown for VEGF-A–stimulated 
cells compared with control (‡, P < 0.05) and for LY294002-treated+ 
VEGF-A–stimulated cells compared with VEGF-A-stimulated (‡, P < 0.05). 
Western blot shown is representative of three experiments performed with 
similar results. (C) Vector ECs and EC-PDK1 were infected with lentiviruses 
carrying shRNA for Akt1 or with vector; after 72 h, the cells were used in 

chemotaxis assays in the presence of a gradient of VEGF-A (10 ng/ml). 
Migration index is calculated assigning a value of 1 to the number of vec-
tor cells migrated in absence of stimulus; data were plotted as mean ± SD 
of three independent experiments. Statistical signifi cance (‡, P < 0.05) is 
shown for VEGF-A–stimulated shAkt1 ECs compared with respective controls. 
50 μg of lysate of each cell type was immunoblotted with α-Akt1 mAb. 
Western blot shown is representative of three experiments performed with 
similar results.
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to bind PtdIns(3,4,5)P3, migrate at the same reduced rate as 

knock-out cells. Thus, it is plausible that PDK1 may follow 

the internal gradient of PtdIns(3,4,5)P3 generated by VEGF-A–

dependent PI3K activation, and translocates to the plasma mem-

brane in the direction of the stimulation. We can, indeed, observe 

that in response to VEGF-A, PDK1 moves to the plasma mem-

brane at the leading edge of migrating cells and phosphorylates 

Akt on T308.

The essential role of PDK1 in cell migration is supported 

by the findings that PDK1 knock-out EBs exhibit evident 

develop mental defects that can be ascribed to defective EC 

 motility. The vascular phenotype displayed by PDK1−/− EBs is 

obvious and cannot be accredited to lack of EC differentiation. 

In PDK1−/− EBs, the number of differentiated EC is similar to that 

of PDK1+/+ EBs, but the ECs are not able to form capillary-like 

structures. Given that cell migration is a critical event in the 

 angiogenic remodelling during vascular morphogenesis (Poole 

and Coffi n, 1991), we suggest that the vascular phenotype 

 observed in the PDK1−/− EBs could be caused by reduced 

cell motility. This hypothesis is supported by the evidence that 

PDK1−/− mouse embryos die at E9.5, displaying multiple ab-

normalities, including lack of somites, dorsal root ganglia, fore-

brain, and a circulatory system (Lawlor et al., 2002). The lack 

of dorsal root ganglia, together with the absence of branchial 

arches, strongly suggests a defective migration of neural crest 

cells. Moreover, ES cells lacking PDK1, which failed to activate 

Figure 6. PDK1 translocates to the membrane after VEGF-A 
stimulation. ECs infected with the indicated retroviruses were 
seeded on gelatin-coated glass coverslips; they were then 
serum deprived and stimulated (B, D, and F) or not (A, C, 
and E) with 50 ng/ml VEGF-A. Cells were then fi xed and 
 analyzed by indirect immunofl uorescence with mAb α-PDK1 
(A–D) or mAb α-myc (E and F); antigen–antibody complexes 
were detected with Alexa Fluor 488–conjugated donkey 
α-mouse IgG. Bar, 10 μm. Images shown are representative 
of >50% of observed cells. (G) A total of 200 cells from three 
independent experiments were analyzed to calculate the 
 percentage of cells showing PDK1 staining on plasma 
membrane. Data were plotted as the mean ± the SD. Statistical 
signifi cance is shown for VEGF-A–stimulated EC-PDK1 compared 
with control cells (*, P < 0.05) and VEGF-A–stimulated EC-
PDK1caax and PDK1-∆PH compared with VEGF-A–stimulated 
EC-PDK1 (‡, P < 0.05).
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Akt and RSK, are viable, despite the reported important role of 

Akt and RSK in regulating survival and proliferation. Although 

it has been reported that PDK1 plays an important role in cell 

proliferation and survival in some cell lines, at least for ES cells 

and ECs, PDK1 is not intrinsically required for survival and 

proliferation (Flynn et al., 2000; Cho et al., 2001). Collectively, 

our results and the phenotype of PDK1 knock-out mice (Lawlor 

et al., 2002) indicate that PDK1 is necessary for EC migration 

in vitro and in vivo, and potentially regulates the migration pro-

cess of other cell types and tissues.

Expression of wild-type and mutant PDK1 was used to 

provide insight into how migration might be regulated. The 

initial finding that overexpression of PDK1 promotes cell 

migration supports the central role of PDK1 in this process. 

 Interestingly, overexpression of PDK1 exclusively increased cell 

motility in the presence of a chemoattractant, such as VEGF-A, 

but did not modify the basal cell motility. The ability of PDK1 

to increase EC migration is kinase-dependent, as demonstrated 

using the kinase-dead mutant. Some PDK1 domains that are 

important in other functions, such as the RalGEF-interacting 

N terminus and the PIF pocket, are not involved in this process. 

The PH domain is clearly critical. Both the ECs expressing 

PDK1 lacking a PH domain and the EB-PDK1PHKI/PHKI–derived 

cells make this point. However, inactivation of the PH domain 

in EBs gave rise to a vascular phenotype less severe than that 

caused by complete deletion of PDK1. In contrast, the motility 

of EC derived from EB-PDK1PHKI/PHKI was completely defective 

and comparable to that of EB-PDK1−/−. These results suggest 

that other PDK1 domains may be involved in the vascular net-

work formation, regulating different biological processes rather 

directional motility.

Consistent with these observations, PDK1-induced migra-

tion was blocked by PI3K inhibitor. Upon activation of VEGF 

receptor, activation of PI3K promotes the membrane localiza-

tion of PDK1 and Akt, resulting in an increase of cell migration. 

Whether PtdIns(3,4,5)P3 is also required for PDK1 activation 

in EC is unclear. A previous report (Stephens et al., 1998) and 

our experiments indicate that PDK1 is constitutively active, 

suggesting that the involvement of PI3K in PDK1 activation 

could be preferentially linked to PtdIns(3,4,5)P3-induced con-

formational changes of Akt that enable PDK1 to phosphorylate 

this kinase (Stokoe et al., 1997). In addition to this mechanism, 

we demonstrated that PDK1 activity can be positively regulated 

by VEGF-A in cells expressing the membrane-targeted mutant 

of Akt, which does not require conformational changes to 

be phosphorylated.

The increased phosphorylation of Akt-T308 in PDK1-

overexpressing cells paralleled the chemotaxis increase, whereas 

no phosphorylation change of S473 was observed. This sug-

gests that T308 phosphorylation determines the activation state 

of Akt, whereas S473 is dispensable. However, two substrates 

of Akt, GSK3β and FKHR, were more phosphorylated in 

PDK1-overexpressing cells, but their phosphorylation level did 

not completely correlate with the EC ability to migrate. A poss-

ible explanation could be that high levels of T308 phosphory-

lation modify the substrate specifi city of Akt, stimulating its 

activity on other substrates. A similar event has recently been 

described for S473. Cells lacking the kinase for S473 retained 

the Akt activity, but the ability to phosphorylate some substrates 

was dramatically reduced (Jacinto et al., 2006).

The evidence that PDK1 overexpression does not modify 

the basal cell motility suggests that this enzyme is mainly in-

volved in the directional movement. Knowledge on chemotaxis 

mechanisms is essentially derived from studies on leukocytes 

and D. discoideum amoeba, which are able to move rapidly to-

ward a variety of chemoattractants. These studies have dem-

onstrated that PH domain–containing proteins specifi c for 

PtdIns(3,4,5)P3 accumulate at the leading edge of migrating 

cells and that PI3K and PTEN associate with the membrane 

at the front and back, respectively, of chemotaxing cells 

(Funamoto et al., 2002; Iijima and Devreotes, 2002). As with the 

aforementioned cell type, motility of cells with nonamoeboid 

movement, such as fi broblasts and EC, rely on the activation of 

PI3K, and PDGF gradients elicit intracellular PtdIns(3,4,5)P3 

gradients in the plasma membrane (Haugh et al., 2000; Shiojima 

and Walsh, 2002). However, there are indications that, in these 

Figure 7. PDK1 localizes at the leading edge 
of migrating ECs in a PH domain–dependent 
way and colocalizes with pT308Akt in migrat-
ing MEFs. (A–C) ECs infected with indicated 
retroviruses were seeded at high density on 
gelatin-coated glass coverslips; monolayer 
cells were wounded by dragging a plastic 
pipette tip across the cell surface; and 50 ng/ml 
VEGF-A was added to the medium. After 6 h, 
cells were fi xed and analyzed by indirect im-
munofl uorescence with mAb α-PDK1 (A and C) 
or mAb α-myc (B); antigen–antibody com-
plexes were detected with Alexa Fluor 488–
conjugated donkey α-mouse IgG. (D–F) MEFs 
transiently transfected with PDK1 were seeded 
at high density on gelatin-coated glass cover-
slips; monolayer cells were wounded by drag-
ging a plastic pipette tip across the cell surface; 
and medium supplemented with 50 ng/ml 
PDGF was added. After 6 h, cells were fi xed 

and double stained with mAb α-PDK1 (green) and rabbit α-pT308Akt (red); antigen-antibody complexes were detected with Alexa Fluor 488–conjugated 
donkey α-mouse IgG and Alexa Fluor 555–conjugated donkey α-rabbit. Images shown are representative of >50% of observed cells. Boxed regions are 
enlargements of the cell’s leading edge. Bars, 10 μm.
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cells, the PtdIns(3,4,5)P3-mediated spatial gradient–sensing mecha-

nism differs (Arrieumerlou and Meyer, 2005; Schneider and 

Haugh, 2005).

Our observations that PDK1 overexpression regulates EC 

chemotaxis, together with PDK1 localization at the leading 

edge of migrating cells, demonstrate that the PI3K signaling 

pathway regulates EC directional motility in accordance with the 

previously proposed models in leukocytes and D. discoideum. 

Moreover, the expression of membrane-targeted PI3K in ECs did 

not increase, rather than decrease, the chemotaxis. Similar results 

have been described by Funamoto et al. (2002) in D. discoideum 

cells, in which they observed a chemotaxis deficiency in 

PI3K1/2−/− cells expressing membrane-targeted PI3K.

However, these models, which are focused on PI3K local 

accumulation, are not able to explain why EC transduced with 

PDK1 membrane-targeted mutant exhibit a great increase in 

chemotaxing cells compared with wild-type EC.

We suggest a model in which the PH domain of PDK1 and 

Akt contributes to their localization; as long as either PDK1 or 

Akt is localized in a lipid-specifi c way, a signaling gradient 

results (Fig. 9). When one of them is overexpressed and forced 

to the plasma membrane, the result is the local increase of Akt 

activation and chemotaxis. When both are overexpressed and 

forced to the membrane, the gradient of PtdIns(3,4,5)P3 is no 

longer needed for localization and activation that would result 

in directional migration (Fig. 9).

The enrichment of PDK1 and Akt at the leading edge 

contributes to a local increase of Akt phosphorylation at T308 

that could be responsible for the stimulation of directional 

migration. This model is confi rmed by immunofl uorescence 

staining of Akt pT308 showing that only when both PDK1 

and Akt are membrane-anchored is Akt local activation lost. 

In spite of this, the high level of phosphorylation of Akt-myr 

observed in unstimulated condition or in presence of PI3K 

 inhibitor is diffi cult to explain. In these conditions, PDK1 

mainly localizes to the cytosolic and perinuclear regions; thus, 

it cannot effi ciently phosphorylate the T308 of Akt-myr. A poss-

ible explanation is that the presence of the Myr tag on Akt 

leads to effects that are not solely related to its constitutive 

membrane association.

In conclusion, we demonstrate that PDK1 is required for 

migration of ECs in vivo and in vitro. Moreover, the increase 

of chemotaxing cells, obtained in PDK1-overexpressing ECs, 

 indicates that one of the mechanisms by which PDK1 controls 

the motility is the regulation of the directional migration. We also 

suggest that PDK1-mediated Akt activation at the leading edge 

is responsible for this effect.

To our knowledge, this is the fi rst genetic evidence that 

the PI3K signaling pathway controls the motility response me-

diated by tyrosine kinase receptors and the directional motility 

process in ECs.

Materials and methods
Cell culture
Human ECs were isolated from umbilical cord vein, characterized, and 
grown as previously described (Bussolino et al., 1992). MEF and Phoenix 
cells were grown in DME (Cambrex) supplemented with 10% FCS, 2 mM 

Figure 8. Spatial distribution of PDK1 and Akt regulates chemotaxis. 
(A) ECs transduced with retroviruses carrying membrane-targeted forms of 
PDK1 (PDK1caax), Akt (Akt-myr), PI3K-catalytic subunit p110 (p110caax), 
both PDK1caax and Akt-myr, both PDK1 and Akt-myr, and vector were 
used in chemotaxis assays in the presence of a gradient of VEGF-A 
(10 ng/ml). Migration index is calculated assigning a value of 1 to the 
number of vector cells migrated in the absence of stimulus. Data were plotted 
as the mean ± the SD of three independent experiments. Statistical signifi -
cance is shown for VEGF-A–stimulated EC-PDK1, PDK1caax, Akt-myr, 
PDK1+Akt-myr (*, P < 0.05) compared with EC-vector and for VEGF-A–
stimulated PDK1caax+Akt-myr (‡, P < 0.05) compared with EC-PDK1+
Akt-myr. (B–I) ECs infected with indicated retroviruses were seeded at high 
density on gelatin-coated glass coverslips; monolayer cells were wounded 
by dragging a plastic pipette tip across the cell surface; and 50 ng/ml 
VEGF-A was added to the medium. After 6 h, cells were fi xed and ana-
lyzed by indirect immunofl uorescence with mAb α-PDK1 (B, D, F, and H) or 
rabbit α-pT308Akt (C, E, G, and I); antigen–antibody complexes were de-
tected with Alexa Fluor 405–conjugated donkey α-mouse or α-rabbit IgG. 
Images shown are representative of >50% of observed cells. Bars,10 μm.
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L-Glutamine (Cambrex), and antibiotics. MEFs were transiently transfected 
with Lipofectamine Plus reagent (Invitrogen) according to the manufacturer’s 
instructions. All ES cells (PDK1+/+, PDK1−/−, PHKI/PHKI, and 155E/155E) 
were provided by D.R. Alessi (University of Dundee, Dundee, UK) and 
maintained in an undifferentiated state by culture on a feeder layer of MEFs 
pretreated with 10 μg/ml mitomycin C (Sigma-Aldrich), in high-glucose 
DME (Invitrogen), 15% FBS (HyClone), 0.1 mM nonessential amino acids 
(Invitrogen), 1 mM sodium pyruvate (Invitrogen), 0.1 mM β-mercaptoethanol 
(Sigma-Aldrich), L-Glutamine, antibiotics, and 1,000 U/ml LIF (CHEMICON 
International, Inc.).

Retroviral vector construct and EC infection
The cDNAs of wild-type and mutant PDK1 (with the exception of L155E) 
and the cDNA of the membrane-targeted catalytic subunit of PI3K 
(p110caax) were previously described (Tian et al., 2002). The L155E 
mutant of PDK1 was made by site-directed mutagenesis. The cDNA of 
membrane-targeted Akt1 (Akt1-myr) was provided by W. Sessa (Yale Uni-
versity, New Haven, CT; Morales-Ruiz et al., 2000). All cDNAs (with the 
exception of HA-tagged Akt1-myr) were myc-tagged by polymerase chain 
reaction and subcloned under the control of LTR promoter into EcoRI–EcoRI 
sites of the retroviral vector Pinco, which also contains GFP cDNA as track-
ing marker (Primo et al., 2005). cDNAs of myc-tagged PDK1 and PDK-
1caax were also subcloned into EcoRI–EcoRI sites of Pinco modifi ed with 
dsRed cDNA instead of GFP for double-infection experiments. The ampho-
tropic cell line Phoenix was transfected with retroviral vectors, and the retro-
viral supernatants obtained were collected, fi ltered (0.45 μm; Millipore), 
and supplemented with 4 μg/ml of polybrene (Sigma-Aldrich). Medium of 
ECs were replaced with the appropriate retroviral supernatants, and cells 
were incubated at 37°C with 5% CO2 for 5 h. 72 h after infection, cells 
were analyzed for GFP expression by microscopy and for specifi c trans-
gene expression by Western blot.

shRNA sequences and lentiviral preparation
Short hairpin RNAs (shRNA) against human Akt1 (4 sequences) were de-
signed according to the TRC shRNA guidelines (Moffat et al., 2006), and 
subcloned into the MluI–ClaI sites of the pLVTHM vector (Wiznerowicz 
and Trono, 2003), which was provided by D. Trono (University of Geneva, 
Geneva, Switzerland). Effi cacy of the constructs was tested through trans-
duction into Sup-M2-TS cells and Western blot analysis of total cell lysates 
with α-Akt1–specifi c antibody (Cell Signaling Technology) after 4 d. The 
sequence for the sense oligonucleotides for the most effective knockdown 
constructs is: 5′-G G A C T A C C T G C A C T C G G A G A A -3′ (based on positions 
1,207–1,238 of human AKT1). Self-inactivating retroviral and lentiviral 
particles were produced as previously described (Piva et al., 2006). 
 Aliquots of virus, plus 8 μg/ml of polybrene, were used to infect exponen-
tially growing cells (105/ml). Fresh medium was supplemented at 24 h 
 after the infection. The infectivity was determined (after 72 h) by FACS 
analysis of GFP-positive cells.

Chemotaxis assay
Chemotaxis assays with human ECs were performed in a Boyden cham-
ber, as previously described (Primo et al., 2005). In brief, PVP-free poly-
carbonate fi lters (8 μm pore size; Neuroprobe) were coated with 1% gelatin 
for 2 h at 37°C. 10 ng/ml VEGF-A (R&D Systems) dissolved in serum-free 
medium was seeded in the lower compartment of the chamber; cells were 
serum starved overnight, and then suspended in serum-free medium at a 
concentration of 2.5 × 106 cells/ml, and 50 μl of the suspension was 
added to the upper compartment. For experiments with EBs, at day 3 of 
differentiation, they were disaggregated with PBS and 2 mM EDTA for 

5 min at 37°C and trypsin for 1 min at 37°C. Cells were seeded on the 
 upper side of a 24-well, 8-μm pore HTS FluoroBlok insert (BD BioSciences; 
1 × 105 cells/well) that was coated on the lower side with 20 μg/ml fi bro-
nectin and incubated in EB medium supplemented with 2% FCS, rather 
than 20% FCS; the lower compartment was fi lled with EB medium and 2% 
FCS with or without 30 ng/ml VEGF-A.

After 5 h of incubation at 37°C with 5% CO2, the upper surface of 
the fi lters was scraped with a rubber policeman, and the fi lters were fi xed 
and stained with Diff-Quick (Dade Behring) or rat α-CD31, as described in 
Indirect immunofl uorescence. Four random fi elds of each sample in the 
lower surface of the fi lters were counted at 10× magnifi cation.

Motility assay
Starved ECs were plated onto gelatin-coated 24-well plates and allowed to 
adhere in serum-free medium for 1 h at 37°C. 100 ng/ml VEGF-A was or 
was not added to the medium, and ECs were observed with an inverted 
microscope equipped with a thermostatic and CO2-controlled chamber (AS 
MDW workstation; Leica). Fluorescent video images of ECs were recorded 
at 10-min intervals for 6 h with a charge-coupled device camera (Orca 
HiRes; Hamamatsu Photonics) and analyzed using DIAS image processing 
software (Solltech). Speed parameter (in micrometers/minute) of 60 cells 
from three different experiments were calculated and plotted.

Immunoprecipitation
Confl uent cells were serum deprived for 2 h, pretreated or not pretreated 
with 50 μm LY294002 for 45 min, and stimulated or not stimulated with 
30 ng/ml VEGF-A for 10 min. Cells were transferred on ice, washed three 
times with cold PBS containing 1 mM Na orthovanadate, and lysed in 
RIPA-modifi ed buffer containing 20 mM Tris, pH 7.2, 150 mM NaCl, 1% 
Triton X-100, 0.5% Na desossicolate, 0.1% SDS, 5 mM EDTA, and protease 
and phosphatase inhibitors (50 μg/ml pepstatin, 50 μg/ml leupeptin, 
10 μg/ml aprotinin, 1 mM PMSF, 100 μM ZnCl2, 1 mM Na orthovana-
date, and 10 mM NaF). After centrifugation (15 min at 10,000 g), super-
natants were precleared by incubation for 1 h with protein G–Sepharose 
(GE Healthcare). Samples (700 μg of proteins) were incubated with rat 
α-HA (Roche) for 2 h to isolate overexpressed Akt-myr, and immune com-
plexes were recovered on protein G–Sepharose. Beads were washed four 
times with lysis buffer and detected by immunoblot. Proteins were sepa-
rated by SDS-PAGE electrophoresis, transferred to polyvinylidene difl uo-
ride (PVDF) membrane (Millipore), incubated with rabbit α-pT308Akt and, 
after stripping, rabbit α-Akt (Cell Signaling Technology), and visualized by 
ECL system (GE Healthcare).

Western blot analysis
For lysates, cells were serum deprived for 2 h and stimulated or not with 
30 ng/ml VEGF-A for 10 min. Total proteins were extracted in Laemmli buffer 
(62.5 mM Tris-HCl, pH 6.8, 2% SDS, and 10% glycerol) and quantifi ed, 
and equal amounts of each sample were resolved by SDS-PAGE and trans-
ferred to PVDF membrane. After blocking with TBS/0.1% Tween 20/5% 
BSA, membranes were incubated with primary antibody overnight at 
4°C. The following primary antibodies were used: rabbit α-pS241PDK1, 
α-pS473Akt, α-pT308Akt, α-Akt, α-pFKHR, α-pGSK3β (all from Cell Sig-
naling Technology), mAbs α-myc, and α/β tubulin (both Santa Cruz 
 Biotechnology). Immunoreactive proteins were identifi ed with secondary 
antibody coupled to HRP antibody and visualized by ECL.

EBs
For in vitro differentiation of ES cells, the same ES medium was used, except 
that LIF was omitted and the FBS concentration was 20% (EB medium). 

Figure 9. Proposed model of PDK1 action on directional cell 
migration. Stimulation of wild-type ECs with VEGF-A induces 
the local activation of PI3K and the formation of a gradient of 
PtdIns(3,4,5)P3 (indicated with green) from the front to the 
rear of the cell that allows the polarized localization of PDK1 
and Akt on the leading edge and directional migration; over-
expression of membrane-anchored PDK1 strongly increases 
local level of Akt activation and, consequently, chemotaxis; in 
contrast, when ECs overexpress both PDK1caax and Akt-myr, 
activation of Akt is uniformly distributed along the membrane 
and ECs migrate less effi ciently. The arrow sizes are indica-
tive of the migration index.
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The hanging drop procedure was followed (Gualandris et al., 2000). ES cells 
grown to confl uence on the feeder layer of MEFs were harvested with 
trypsin and centrifuged. The pellet was resuspended in ES medium, and ES 
plus MEF cell suspension was seeded on a tissue culture dish for 30 min 
at 37°C. During this time, MEFs attached, whereas ES cells remained in 
suspension. This step was repeated twice. The ES cell suspension was cen-
trifuged, and the pellet was resuspended in EB medium for counting. 30-μl 
drops, containing 400 cells, were placed on the undersurface of the lids of 
Petri dishes and incubated at 37°C. After 2 d, the cell aggregates con-
tained in the drops were collected and cultured in suspension in bacterial 
Petri dishes for 3 d. The aggregates were then transferred onto gelatin-
coated regular culture dishes, where they spread and differentiated; this 
was day 0 of differentiation. For fl uorescence immunostaining, at day 0 EBs 
were plated onto gelatin-coated glass coverslips in 24-well plates; after 
3, 7, or 10 d of differentiation, they were fi xed with paraformaldehyde 
3.7% in PBS for 20 min at room temperature, washed three times with PBS, 
and stained as described in Indirect immunofl uorescence. The quantifi cation 
of total length of vessel-like structures stained by α-CD31 was performed 
with the imaging software winRHIZO Pro (Regent Instruments, Inc.), as de-
scribed by Cascone et al. (2005).

FACS analysis
EBs at different differentiation stages were rinsed twice and then disaggre-
gated with PBS 2 mM EDTA for 5 min at 37°C and trypsin for 1 min at 
37°C. 2 × 105 cells were then incubated on ice with 5 μg/ml of the fol-
lowing primary antibody for 30 min: rat α-Flk1 (Becton Dickinson), rat 
α-CD31, and control rat IgG. After three washes with PBS 1% BSA, cells 
were incubated on ice with 2.5 μg/ml R-phycoerythrin–conjugated α-rat 
antibody (Southern Biotechnology Associates) for 20 min. After fi nal 
washes with PBS, samples were fi xed with PBS, 1% BSA, and 2% PAF and 
analyzed using FACScan (Becton Dickinson).

Wound healing
ECs or MEFs were seeded at high density on gelatin-coated glass cover-
slips; after 12 h of adhesion, monolayer cells were wounded by dragging 
a plastic pipette tip across the cell surface and 50 ng/ml VEGF-A or PDGF 
was added to serum-free medium. After 6 h, cells were washed with PBS, 
fi xed with PAF 3.7% for 10 min at room temperature, and analyzed by 
 indirect immunofl uorescence, as described in the following section.

Indirect immunofl uorescence
The protocol described was followed both for cells (ECs and MEFs) and 
EBs. For immunofl uorescence staining, ECs were plated onto gelatin-coated 
glass coverslips in 24-well plates. After 12 h of adhesion in complete 
 medium, they were serum deprived for 2 h and then stimulated or not stimu-
lated with 50 ng/ml VEGF-A. Medium with growth factors was removed, 
and cells were fi xed with 3.7% PAF for 10 min at room temperature. After 
fi xation, cells or EBs were rinsed three times with PBS, and then quenched 
with 50 mM NH4Cl for 20 min at room temperature, washed twice with 
PBS, and permeabilized with PBS 0.5% Triton X-100 for 5 min at room 
temperature. After two washes with PBS, coverslips were blocked with PBS 
0.3% Triton X-100, 1% donkey, 1% or goat serum for 1 h at room tempera-
ture, and incubated with primary antibodies overnight at 4°C in a humidi-
fi ed chamber. For EC staining of EBs, rat α-CD31 (1:100; BD Biosciences) 
was used, and for ECs and MEFs, mAb α-PDK1 (1:80; BD Biosciences), 
mAb α-myc (1:40; Santa Cruz Biotechnology) and rabbit monoclonal 
α-pT308Akt (1:80; Cell Signaling Technology) were used. After three washes 
with PBS, coverslips were incubated for 1 h at 37°C in a humidifi ed 
chamber with fl uorescent secondary antibodies; donkey α-rat Cy2 (1:200; 
Jackson ImmunoResearch Laboratories), donkey α-mouse Alexa Fluor 488 
or goat α-mouse Alexa Fluor 405 (1:400; Invitrogen), donkey α-rabbit 
 Alexa Fluor 555, or goat α-rabbit Alexa Fluor 405 (1:400). Coverslips 
were then rinsed three times with PBS, mounted, and analyzed using an in-
verted fl uorescence microscope (DM IRB; Leica) equipped with 63×/1.30 
HCX Plan-Apochromat (Carl Zeiss MicroImaging, Inc.) glycerin-immersion 
and 4×/0.10 C Plan objectives or a confocal laser-scanning micro-
scope (TCS SP2 with DM IRE2; Leica) equipped with 63×/1.40 HCX 
Plan-Apochromat oil-immersion objective. Confocal images are the maxi-
mum projections of a z section of 
1.50 μm. The images were arranged 
and labeled using Photoshop software (Adobe).

Online supplemental material
Fig. S1 shows the quantifi cation of Western blots presented in Fig. 3 D. Fig. S2 
shows that PDK1 overexpression didn’t affect the proliferation rate and sur-
vival capacity of ECs. Fig. S3 shows the PDK1 mutants used in the over-
expression experiments. Fig. S4 shows the localization of PDK1 in MEF 

stimulated or not stimulated with PDGF. Online supplemental materials are 
available at http://www.jcb.org/cgi/content/full/jcb.200607053/DC1.
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