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Abstract

Identifying appropriate preclinical cancer models remains a major challenge in increasing the efficiency of drug
development. A potential strategy to improve patient outcomes could be selecting the ‘right’ treatment in
preclinical studies performed in patient-derived xenografts (PDXs) obtained by direct implants of surgically resected
tumours in mice. These models maintain morphological similarities and recapitulate molecular profiling of the
original tumours, thus representing a useful tool in evaluating anticancer drug response. In this review, we will
present the state-of-art use of PDXs as a reliable strategy to predict clinical findings. The main advantages and
limitations will also be discussed.
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Background
Ever since the first studies reported on the use of in vivo
murine leukemia models for drug efficacy in the 1950s
[1], vast efforts have been devoted to the development of
animal models in cancer to predict the response of che-
motherapeutics in humans. The introduction of a variety
of immuno-deficient mice enabled us to engraft tumour
cell lines by ectopic or orthotopic injection. While this
approach allows many models to be established with
relative ease, these xenografts bear little resemblance
with the original tumours, in terms of molecular com-
plexity and tumour heterogeneity. It is for these reasons,
that the use of these models in evaluating novel agents is
limited and can account for the strong discrepancy be-
tween preclinical efficacy and clinical response for cancer
disease [2].
In recent years, patient-derived xenografts (PDXs),

where tumour fragments from patients are directly
implanted in immunodeficient mice and then passed
in vivo directly from mouse to mouse, have emerged
as important tools for translational research. PDXs
maintain the cellular and histological structure of the

original tumour and include critical stromal elements,
which provide sustenance under periods of extensive
growth [3]. Moreover, cytogenetic analysis of tumours
from PDXs revealed strong preservation of the overall
genomic and gene expression profile of the corresponding
patient tumours [4, 5]. Interestingly, the response/resist-
ance of PDXs to standard chemotherapeutics or targeted
compounds closely correlated with clinical data in patients
from which PDXs had been derived [6, 7]. All these
characteristics highlight the use of PDXs as more
predictive experimental models for evaluating therapeutic
responses.

Generation of PDXs
PDXs are developed by implanting fresh human
tumour fragments in immunosuppressed mice. Usu-
ally, the time required for the tumour to take is be-
tween 2–4 months, although failure of engraftment
should not be ascertained until at least 6 months and
beyond [3].
The mice strains used for tumour initiation and propaga-

tion are: i) nude mice, which lack a thymus and are unable
to produce T cells; ii) NOD-SCID and SCID-beige mice,
which lack functional T, B and NK cells; iii) NOD-SCID
IL2RGamma null (NOD-SCID Gamma, NSG), in which
the NK cell activity is completely absent. Due to different
immunological impairments, it is assumed that the more
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permissive mouse strains such as NOD-SCID, SCID or
NSG, can strongly increase the efficiency of xenotransplant-
ation, as compared to nude mice. Indeed, a very low
tumour rate take (10–25%) was reported after implanting
tumour fragments of different histotypes in nude mice
[8–10]. The use of NOD-SCID resulted in an increased
engraftment rate (25–40%) for non-small cell lung cancer,
breast cancer and melanoma [11–15] and a very high
tumour take-rate (from 50 to 80%) has been observed for
ovarian cancer, head and neck tumours, metastatic colon

and bladder cancer [6, 16–18]. In our experience, to estab-
lish colon cancer PDXs, we observed that implanting frag-
ments in nude (nu/nu) mice did not produce tumour
growth neither at F0 (Fig. 1a) nor at F1 passages (Fig. 1b
and c). Moreover, following the implantation of tumour
fragments from NOD-SCID in nude mice (F1), tumours
initially appeared but a subsequent regression was ob-
served in 3 out 5 mice (Fig. 1b). On the contrary, both
NOD-SCID and SCID mice seemed to represent a suitable
model for the engraftment of colon cancer PDXs, as we
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Fig. 1 Figure show the take rate obtained by the implantation of tumor fragments from patients with colorectal cancer in different strains of
immunodeficient mice. In particular, fragments from primary tumors of patient 128 (a) and of patient 130 (b) or from a metastatic limph node of
patient 131 (c) were placed in medium supplemented with antibiotics, diced into 15–20 mm3 pieces, coated in Matrigel and implanted by a
small incision and subcutaneous pocket made in one side of the lower back into different mice (F0). After tumor mass formation, at the indicated
day, tumors were passaged (F1) and expanded in large cohorts for drug sensitivity experiments (F2). All animal procedures were approved by the
ethics committee of the Regina Elena National Cancer Institute (CE/534/12) and were in compliance with the national and international directives
(D.L. March 4, 2014, no. 26; directive 2010/63/EU of the European Parliament and of the council; Guide for the Care and Use of Laboratory
Animals, United States National Research Council, 2011)
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obtained a tumour take-rate of 60% in both mice strains,
which is comparable to that reported in other studies for
the same tumour histotype [17]. All these data confirm
that nude mice are not profitable models to develop colon
cancer PDXs. In contrast, a general consensus on the
role of most immunosuppressed mice such as NSG
does not exist. In fact, while a very high 83% rate was
reported by Toop et al. [6] in NSG ovarian PDXs, when
SCID versus NSG mice were compared, as in the case
of breast cancer, a similar tumour take-rate was re-
ported [19, 20]. In our opinion, the choice of the most
appropriate animal model still remains unresolved and
should be carefully investigated, considering the high costs
of NSG involved.
Concerning the tumour engraftment sites, the most

common site is the subcutaneous (s.c.) injection of the
tumour administered through a small incision made on
the dorsal region of the mice. A modification of this
classical s.c. procedure has recently been proposed,
consisting in the positioning of specimens in a dorsal
intramuscular pocket of the mice. The authors reported
that in esophageal PDX models this technique pro-
duced an improved tumour take-rate (72%) compared
to the 17% observed with the standard subcutaneous
method [21], attributing the higher success rate of
intramuscular implants to the greater blood supply in
the transplant bed. This seems to be a very convincing
hypothesis but given the small number of samples evalu-
ated, the effective superiority of this novel implantation
technique should be validated in further larger studies and
in different tumour histotypes.

The predictive value of PDXs for clinical outcome
Even though many new antineoplastic compounds have
shown favorable tumour responses in preclinical studies,
more than 95% of novel therapeutics have failed to con-
firm efficacy in clinical trials. Many factors are respon-
sible for this high failure rate, including the lack of
predictive preclinical cancer models [2]. Thus, given the
superiority of PDXs to classical xenografts derived from
the cell lines, efforts have been made to evaluate the po-
tential of PDXs in predicting patient response to therapy
(Table 1). In a panel of seven human breast cancer pa-
tient-derived orthotopic xenografts (PDOXs), Marangoni’s
group [8] investigated the response to chemotherapeutics
used for the clinical management of this neoplasia, such
as Docetaxel and 5-Fluorouracil (5-FU), given also in com-
bination therapy with the monoclonal antibody Trastuzu-
mab. The overall concordance between patients and
PDOXs was 5/7 as they showed that among clinical cases,
two clinical responses were observed and were concordant
with xenograft sensitivity. Out of five clinical relapses or
progression, three were concordant with lack of response
observed in PDOXs. The authors concluded that, despite
the low number of pairing cases, PDOXs could represent
a promising tool for testing new agents and new antican-
cer protocols. Finally, a similarity between the response to
the same treatment of breast cancer patients and that ob-
served in PDOXs, was reported by Zhang et al. [19].
The study by Bertotti et al. [17] performed on a very

large cohort of PDXs obtained from metastatic colorec-
tal cancer, strongly supports the role of this model in
mimicking the response of this disease in humans. In

Table 1 The predictive value of PDXs for clinical outcome

Tumour histotype Authors Modela Treatment/
molecular alterations

Corrispondence with patientsb

Breast cancer Marangoni et al. (ref. 8) PDOXs
(7)

Docetaxel,
5-Fluorouracil, Trastuzumab

5/7

Zhang et al. (ref. 19) PDOXs
(10)

Docetaxel, Doxorubicin,
Trastuzumab + Lapatinib

10/10

Colorectal cancer Bertotti et al. (ref. 17) PDXs
(85)

Cetuximab, Panitumumab 85/85

Ovarian cancer Ricci et al. (ref. 9) PDXs
(11)

Cisplatin 9/11

Topp et al. (ref. 6) PDXs
(10)

Cisplatin 10/10

Small cell lung cancer Anderson et al. (ref. 23) PDXs
(8)

Cisplatin, Etoposide 7/8

Colorectal cancer Nunes et al. (ref. 7) PDXs
(52)

WT KRAS
(8/52)

8/8 responded to Cetuximab

Bertotti et al. (ref. 17) PDXs
(85)

KRAS mutated (18/85) 18/18 not responded to Cetuximab

Non-small cell lung cancer Zhang et al. (ref.12) PDXs
(10)

EGFR mutated (1/10) 1/10 responded to Gefitinib

aIn parentheses is reported the number of PDXs or PDOXs evaluated
bMice were treated with the same protocol used for the patients and the response was compared
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fact, they showed that, when unselected PDXs were treated
with Cetuximab, the percentage rate regarding response
(about 11%), disease stabilization (30%) and progression
(59%) was in line with the data reported in the retrospective
analysis of the unselected patients treated with Cetuximab
or Panitumumab.
The need for better, more clinically predictive models

of epithelial ovarian cancer which account for 90% of
ovarian cancer, led Giavazzi’s group [9] to develop a
panel of 34 PDOXs that recapitulated molecular and
biological characteristics of this lethal malignancy. The
established xenografts were histologically similar to the
patient tumours and resembled the five main subtypes
of epithelial ovarian cancer such as high-grade serous
carcinoma, endometrioid carcinoma, clear cell carcinoma,
mucinous carcinoma and low-grade serous carcinoma.
Moreover, when engrafted intraperitoneally, xenografts
reproduced the ability of human ovarian cancer to dissem-
inate. They reported that in most PDOXs, the response to
the treatment with Cisplatin matched with the corre-
sponding patients. The paper by Topp et al. [6] confirms
that ovarian cancer PDXs not only retain the phenotypic
and molecular characteristics of original tumours but also
resemble the clinical response to Cisplatin. In fact, the
sensitivity or resistance observed in patients was consist-
ent with the experimental data in corresponding PDXs.
Interestingly, when mice bearing recurrent tumours were
re-treated with a 2nd and a 3rd-line treatment, an in-
creased resistance to Cisplatin was observed as in the clin-
ical setting following subsequent cycle of therapy, thus
confirming that this model reflects the clinical situation
and could also be a very useful tool in studying the mecha-
nisms of tumour resistance. Finally, a good correlation be-
tween the response rate to chemotherapy with Cisplatin
and Etoposide combination, the approved therapeutic
regimen for Small Cell Lung Cancer (SCLC), between
SCLC patients and PDXs to chemotherapy, has also been
reported. In particular, the authors reported only one
exception to this concordance, as one PDX was resist-
ant to the treatment, while the patient from which this
PDX was derived, elicited a good response. They hypothe-
sized that these differences could be due to establishing a
more aggressive clone in mice or that additional mutations
may have occured during the growth of the PDXs [22].
In the search for effective therapies for unresectable

gastric cancer, experiments performed on PDXs deriving
from 8 patients demonstrated that Regorafenib, a multi-
kinase inhibitor with activity against a range of protein
kinases involved in oncogenesis (KIT, RET, and RAF),
angiogenesis (VEGFR1–3 and TIE2), and maintenance
of the tumour microenvironment (PDGFR and FGFR),
was very active in reducing the growth of tumours in mice.
Looking at the mechanisms involved in the antitumoral ac-
tivity of these compounds, the authors reported a reduction

in angiogenesis and proliferation associated with apoptosis
induction [23]. Interestingly, these results are consistent
with a recent phase II trial in patients with refractory ad-
vanced gastric cancer (INTEGRATE) [24], as a significantly
longer progression-free survival was observed in the Rego-
rafenib group versus placebo.
Notably, PDXs could also be useful models for identi-

fying predictive biomarkers of response to targeted ther-
apies. For example, recently published studies on colon
cancer PDXs confirm clinical data regarding the key role
of WT KRAS genotype for the clinical efficacy of anti-
EGFR therapy. In fact, while WT KRAS PDXs were sen-
sitive to Cetuximab treatment [7], PDXs bearing KRAS
mutations were unresponsive to the treatment [17] and
these observations were concordant with the retrospect-
ive analysis in the matched patients.
The utility of PDXs in supporting a precise selection

of patients for EGFR-targeted therapies such as Gefitinib
has also been demonstrated [12]. These authors selected
10 PDXs from Non-Small Cell Lung Cancer (NSCLC)
patient specimens and treated mice with the EGFR tyro-
sine kinase Gefitinib, which is known to be active in pa-
tients with NSCLC. They observed that the only one
PDX model with EGFR Exon19 Del. activating mutation
responded completely to Gefitinib, while PDXs with
KRAS mutations or EGFR wild-types were insensitive to
Gefitinib treatment. Even though the authors were not
able to report response to Gefitinib in matched patients,
these results are consistent with that reported in clinical
trials [25], thus validating once again that PDX models
represent powerful tools in predicting the response to
anticancer therapy.

PDXs offer a route toward personalized treatment
Evidence showing that PDXs have a high predictive
power for the efficacy of standard and novel anticancer
therapeutics has encouraged the idea to employ this
platform in the so-called co-clinical trials, where in vivo
preclinical studies and clinical trials could be performed
in parallel, with the aim to specifically target the unique
cancer of a patient or subgroup of patients. In particular,
the concept of co-clinical trials refers to studies capable
of defining a patient selection strategy based on molecular
abnormalities or identifying mechanisms of resistance to
antitumoral therapies, for the development of precision
medicine aimed at personalizing anticancer treatment. In
this context, PDXs could be also used as an ‘avatar’ model,
in which PDXs obtained from a patient enrolled in a clin-
ical trial could be treated with the same therapy adminis-
tered to the patient, thus permitting to identify biomarkers
of sensitivity or resistance to treatments.
Most intriguingly, since a major cause of failure of

treatments is the acquired resistance of tumours [26],
the use of novel drugs or combination could permit to
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select effective therapeutic strategies for second-line
treatment. On this basis, Misale et al. [27] started patients
with colorectal cancer on treatment with anti-EGFR inhib-
itors as single agents after initial response elicited relapse
of the disease, due to emerging resistance. Thus, by using
colon cancer PDX as a model, they investigated how the
acquisition of resistance to EGFR-targeted therapies could
be restrained. The in vitro genetic screen and functional
studies on CRC showed that dual blockade of EGFR
and MEK prevents acquired resistance and as a result
performed experiments in vivo on PDXs derived from a
CRC patient carrying a quadruple wild-type gene profile
(KRAS, NRAS, BRAF and PIK3CA) which recapitulate
the molecular profile of patients sensitive to anti-EGFR
antibodies. Treatment of PDXs with the anti MEK Pima-
sertib alone only slightly reduced tumour growth, while
Cetuximab treatment was very effective in reducing tu-
mours to more than 70%. The subsequent regrowth of
these tumours, showed resistance to drug re-challenge
thus resembling the clinical findings. In contrast, the
Cetuximab/Pimasertib combination elicited a complete re-
sponse as tumours remained undetectable for more than 6
months. These results led authors to suggest that the use
of ‘ab initio’ combination treatment could inhibit the
development of resistant tumours showing molecular
heterogeneity as well as highlight the usefulness of PDXs
in establishing a very effective antitumoral strategy.
To search for a second-line personalized treatment in

melanoma patients acquiring resistance to BRAF inhibi-
tors, Krepler et al. [28] established 12 PDX models
from–progressed patients of which 3 with NRAS muta-
tions, MAP2K1 (MEK1) mutations in 2, BRAF amplifica-
tion in 4, and aberrant PTEN in 7. Moreover,
amplification of MET was observed in 3 PDXs, while re-
activation of phospho-MAPK predominated at the pro-
tein level, with parallel activation of PI3K in a subset of
PDXs. Treating mice with a combination of compounds
acting on the different resistance mechanisms produced a
marked antitumor efficacy. In particular, the triple com-
bination treatment with Capmatinib/Encorafenib/Binime-
tinib, targeting MET, MAPK and PI3K pathways resulted
to be more effective. This strategy which uses a different
cohort of mice deriving from the same patients and
bearing the same targetable mechanism of resistance,
makes it possible to identify an accurate personalized
therapy regimen, thus avoiding treatment failures.
A paradigmatic example of the use of PDX as an “avatar”

for personalized cancer treatment is reported by Bousquet
et al. [29]. In particular, a woman with a localized left breast
ductal invasive triple-negative breast carcinoma treated
with chemotherapy and radiation, in accordance with
French national guidelines, elicited a disease relapse.
PDXs obtained from metastatic nodules were analyzed
by transcriptome analysis and treated with different

drug combinations, resulting Paclitaxel plus Cetuximab
as the most efficient therapy. Following these results in
PDXs, the patient was treated with Paclitaxel plus
Cetuximab and after 3 months of this second-line treat-
ment, the metabolic response was almost complete. More-
over, the time to progression was longer than previous
lines of treatment.
These examples demonstrate that PDX models inte-

grated with targeted sequencing and phosphoproteomic
platforms, provide the preclinical basis for identifying
more effective therapies both in the first and second-line
targeted inhibitor strategies, also for the repositioning
and/or repurposing of previously approved drugs.

Limits and challenges of PDX models
Although PDXs possess notable advantages compared to
classical xenografts as described above, they do have
some limitations that cannot be omitted. Importantly,
overcoming these issues could increase this model’s po-
tential for improving therapeutic application of antineo-
plastic compounds.
One of the major limitations of PDXs is that tumours

fail to progress or to metastasize and therefore do not
retain all patterns of the disease course observed in pa-
tients. One strategy to overcome this disadvantage is
represented by the engraftment of tumour specimens in
the orthotopic sites of origin. To this purpose, several
reports have shown that patient-derived orthotopic xe-
nografts (PDOXs) could represent a powerful tool for
addressing this key point in the science of preclinical
modelling. Particularly, DeRose et al. [14] reported that
the establishment of breast tumours into the mammary
glands of mice maintain clinical features of original tu-
mours as the majority of mice developed metastases cor-
responding to patient metastatic sites, such as lymph
nodes, lungs, bone and peritoneum. Moreover, Walters
et al. [30] showed that PDOXs of pancreatic carcinoma
developed peritoneal and liver metastasis, thus recapitulat-
ing the clinical aspects of human disease. The relevance of
using PDOX in evaluating an anti- metastatic therapy is
highlighted by Hiroshima et al. [31] in a model of HER2-
positive cervical cancer showing peritoneal dissemination,
liver, lung and lymph node metastasis. In particular, these
authors observed a different sensitivity to chemotherapy
between primary tumor and metastasis. In fact, while
the subcutaneous model and the primary tumor of PDOX
from the same tumor were not sensitive to Entinostat,
a benzamide histone deactylase inhibitor, Entinostat-
treatment reduced significantly the size of metastasis in
comparison to mice treated with the vehicle.
At the same time the s.c. implantation does not repre-

sent the site of origin, thus limiting studies on evaluating
the role of the tumour microenvironment as it is well
known that the cells of the tumour vasculature, fibroblasts
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and inflammatory cells, interacting with tumour cells, are
important in tumour biology and that the microenviron-
ment regulates cancer-drug sensitivity [32]. Thus, the
orthotopic implanting fragments directly into the organ of
origin (PDOXs), requiring very skilled personnel, better
recapitulates the complexity of human malignancy [33]
and should be extensively adopted. In this regard, ad-
vanced real-time imaging systems permit the quantitative
assessment of primary tumour growth and metastatic
progression, relying on the use of imaging modalities.
In relation to this, Fluorodeoxyglucose–positron emis-
sion tomography (FDG-PET) has been proposed and
the feasibility of this technique has been confirmed by
magnetic resonance [34, 35]. Furthermore, based on
the observation that more than 90% of pancreatic cancers
are EGFR-positive, a novel imaging approach which com-
bines micro PET and F(ab’)2 fragments of the fully-human
anti-EGFR monoclonal antibody, panitumumab has been
evaluated [36]. The authors demonstrated that 64Cu-
panitumumab F(ab’)2 fragments bound with high af-
finity to EGFR on PDOXs pancreatic cancer, allowed
to visualize the tumour by microPET/CT. They sug-
gest that this method could also be useful for tumour
imaging in patients and for radioimmunotherapy. Fi-
nally, the use of fluorescently-labelled chimeric anti-
CEA antibody permitted whole body imaging of colon
cancer PDOXs. To this purpose, tumour mice bearing
were injected with the anti-CEA antibody labelled
with the AlexaFluor 488 and then seen by a small ani-
mal imaging system that was able to detect the pri-
mary tumour and the residual mass after the surgical
resection [37].

A further limitation of the model is that mice used for
engraftment have a severely compromised immune sys-
tem which poses a disadvantage for the full exploitation
of PDX technology, since the contribution of immune-
cell function hinders the proper evaluation of tumour
growth and patient response in these models. This is
particularly true in certain tumours such as melanoma
in which progresses in treating this neoplasia have been
made with targeted immunotherapy [38, 39]. The use of
the so-called humanized mice with co-engrafted stromal
and immune components, will allow researchers to study
tumour growth and drug response in the context of hu-
man immunosystem which could represent the most
advanced preclinical models for drug efficacy studies
with some aspects needing improvement [40].
The intratumour heterogeneity could have an impact

on the interpretation of data stemming from PDXs as
they are usually developed from small fragments ob-
tained by larger biopsies. At the same time, the passages
in mice could increase this spatial intratumoral hetero-
geneity since propagation is obtained by cutting the
tumour mass (300–500 mm3) grown in one mouse and
implanting small pieces of the mass (15–20 mm3) in sev-
eral mice for propagation. Our observations seem to
confirm this hypothesis as demonstrated in PDXs origin-
ating from one colorectal cancer patient and treated
with a G-quadruplex (G4) ligand, one mouse showed
complete response, two mice partial response followed
by a rapid disease progression and no-response was elic-
ited in one mouse (Fig. 2). These results will permit us to
investigate the changes in gene expression after treatment
and to predict drivers of tumour resistance to G4-ligands,
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thus highlighting that PDXs represent a useful model in
studying intratumor heterogeneity which is one of the
main reasons for the failure of treatments and disease
progression.
One critical aspect concerns the maintenance of PDXs

in the genetic integrity of parental tumours and the degree
of alterations occurring across the passages into new mice.
To this purpose there are many examples throughout lit-
erature reporting that in the initial passages, PDXs retain
the histological, immunohistochemistry, gene expression,
copy numbers and chromosomal stability profile of the
original patient tumour [3, 4]. Modifications of tumour
characteristics occurring during passages could influence
the response to chemotherapy. It was for this purpose that
in a recent paper, Dodbiba et al. [41] evaluated whether
chemosensitivity could be modified through the passages
in mice. PDXs were treated with combination treatments
including Cisplatin, Paclitaxel and 5-Fluorouracil which
are drugs used for the clinical management of esophageal
and gastro-esophageal junction cancer. The authors ob-
served that the inherent resistance, gain-of-resistance or
chemosensitivity remained generally constant across 3 to
11 passages in mice.
In contrast, genetic changes that occurred via each

passage to a new mouse host seem to represent genomic
rearrangements intrinsic to tumour progression. In particu-
lar, in breast cancer PDXs it was observed that tumours in
mice showed a pronounced mutational status or aggressive-
ness of tumour characteristics, sometimes comparable to
patient metastases compared to primary tumours [20].
These observations suggest the use of PDX models with
low passage numbers (<10) to preserve the genetic integrity
of the parental tumour [42].
Perhaps one major obstacle in PDX modelling for co-

clinical trials and personalized medicine is the long time-
frame required for engraftment. In fact, the tumour latency
calculated as the time between implantation and the devel-
opment of a progressively growing xenograft tumour can
range from 2 to 12 months. Considering that tumours have
to be passaged several times in mice to generate a sufficient
number of “avatars”, this means that individual patients
with a rapidly progressing disease could not benefit from
PDX studies. To this purpose, performing drug testing in
PDXs during the period of standard therapy could be a use-
ful strategy in view of the second-line treatment based on
PDXs results.

Conclusions
PDX models are a relevant preclinical platform and rep-
resent a significant challenge for oncology research as
they, more accurately, reflect human tumour biology
than any other existing models. If PDXs are viewed as
complementary to other experimental models, the use
of PDXs should lead to a higher rate of success in

identifying new and more effective therapeutic strat-
egies and in transitioning into individualized therapy.
The aforementioned limitations of this model, the
high costs associated with maintaining mouse colonies
and regulatory issues have hindered the full exploit-
ation and widespread utilization of this methodology,
therefore vast efforts are needed to refine the model
and overcome these challenges. The collaboration be-
tween private and public institutes devoted in the fight
against cancer, in developing and characterizing large
collections of PDX models from different cancer types,
will accelerate progress in the area of drug development.
In conclusion, the long-term benefits of using more rele-
vant preclinical models of human tumour biology merit
these efforts and expenses.
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