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Abstract. Radiotherapy (RT) is one of the most widely used 
and effective cancer treatments. With the increasing need 
for organ reconstruction and advancements in material tech‑
nology, an increasing number of patients with cancer have 
metallic implants. These implants can affect RT dosage and 
clinical outcomes, warranting careful consideration by oncolo‑
gists. The present review discussed the mechanisms by which 
different types of metallic implants impact various stages of 
the RT process, examined methods to mitigate these effects 
during treatment, and discussed the clinical implications of 
metallic implants on RT outcomes. In summary, when metallic 
implants are present within the RT field, oncologists should 
carefully assess their impact on the treatment.
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1. Introduction

Tumors remain an important threat to lives and health of 
individuals with the burden of cancer incidence and mortality 
rapidly increasing throughout the world. With advances in 
medical technology, oncologists are increasingly developing 
additional strategies for oncology treatments, such as neoad‑
juvant chemoradiotherapy (CRT), concurrent CRT (CCRT), 
immunotherapy and targeted therapy; however, radiotherapy 
(RT) continues to play a vital role in the response to the disease 
spectrum of most cancers (1).

Biomaterials are commonly defined as non‑viable materials 
intended to interface with biological systems to evaluate, treat, 
augment or replace any tissue, organ, or function of the body (2). 
Metallic implants are types of biomaterials, commonly used for 
reconstructing certain important structures or alleviating symp‑
toms. According to statistics, ~4% of patients undergoing RT 
have metal implants in their bodies, such as in the teeth, esoph‑
agus, breast, spine, hip and other areas (3) (Fig. 1). These metal 
implants are usually present around the tumor. For instance, 
self‑expandable metal stents are often used to palliate malignant 
dysphagia, either alone or before definitive or preoperative CRT 
for esophageal cancer (4‑6). In addition, metal implants are often 
present in patients with head and neck cancer (7). However, these 
metal implants have a non‑negligible effect on the dose distribu‑
tion and delineation of target volumes during RT.

Due to the dose perturbation, the local control of the tumor 
would be affected and cause excessive damage to the normal 
tissues and organs at risk surrounding the tumor, resulting in 
short‑ or long‑term toxicity (8,9). In addition, metal implants 
tend to be markedly denser than tissue or bone (10); therefore, 
they produce more severe artifacts when computer irradiation 
is performed for treatment planning. Although several algo‑
rithms exist to reduce metal artifacts, they still impact the 
accuracy of RT (11,12). Therefore, the present study reviewed 
the effects of different types of metal implants on radiation 
dose and clinical outcomes. It also explored methods to mini‑
mize the impact of metal implants on RT.

2. The mechanism of metal implants affecting RT

The presence of metallics compromises computed tomog‑
raphy (CT) image quality by generating metal artifacts mainly 
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through beam hardening, noise and scattering (13,14) and thus 
affecting the accuracy of target volumes. Beam hardening is 
due to the fact that metals with high atomic numbers absorb 
photons more strongly, which ultimately results in a higher 
average energy. Absorption of photons by metallic implants 
results in a significant reduction in the number of photons 
detected by the photon detector, which manifests as bright 
streaks and thin, dark, areas in the image, defined as noise. 
As the predominant type of interaction in CT, Compton scat‑
tered X‑rays are the signals usually detected by detectors. 
This scattering changes the direction of the incident beam 
away from the center axis. This causes the metal to appear 
white, with dark streaks along the axis of maximum attenua‑
tion (15). Furthermore, metal implants also have an effect on 
the delivery and distribution of the dose during the course of 
RT. When photons or electrons pass through a metal implant, 
secondary electrons or scattering can cause dose perturba‑
tion, resulting in an overdose on the front surface of the metal 
and tissue and a lower dose on the rear surface  (16). The 
metal prosthesis is commonly made from ‘high‑Z’ elements, 
which are defined as material with an atomic number greater 
than that of cortical bone. The presence of high‑Z material 
during the administration of an RT schedule can lead to local 
perturbations through interface effects (17) and distort dose 
distributions from therapeutic beams (18). The scattered radia‑
tion caused by high atomic number materials when introduced 
into the photon beam from megavoltage RT consists of both 
scattered photons and electrons. The backscatter is especially 
important to be aware of when the tumor is placed between 
the beams and metal implant, as it can cause the dose to reflect 
and then build up on the surface, resulting in an unplanned 
escalation in the dose, which can increase the side effects of 
RT (19). In the study of Dietlicher et al (20), the dose of back‑
scattered radiation is related to the angle between the axial 
beam and the scattering material; however, not all metals can 
be detected with such a significant relationship, such as silver. 
Moreover, the sharp density interfaces of a metal prothesis 
with the surrounding tissues can degrade the homogeneity of 
the delivered target dose (21).

3. The effect of different kind of metal implants on dosage

Since the density of metallic implants differs significantly 
from that of human tissue, there is an effect on the dose trans‑
mitted to the surrounding tissue as the beam passes through 
the metal implants. Several studies have investigated the dose 
perturbation scenarios by means of phantom measurements, 
algorithmic simulations and other methods. Type of metal, 
shape of the implant and energy of the radiation have an effect 
on the dose distribution (5,8,19,22‑29) (Table I). The measured 
distance is the distance from the film to the surface (ray inci‑
dent surface or ray exit surface) of the metal implant, and the 
film is used to detect the dose of RT. As for the geometry of 
the implants, this is more prominent in the esophageal stent, 
such as the size of the stent mesh, the thickness of the line that 
constitutes the mesh. In other types of implants, it is mostly 
manifested as the thickness or length of the implant.

Stainless steel. Stainless steel is widely used in bone fixa‑
tion, cardiovascular systems, catheters, surgical instruments 

and dental crowns  (30). Furthermore, Bhushan et al  (27) 
studied the effect of stainless‑steel hip prosthesis on 
radiation using a customized prosthesis containing wrought 
austenitic stainless steel. It was observed that for 6 MV of 
photon irradiation, at a depth of 10 cm below the prosthesis, 
with field sizes of 5x5, 10x10 and 20x20, the dose attenua‑
tion was 8.3, 7.4 and 7.5% when the prosthesis was present 
compared with in its absence. In addition, when the energy 
was increased to 15 MV, the dose attenuations were 7.6, 
7.1 and 5.0% for the same distances 5x5, 10x10 and 20x20, 
respectively, of the field sizes. Moreover, Mahuvava and Du 
Plessis (25) observed that when bilateral stainless steel hips 
were present, the attenuation of radiation by a prosthesis was 
22.8, 20.4, 18.5 and 16.9% with photon irradiations at 6, 10, 
15 and 20 MV, respectively. Furthermore, Liu et al (23) used 
human cadavers to simulate tumor resection for internal fixa‑
tion surgery by placing stainless steel plates in the anterior 
and upper 1/3 of the human femur with a muscle strip of the 
same size and thickness for control purposes. It was observed 
that the absorbed dose at the incident surface increased by 
21.65%. Conversely, the absorbed dose at the exit surface 
was attenuated by 8.42% compared with the control group, 
as measured with a pyroelectric dosimeter under 6  MV 
X‑ray irradiation. Additionally, their experiments also used 
the treatment planning system (TPS). It was observed that 
the distance from the tissue to the metal surface was an 
important factor affecting dose absorption, and this effect 
was greatest at a distance of 0.5 cm from the metal surface, 
resulting in a 6.1% increase in dose upstream and a 2.2% 
dose attenuation downstream. In addition, He and Ni (26) 
used the Monte Carlo (MC) algorithm to simulate 6 MV 
X‑ray irradiation and observed that the incident surface dose 
of stainless steel implants with thicknesses of 1, 2 and 4 cm 
increased by 23.8, 24.0 and 24.3%, respectively, compared 
with the dose without the implant; by contrast, the dose at 
the exit surface decreased by 23.0, 35.2 and 55.1%, respec‑
tively. This indicates that the thickness of the implant did not 
significantly affect the incident radiation dose; however, the 
dose attenuated more with increasing metal thickness at the 
exit surface.

Stainless steel is majorly used in stents. Chen et al (5) used 
a solid water phantom to simulate the tissue environment of the 
human esophagus and measured the surrounding irradiation 
dose using thermo‑luminescent dosimeters. It was observed 
that the increase in dose to the Z‑stent's (stainless steel) 
anterior surface was 3.5‑7.8% when using single beams. Abu 
Dayyeh et al (19) used a solid water phantom irradiated with 
6, 10 and 18 MV photons and observed that the dose enhance‑
ments of the stainless‑steel stent Wallflex front upstream were 
4.2, 5.2 and 6.7%, respectively, at three different photon energy 
irradiations. The aforementioned experiments revealed that the 
presence of stainless‑steel implants could have a non‑negligible 
effect on the accuracy of the RT dose; therefore, when stain‑
less steel implants are present in the irradiation field, this dose 
perturbation should be considered when making RT plans.

Titanium and its alloys. Since the introduction of pure tita‑
nium for oral implants in the 1960s, it has been widely used 
as a material for surgical implants. Subsequently, Ti‑3Al‑2.5V 
and Ti‑6Al‑4V were gradually used as femoral and tibial 
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replacement materials. Ti6Al4V is an important titanium alloy 
widely used as a material in surgical implants (31).

External irradiation is a common treatment modality for 
prostate cancer. With an aging population, several patients 
treated for prostate or pelvic tumors undergo partial or total hip 
replacement because of osteoarthritis and hip dysfunction (27). 

Titanium is often used for hip implants because of its excellent 
biomedical properties, however it inevitably may affect dose 
delivery (32).

Ade and du Plessis (29) investigated the perturbation effect 
of a unilateral titanium prosthesis on the dose distribution of 
6 MV and 15 MV photon beams. Using a built‑in titanium hip 

Figure 1. Metal implants in the bodies.
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Table I. Effect of metal implants on radiotherapy dose under different conditions.

							       Increase	 Reduce		
							       the dose in	 the dose	 PTV	
First author,					     Radiation	 Technology	 incident 	 in exit	 Dose	
year	 Material	 Method	 Location	 Energy	 source	 of radiation	 surface	 surface	 (Gy)	 (Refs.)

Tsuji et al, 	 Stainless 	 Phantom	 Tracheal	 10 MV	 X-ray	 Single beams	 9%	 8%	 6	 (22)
2003	 steel									       
		  Phantom	 Lower limb	 10 MV	 X-ray	 Single beams	 3%	 3%		
			   arteries							     
		  Phantom	 Coronary 	 10 MV	 X-ray	 Single beams	-	  2%		
			   artery							     
Liu et al,		  Monte 	 Femur	 6 MV	 X-ray	 Single beams	 21.6%	 8.42%	-	  (23)
2010		  Carlo								      
Chen et al,		  Phantom	 Esophageal	 6 MV	 Photon 	 Single beams	 3.5-7.8%	 negligible	 0.05	 (5)
2011					     beams					   
		  Monte 	 Esophageal	 6 MV	 Photon 	 Single beams	 6.2%	 <1.0%		
		  Carlo			   beams					   
		  Monte 	 Esophageal	 6 MV	 Photon 	 Dual beams	 3.0%	 3.0%		
		  Carlo			   beams					   
Lin et al,		  Monte 	 Dental	 6 MV	 X-ray	 Volumetric 	 0.8%	 10%	-	  (24)
2013		  Carlo				    modulated 				  
						      arc therapy				  
Mahuvava 	 	 Monte 	 Unilateral 	 6 MV	 Photon 	 Six fields	-	  10.3%	 75	 (25)
and Du		  Carlo	 hip		  beams					   
Plessis, 2018				    10 MV	 Photon 	 Six fields	-	  6.9%		
					     beams					   
				    15 MV	 Photon 	 Six fields	-	  3.5%		
					     beams					   
				    20 MV	 Photon 	 Six fields	-	  2.1%		
					     beams					   
He and Ni,		  Monte 	 Water	 6 MV	 X-ray	 Single beams	 24%	 16.2~55.1%	-	  (26)
2018		  Carlo								      
Bhushan		  Phantom	 Unilateral 	 6 MV	 Photon 	 Single beams	-	  7.5-8.3%	-	  (27)
et al, 2020			   hip		  beams					   
				    15 MV	 Photon	 Single beams	-	  5.0-7.6%		
					     beams					   
Ozen et al,	 Titanium	 Phantom	 Lower jaw	 Co-60 	 Gamma 	 Single beams	 17-21%	-	  2	 (28)
2005					     ray					   
				    6 MV	 X-ray	 Single beams	 17-18%	-		 
				    24 MV	 X-ray	 Single beams	 15-16%	-		 
Liu et al,		  Monte 	 Femur	 6 MV	 X-ray	 Single beams	 15.46%	 5.26%	-	  (23)
2010		  Carlo								      
Ade and		  Phantom	 Hip	 6 MV	 Photon 	 Single AP	 21-23%	 18-21%	-	  (29)
du Plessis, 					     beams	 beams				  
2017										        
				    15 MV	 Photon 	 Single AP	 25-30%	 15-18%		
					     beams	 beams				  
Mahuvava		  Monte 	 Unilateral 	 6 MV	 Photon 	 Six fields	-	  6.2%	 75	 (25)
and and Du 		  Carlo	 hip		  beams					   
Plessis, 2018										        
				    10 MV	 Photon 	 Six fields	-	  4.2%		
					     beams					   
				    15 MV	 Photon 	 Six fields	-	  2.4%		
					     beams					   
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prosthesis, it was observed that the proximal dose enhance‑
ment of the prosthesis ranged as 21‑23%, and the distal dose 
reduction of the prosthesis was 18‑21% with 6 MV photon 
beam irradiation. However, when the radiation energy was 
increased to 25 MV, the proximal dose enhancement and 
distal dose attenuation were 25‑30 and 15‑18%, respectively. 
It could be inferred from their experiments that the field size 
does not significantly affect the dose, and that the most signifi‑
cant dose change is within 1.0 cm from the implant surface. 
Additionally, Akyol et al (8) used the pencil beam convolution 
(PBC) algorithm of the TPS and MC simulation techniques 
for their study. They simulated a linear accelerator to produce 
a 6‑MV photon beam and observed an 11.2% increase in dose 
anterior to the titanium dental implant and a 15.5% decrease 
in dose posteriorly.

Furthermore, He and Ni (26) used an MC algorithm to 
simulate 6‑MV X‑ray irradiation and compared the effect 
of different thicknesses of stainless‑steel plates with that of 
titanium metal implants on the radiation dose. It was observed 
that titanium implants increased the upstream dose by 19.8, 
20.3 and 20.6% at the thicknesses of 1, 2 and 4 cm, respec‑
tively, while decreasing the downstream dose by 18.4, 23.6 
and 35.0%, respectively. Additionally, it was observed that 
the effect of titanium implants on radiation dose was less 
than that of stainless‑steel implants. Similarly, experiments 
by Liu et al (23) on human cadavers revealed that the effect 
of stainless‑steel plates on the radiation dose distribution was 
more pronounced than that of titanium plates under the same 
conditions.

Titanium and its alloys are also often used in oral implants, 
which may have an impact on the radiation dose to patients 
with nasopharyngeal tumors. Lin  et  al  (24) observed that 
titanium used as a dental implant in head‑and‑neck volumetric 

modulated arc therapy (VMAT) had clinically significant 
effects on the dose. They used the MC and TPS methods and 
observed that at a distance of 2 mm from the implant surface, 
the upstream dose increased by 0.8%; by contrast, the down‑
stream dose was attenuated by 10%. In addition, Ozen et al (28) 
implanted titanium dental implants of different diameters and 
lengths into the human mandible and irradiated them with 
6 MV X, 25 MV X and Co‑60 gamma rays. At the proximity to 
the titanium, the different sizes of titanium implants increased 
the dose of Co‑60 gamma rays by 17‑21%, and the same dose 
was increased by 17%. However, for 6 MV and 25 MV X‑ray 
irradiation, the dose increased by 17‑18% and 15‑16%, respec‑
tively. Therefore, it could be inferred that the dose increase 
of 25 MV energy X‑rays was slightly lower than that of other 
energy rays. Nevertheless, there was no significant difference in 
the dose effect due to the difference in implant size.

Nitinol, a titanium alloy, is widely used to fabricate several 
types of stents, such as esophageal and tracheal stents. Abu 
Dayyeh et al (19) used a solid water phantom irradiated with 
6, 10 and 18 MV photons. The nitinol stent and wall stent were 
used; the anterior surface dose was increased by 4.1, 7.1 and 
3.2%, respectively; and the other nitinol stent ultraflex was 
irradiated with the anterior surface dose enhancements of 
4.7, 6.1 and 3.7%, respectively. The stainless‑steel stent was 
also used in the aforementioned study, and the effect of the 
different stent materials on the radiation dose was similar. 
The main determinant of the dose effect in metallic stents 
was not the stent material, but the mesh density of the stent. 
From extensive studies, it was observed that the widely used 
implants made of nitinol could reduce the effect on RT dose 
more than the stainless‑steel stents; however, caution should 
be exercised when choosing metal implants because the shape 
of the stent itself can also affect radiation dose.

Table I. Continued.

							       Increase	 Reduce		
							       the dose in	 the dose	 PTV 	
First author,					     Radiation	 Technology	 incident 	 in exit	 Dose	
year	 Material	 Method	 Location	 Energy	 source	 of radiation	 surface	 surface	 (Gy)	 (Refs.)

				    20 MV	 Photon 	 Six fields	-	  1.0%		
					     beams					   
He and Ni,		  Monte 	 Water	 6 MV	 X-ray	 Single beams	 20%	 11.5~35%	-	  (26)
2018		  Carlo								      
Akyol et al,		  Monte 	 Dental	 6 MV	 Photon 	 Single beams	 11.2%	 15.5%	-	  (8)
2019		  Carlo			   beams					   
Dayyeh	 Nitinol	 Phantom	 Esophageal	 6 MV	 Photon 	 Perpendicular	 4.2%	 0	 0.3	 (19)
et al, 2012					     beams	 beam				  
				    10 MV	 Photon 	 Perpendicular	 5.2%	 1.0%		
					     beams	 beam				  
				    18 MV	 Photon 	 Perpendicular	 6.7%	 1.3%		
					     beams	 beam				  
Akyo et al,	 Ti-6Al-4V	 Monte 	 Dental 	 6 MV	 Photon 	 Single	 10.7%	 15.4%	-	  (8)
2019 		  Carlo			   beams	 beams				  
Akyol et al,	 Al2O3	 Monte 	 Dental 	 6 MV	 Photon 	 Single beams	 3.3%	 7.0%	-	  (8)
2019		  Carlo			   beams					   
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Other metals. In addition to the commonly used stainless 
steel, titanium and its alloys, several other metals such as gold, 
ZrO2, and Al2O3 are used as materials for artificial implants. 
These metallic materials are more widely used in the field of 
dental implants. As reported by Akyol et al (8) the calculated 
dose increment by MC simulation in front of a dental implant 
was 15.5 and 3.3% for ZrO2 and Al2O3, respectively. The dose 
decrease behind the dental implant for ZrO2 and Al2O3 was 
22.2 and 7.0%, respectively. The authors also calculated the 
change in dose after implantation of metal implants such as 
titanium. The aforementioned study thus revealed that the 
density of the implants has an effect on the dose increase in 
the front of the material, with the higher density increasing the 
dose to the front surface.

A temporary tissue expander (TTE) is commonly used in 
patients who require post‑mastectomy RT to maintain breast 
shape and create space between the chest wall and skin. TTE 
contains an internal metallic port (IMP) used as the injec‑
tion port for saline injection, which is usually composed of 
high‑density rare‑earth magnets, and inevitably perturbs the 
RT dose (33‑35). Using a film dosimetry phantom experiment, 
Shankar et al (36) observed that the dose attenuation measured 
at a depth of 22 mm was 22% when irradiated with a single 
photon beam of 6 MV light. When the energy was raised 
to 15 MV, the dose attenuation at the same depth was 16%. 
Furthermore, Gee et al (37) performed in vitro water phantom 
measurements, measuring the dose distribution at  0.5, 
50.0 and 100.0 mm downstream from the IMP, and revealed 
that the angle of the rays to the IMP had a different effect on 
the dose, with a 28% metric attenuation when the rays were 
parallel to one another and a 16% dose attenuation when they 
were perpendicular to one another. Various degrees of dose 
reduction were observed downstream in IMP studies (38,39); 
however, some researchers consider that such dose reduction 
falls into the saline of TTE and does not significantly affect 
the surrounding tissues (40).

4. Target delineation

Accurate delineation of the target area and organs at risk is 
crucial for ensuring the efficacy of RT and controlling the 
occurrence of toxic reactions. Incorrect delineation may lead 
to under‑dosage of the treatment and over‑dosage in the target 
area and organs at risk. A previous study revealed that a dose 
deficit of 1% volume of the target that is >20% of the prescrip‑
tion dose may lead to serious loss of tumor control probability 
with intensity‑modulated RT (IMRT) (41). Due to the current 
target delineation in RT being primarily based on CT images, 
the presence of metal implants in CT images may negatively 
impact the image quality and accuracy of the target delineation. 
Metal implants mainly exhibit white and dark stripes along the 
maximum attenuation axis on CT images, which are caused by 
a combination of beam hardening and scattering (15). In addi‑
tion, photon starvation caused by strong attenuation can lead 
to statistical errors, which manifest as thin dark and bright 
stripes around metal implants in CT images (42). The presence 
of artifacts on CT images is challenging for delineating target 
areas and organs at risk, especially when there is a lack of 
prior knowledge about the type of implant (shape, size, metal 
or alloy composition, and effective atomic number of metals), 

resulting in increased uncertainty in the delineation of target 
areas and organs at risk (42,43).

5. Methods to reduce the influence of metal implants 
during RT

Metal implants can generate metal artifacts which can increase 
the error of structure visualization and reduce the accuracy of 
radiation oncologists' delineating targets and that of radiation 
dose calculation, which can result in damage to the adjacent 
normal tissues and reduced control rate of the tumor. There are 
various methods to reduce metal artifacts. Dose calculation 
algorithms can override the adverse impact of metal implants 
on RT.

Methods to reduce metal artifacts. Various strategies to mini‑
mize metal artifacts and improve image quality techniques 
have been investigated and developed over the years. Dual 
energy CT is a common method to reduce metal artifacts. 
It was reported to reduce beam hardening artifacts between 
95 and 150 kilo electron volt levels (44,45). Additionally, the 
use of iterative metal artifact reduction algorithms can reduce 
metal artifacts and improve dose calculation accuracy, which 
enables the precise irradiation of tumors (42,46). These tech‑
niques are based on projection data and the image‑based metal 
segmentation method that was used as a start (47). There are 
also commercially available techniques to minimize metal 
artifacts such as iterative metal artifact reduction (IMAR; 
Siemens Healthineers)  (48), O‑MAR (Philips Medical 
Systems, Inc.)  (49), single‑energy metal artifact reduc‑
tion (SEMAR; Toshiba Medical Systems; Canon Medical 
Systems) (50), and smart metal artifact reduction (Smart MAR 
(General Electric Healthcare) (51,52). The technique based on 
projection data and image‑based metal segmentation method 
was used recently, and VM imaging with projection‑based 
material decomposition algorithm can not only reduce metal 
artifacts effectively, but also simultaneously prevent object 
blurring at the metal artifact position and image distortion of 
the metal implants (53,54). Ceccarelli et al (55) considered that 
combining information from virtual monoenergetic recon‑
structions and MAR software images could be the best way 
to solve the issue of metal artifacts on CT images. Those tools 
were helpful in reducing metal artifacts; however, improved 
methods need to be further explored. First of all, most of 
the current research is carried out on the phantom, and it is 
necessary to verify the effectiveness of its application in the 
human body, so as to provide a reliable basis for clinical appli‑
cation. In addition, numerous reconstruction algorithms are 
time‑consuming and need to be further optimized to improve 
the reconstruction efficiency. Finally, the algorithm based on 
deep learning to reduce metal artifacts has gradually attracted 
attention. Compared with non‑machine learning algorithms, it 
has advantages in reducing signal‑to‑noise ratio. In the future, 
combining big data, deep learning and digital twin technology 
with increasingly enhanced computer algorithms may improve 
methods that reduce metal artifacts.

The methods of dose calculation algorithms. Using the 
aforementioned techniques, oncologists can obtain a relatively 
precise processed CT image, making target delineation more 
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accurate. However, it is only through an accurate and fast dose 
distribution calculation that oncologists can be more confident 
in RT delivery and avoid unnecessary harm to patients in 
advance. The algorithm for simulating photon dosage focuses 
on modeling the deposition pattern of X‑rays generated by a 
linear accelerator in the patient. The common dose calculation 
algorithms included PBC, analytical anisotropic algorithm 
(AAA), collapsed cone convolution (CCC) and MC. PBC is the 
simplest and fastest kernel‑based dose computation method. 
Kernel‑based algorithms make use of kernels and ray tracing 
to model the dose deposition resulting from interactions 
at a given point. The kernel represents the spread of energy 
resulting from an interaction at a given point or line, and the 
ray tracing algorithm represents the energy that passes through 
the tissue from the energy source. AAA is a convolution‑based 
algorithm which was released in 2005 and implemented in the 
Eclipse (Varian Medical Systems, Inc.) Integrated TPS (56). 
CCC algorithm uses one or more‑point kernels rather than 
a line kernel which could accurately model beam hardening 
as the beam traverses the medium for multiple point kernels. 
MC is a method of finding numerical solutions to a problem 
by random simulation which may be used to compute dose 
distributions by simulating the interactions of a large number 
of particles (including photons, electrons and protons), as 
they travel through a medium. It is both the most accurate 
and computationally intensive method of dose calculations on 
account of large number of simulated interactions at an atomic 
level (57).

PBC is only suitable for homogeneous media; its accuracy 
in non‑homogeneous media is poor, and therefore, there are 
limitations to using it to simulate dosage in the presence of 
metal implants. A CCC algorithm was used in several TPSs 
because of its accuracy in homogeneous tissues. In a study 
by Panettieri et al (58), for the modeled 6‑MV photon beams, 
both the PBC algorithm and the AAA tended to underestimate 
the absorbed dose in the build‑up region compared with the 
MC results. Paulu and Alaei (59) studied the results of three 
common dose calculation algorithms in the presence of a 
hip prosthesis. The aforementioned study found that near the 
surface of the prosthesis for all energies, a Pinnacle collapse 
cone convolution algorithm created a 5‑22% higher measured 
dose than calculated, and for the Eclipse Acuros XB and 
the Eclipse AAA the overestimation of dose was 2‑23% and 
6‑25%, respectively. MC methods are regarded as the ‘gold 
standard’ for patient dose calculations and are widely used in 
clinical practice. Ade and Plessis (60) revealed that the MC 
algorithm used in Monaco was significantly more accurate 
than the CCC algorithm used in XiO. As Parenica et al (61) 
reported, the CCC algorithm in Pinnacle demonstrated a 
significant 9.2% error in calculating the dose and for the MC 
algorithm in the Monaco TPS the error was 3.6%. Therefore, 
to the best of our knowledge, the MC algorithm can be used 
to calculate the dose for the tumor and its surroundings more 
accurately in the presence of metal implants. Additionally, it 
can be used as a second check to ensure the accuracy of the 
RT plan. However, the MC algorithm has some drawbacks, 
such as the long time period required for computation and 
the statistical noise when the number of simulated particles is 
insufficient. Further optimization of the simulation algorithm 
is needed. For example, in heterogeneous medium, especially 

at the junction of different density materials, the accuracy of 
the measurement simulation algorithm needs to be improved. 
To improve application of these algorithms to clinical prac‑
tice, it is necessary to further optimize the computational 
complexity and reduce the computational time.

6. The dosimetric effect analysis of metal implants in 
different RT modalities

Currently, RT techniques commonly used in clinical practice 
include single‑field techniques, three‑dimensional conformal 
RT (3D‑CRT), IMRT and VMAT. The dosimetric effects 
when applying different RT techniques need to be considered 
when treating patients with metallic implants.

Given the accelerating aging population and the rise in hip 
replacement surgeries, the incidence of patients with cancer 
and metallic hip implants (MHI) undergoing pelvic RT has 
increased over the past few decades. Su et al (62) compared 
RT plans for patients with prostate cancer and bilateral MHI 
using IMRT vs. 3D‑CRT. Their findings indicated that IMRT 
provided improved protection for the bladder and rectum 
across all treatment stages, particularly in high‑dose regions. 
Both RT strategies, 3D‑CRT and IMRT, provided adequate 
target coverage, and the dose‑volume histograms (DVHs) for 
the prostheses were similar. However, IMRT had a drawback of 
dose inhomogeneity within the Planning Target Volume. Van 
Der Est et al (63) proposed methods to further optimize IMRT, 
which effectively reduced the radiation dose to the bladder and 
rectum during pelvic irradiation, offering enhanced protection 
for patients with either unilateral or bilateral MHI.

VMAT is a technique that utilizes inverse planning without 
restricting beam angles. Singh et al (64) developed IMRT and 
VMAT plans for patients with MHI using various optimization 
methods. Their results revealed that, regardless of the opti‑
mization method, VMAT consistently outperformed IMRT, 
offering greater volumetric coverage, fewer hotspots, and less 
heterogeneity. Koutsouvelis et al (65) demonstrated that stan‑
dard 2‑co‑planar arc 360˚ VMAT treatment, when applying 
artifact reduction algorithms, could mitigate errors induced by 
prostheses during pelvic RT in patients with bilateral MHI. 
The dose errors due to the MHI were between 0.3 and 0.5%. 
This technique enabled effective treatment without avoiding 
the prostheses, particularly when the distance between the 
prosthesis and the target was >0.5 cm. Another study also 
revealed that VMAT not only resulted in lower rates of acute 
and chronic genitourinary and gastrointestinal adverse effects 
but also offered an improved therapeutic option overall (66). 
Soda  et  al  (67) directly compared the performances of 
3D‑CRT, IMRT and VMAT in treating patients with prostate 
cancer and bilateral MHI. Their findings revealed that VMAT 
delivered improved DVH and required shorter treatment times 
compared with the other two methods. Additionally, VMAT 
significantly improved dose distribution in the presence of 
MHI compared with 3D‑CRT, highlighting its advantage in 
managing the complexities introduced by metal prostheses 
during RT.

Furthermore, Rana et al (68) conducted a dosimetric study 
comparing uniform scanning proton therapy (USPT) and 
VMAT for patients with prostate cancer and MHI. Their find‑
ings indicated that USPT provided superior dose uniformity 
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and improved protection for the rectum and bladder. These 
results suggested that uniform scanning proton therapy offers 
potential dosimetric advantages in treating prostate cancer 
involving MHI.

Metal implants are also common in the oral cavity. 
Shimamoto et al (69) compared dose differences when using 
single‑field RT, 3D‑CRT and IMRT in the presence of dental 
metal implants (DMI). The aforementioned study employed 
various types of DMIs and revealed that single‑field RT 
resulted in a scatter dose increase of 3.7‑19.3% due to the 
DMI, while 3D‑CRT and IMRT demonstrated increases of 
1.4‑6.9 and 1.4‑4.3%, respectively. The results indicated that 
both 3D‑CRT and IMRT were superior to single‑field RT 
in mitigating the increase in scatter dose caused by DMI. 
Additionally, there was no significant difference in scatter 
doses between 3D‑CRT and IMRT for metals other than 
gold.

Based on these findings, oncologists should consider 
the type of metallic implant and the specific circumstances 
of their treatment center when selecting the appropriate RT 
technique for patients with metallic implants in the treatment 
area, aiming to minimize the impact of metallic implants on 
RT dosing.

7. The effects of metal implants on clinical outcomes of RT

Although different metal implants have different effects on RT 
dose, the methods of reduce metal artifacts and dose calcula‑
tion algorithms can decrease the impact to minimum, which 
result to a favorable clinical outcome.

The self‑expanding metallic stents (FCSEMS) have been 
widely used in patients with esophageal cancer and is often 
combined with RT. Post‑stenting external beam RT effectively 
prolongs duration of dysphagia relief and improves overall 
survival in inoperable esophageal cancer (70). A meta‑anal‑
ysis involving eight randomized controlled trials enrolling 
732 patients were included with three distinct comparisons: 
Stents combination therapy (RT or chemotherapy or both) vs. 
stents alone, stents alone vs. brachytherapy alone, and stents 
+ brachytherapy vs. brachytherapy alone. This revealed 
that combination therapy significantly improves the overall 
survival as well as demonstrated improvements in the qual‑
ity‑of‑life scores (71). Another study revealed that palliation 
of dysphagia or fistulas with FCSEMS in patients with incur‑
able esophageal cancer before or after RT was not associated 
with an increased risk of life‑threatening complications (72). 
The latest research revealed that RT treatment in patients 
with an esophageal stent increases the frequency of minor, 
however not life‑threatening adverse events (73). Stents have 
also been used in contact with biliary obstruction caused by 
tumors such as pancreatic cancer. Hayakawa et al (74) retro‑
spectively analyzed the impact on the safety of receiving 
CCRT after stent implantation in 30 cases (seven patients 
had SEMS while 23 had plastic stents). It was observed that 
patients with biliary stents had a higher CCRT completion 
rate, and CCRT after stenting was not associated with signifi‑
cant toxicity or side effects. Furthermore, SEMS may benefit 
patients more than plastic stents by keeping the bile duct 
more normal for an extended duration and reducing stent 
obstruction.

Similar clinical results also appear in pelvic RT with 
metal hip prostheses. Fischer and Hoskin (75) reported that 
no significant differences were observed in genitourinary 
and gastrointestinal toxicity incidence between patients 
with bilateral hip prostheses and a control group  (75). A 
multi‑institutional retrospective study demonstrated that their 
hip prostheses were not affecting the prognosis of patients with 
prostate cancer (76). TTE with an IMP was commonly used for 
breast reconstructions and was inserted subcutaneously at the 
time of mastectomy. Most patients who undergo mastectomy 
require postoperative RT. A study revealed that patients with 
TTE completed RT and did not experience any unacceptable 
adverse effects during RT. No manifestations of infection, 
tissue necrosis, or hematoma were observed during the RT (36).

8. Conclusion

RT is an essential modality in cancer treatment. With an 
aging population and advancements in surgical techniques, an 
increasing number of patients undergoing RT have metallic 
implants. These implants impact various aspects of RT, 
including target delineation, dose calculation and dose delivery, 
which in turn affect dosimetric outcomes, control rates and 
side effects. To address the influence of metallic implants and 
improve the efficacy of RT, researchers have made efforts in 
reducing metal artifacts, optimizing algorithms, and enhancing 
RT techniques. However, when metallic implants are present 
within the radiation field, oncologists must carefully choose 
appropriate dose calculation methods and RT strategies based 
on the type of implant to improve control of the tumor and 
minimize complications.
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