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Abstract 

Background:  Cell therapy provides hope for treatment of advanced liver failure. Proliferating human hepatocytes 
(ProliHHs) were derived from primary human hepatocytes (PHH) and as potential alternative for cell therapy in liver 
diseases. Due to the continuous decline of mature hepatic genes and increase of progenitor like genes during Pro-
liHHs expanding, it is challenge to monitor the critical changes of the whole process. Raman microspectroscopy is a 
noninvasive, label free analytical technique with high sensitivity capacity. In this study, we evaluated the potential and 
feasibility to identify ProliHHs from PHH with Raman spectroscopy.

Methods:  Raman spectra were collected at least 600 single spectrum for PHH and ProliHHs at different stages (Pas-
sage 1 to Passage 4). Linear discriminant analysis and a two-layer machine learning model were used to analyze the 
Raman spectroscopy data. Significant differences in Raman bands were validated by the associated conventional kits.

Results:  Linear discriminant analysis successfully classified ProliHHs at different stages and PHH. A two-layer machine 
learning model was established and the overall accuracy was at 84.6%. Significant differences in Raman bands have 
been found within different ProliHHs cell groups, especially changes at 1003 cm−1, 1206 cm−1 and 1440 cm−1. These 
changes were linked with reactive oxygen species, hydroxyproline and triglyceride levels in ProliHHs, and the hypoth-
esis were consistent with the corresponding assay results.

Conclusions:  In brief, Raman spectroscopy was successfully employed to identify different stages of ProliHHs during 
dedifferentiation process. The approach can simultaneously trace multiple changes of cellular components from 
somatic cells to progenitor cells.
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Background
Liver disease is widely concerned among global research-
ers with 2 million deaths every year [1]. A lot of liver dis-
eases may lead to liver cirrhosis and cancer, which may 
trigger liver failure [2]. Orthotopic liver transplantation is 
currently the final solution for liver failure. Nevertheless, 

the healthy liver doners are very limited. The emer-
gence of cell therapy presents new opportunities for 
multiple liver diseases. It was reported that hepatocytes 
transplantation could relieve or even cure liver diseases 
[3–5]. Because primary human hepatocytes (PHH) are 
unable to proliferate in  vitro, the availability of quali-
fied PHH in clinic become the bottleneck of hepatocytes 
transplantation.

During the past decades, multiple cell sources have 
been investigated for liver transplantation as alternative 
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of PHH. For example, fetal liver progenitors, adult 
human liver stem cells, hematopoietic stem cells, mes-
enchymal stem cells, human pluripotent stem cells, and 
induced pluripotent stem cells [6–13]. It was reported 
that rat fetal liver progenitor cells could differentiate 
into hepatocytes and reduce fibrotic activity after trans-
plantation. Its efficacy is better than rat primary hepat-
ocytes [14]. However, it is unfeasible to obtain enough 
human liver progenitor cells in clinic, not to mention 
conduct any quality control.

Zhang et al. found Wnt3a appeared to be essential to 
the initiation of the proliferation of PHH. The signifi-
cant upregulation of Wnt target genes lead to the pro-
liferation of PHH in vitro, and the proliferating human 
hepatocytes (ProliHHs) showed both hepatocyte and 
progenitor features and could be reverted to mature 
phenotypes and rescue liver failure mice with high 
efficiency [15]. ProliHHs mature hepatic markers will 
gradually decrease while progenitor associated mark-
ers will increase during the passage. The progenitor-
like cells could be restored to mature status (matured 
ProliHHs) in 3D culture process. Qiao et  al. indicated 
that the matured ProliHHs had comparable metabolic 
capacities and biliary excretion capacity [16]. Neverthe-
less, maturation of ProliHHs may not be necessary for 
cell therapy in liver diseases, liver progenitor cells could 
be a better option for cell transplantation.

Because the hepatocytes proliferating and dedifferen-
tiation to ProliHHs is a continuous process, a quick and 
non-invasive quality control method is critical to ensure 
the quality of harvested ProliHHs for liver transplanta-
tion. Conventional techniques, such as RT-qPCR and 
Western blotting need a lot of cells and are time-consum-
ing. Theoretically, flow cytometric could precisely meas-
ure the quantities of antigens in each cell, however, they 
must be labelled with specific antibodies and/or fluores-
cently labelled microbeads [17].

Raman microspectroscopy has unique advantages in 
the analysis of multiple biological substances [18, 19]. 
The inelastic scattered light is collected to reflect bio-
chemical molecules. It is nondestructive, noninvasive, 
label free, high sensitivity and resolution [20–22]. A sin-
gle spectrum could be obtained in a few seconds which 
include information about multiple substances such as 
nucleic acids, proteins, lipids, saccharides and so on. In 
addition, the subcellular structures can be visualized by 
Raman image as well. For example, the accumulation of 
lipid droplets was observed in mice hepatocytes during 
nonalcoholic fatty liver disease (NAFLD) development 
[23]. Furthermore, Raman spectroscopy allows to moni-
tor the various components at the single cell level which 
is suitable to provide cell heterogeneous information 
[24]. The analytical technique has been used to monitor 

cell metabolism, cell sorting, disease diagnosis and other 
related fields [25–31].

In this study, an established in-house protocol was 
employed to help PHH dedifferentiated into ProliHHs. 
PHH is defined as ProliHHs passage 0. ProliHHs at dif-
ferent stages (from passage 0 to passage 4, the later gen-
eration is closer to progenitor-like cells) were utilized to 
collect Raman spectra. The supervised linear discrimi-
nant analysis (LDA) was able to reduce the high dimen-
sionality of data and distinguish three clearly clusters. 
Furthermore, the significant difference bands were semi-
quantified and attributed to the corresponding bio-
molecules. The Raman bands related to phenylalanine, 
hydroxyproline and lipids were chosen as representative 
biomarkers to verify the reliability of Raman. reactive 
oxygen species (ROS), hydroxyproline and triglyceride 
levels were measured from PHH to ProliHHs (P1 and P4). 
The results of the two methods are consistent. Finally, the 
machine learning model was successfully established and 
used to rapidly identify cells stages with an overall accu-
racy of 84.6%. Importantly, it is the first time to indica-
tion that the changes of biochemical components during 
the dedifferentiation process from somatic cells (primary 
human hepatocytes) to progenitor like cells (ProliHHs) 
by Raman spectroscopy.

Methods
Cell culture
The primary human hepatocytes (Lot: 005 and Lot: 
201678901, Novabiosis) were used to induced ProliHHs 
in the study. Cryopreserved PHH were thawed and seeded 
into Matrigel (Corning)-coated 6-well culture plates at 
200,000 viable cells per well. After 6 h, cell medium was 
replaced by HM as previously published protocols. HM 
was mixed by 500 ml Advanced DMEM/F-12 (Life Tech-
nologies), 1 × N2 supplement 100 (Life Technologies), 1 × 
B27 Supplement 50 minus vitamin A (Life Technologies), 
1  mM  N-acetyl-cysteine (Sigma-Aldrich), 10  mM Nico-
tinamide (Solarbio), 2 ng/ml Recombinant humanFGF10 
(Peprotech), 50 ng/ml Recombinant human EGF (Pepro-
tech), 25  ng/ml Recombinant human HGF (Peprotech), 
10  nM Human [Leu15]-gastrin I (Sigma-Aldrich), 5uM 
A 83–01 (Tocris Bioscience), 10uM Rho kinase inhibi-
tor Y-27632 (Selleck), 50 ng/ml Wnt3a protein (stemim-
mune LLC), 1% Fetal bovine serum (Ausbian) [15]. The 
cell culture medium was changed every 3  days. After 
7 days, PHH were successfully induced ProliHHs by HM 
and 2% hypoxic culture. Cells were washed with PBS and 
trypsinized for passaging when they reached 90% conflu-
ence. ProliHHs were incubated in 37℃, hypoxia (5% CO2, 
2% O2) incubator. ProliHHs (P0, P1 and P4) morphol-
ogy were performed by phase contrast microscopy after 
cultured 1 day. HepG2 cells were obtained from ATCC. 
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293FT cells were provided by Professor Lijian, Hui (State 
Key Laboratory of Cell Biology, CAS Center for Excel-
lence in Molecular Cell Science, Shanghai Institute of 
Biochemistry and Cell Biology, Chinese Academy of Sci-
ences, University of Chinese Academy of Science). Hepa-
toblast cells were provided by Professor Xin Cheng (State 
Key Laboratory of Cell Biology, CAS Center for Excel-
lence in Molecular Cell Science, Institute of Biochemistry 
and Cell Biology, University of Chinese Academy of Sci-
ences, Chinese Academy of Sciences). Primary rat hepat-
ocytes were isolated from SD rats according to previous 
protocol [32].

RT‑qPCR analysis
ProliHHs (P0, P1 and P4) were maintained on Matrigel-
coated 12-well plates at 250,000 viable cells per well. 
After 24 h, samples were collected by TRIzol reagent (Life 
Technology) and the EZ-10 Spin column & Collection 
Tubes (Sangon Biotech). 500 ng RNA was reversely tran-
scribed to cDNA using Hifair® III 1st Strand cDNA Syn-
thesis SuperMix (Yeasen Biotech). cDNA was amplified 
by Hieff® qPCR SYBR Green Master Mix (Yeasen Bio-
tech) on the Applied Biosystems 7500 Fast real-time PCR 
System (Thermo Fisher Scientific). Primers sequences 
were listed in Table  S1. The relative mRNA levels were 
normalized by GAPDH. Each sample was performed in 
3 replicates. GraphPad Prism 8.0 software was used to 
analyze data. The results represent means ± SD. One-way 
ANOVA was used for statistical analysis, ns p ≥ 0.05, * 
p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

Reactive oxygen species measurements
ProliHHs (P0, P1 and P4) were seeded on Matrigel-
coated 96-well plates at 50,000 viable cells per well and 
incubated overnight. Cells were washed in serum-free 
medium and treated with 10  molµ /L DCFH-DA (Beyo-
time Biotechnology) for 20 min at 37℃. Then cells were 
washed 3 times in serum-free medium and measured 
fluorescence intensity at 488 nm excitation and 525 nm 
emission by the automatic microplate reader (Biotek).

Triglyceride measurements
ProliHHs (P0, P1 and P4) were cultured on Matrigel-
coated 96-well plates at 50,000 viable cells per well. Cells 
were washed with PBS and removed supernatant. Then, 
10  μl RIPA (Beyotime Biotechnology) was added into 
cells per well for 10  min. Lysate was determined pro-
tein content by Take3 Micrometer plate (BioTek) and 
TG levels by Triglyceride assay kit (Nanjing Jiancheng 
Bioengineering Institute) according to manufacturer’s 
instructions.

Hydroxyproline measurements
ProliHHs (P0, P1 and P4) were maintained on Matrigel-
coated 12-well plates at 1000,000 viable cells per well. 
After 24  h, the supernatant was collected and the 
hydroxyproline concentration was measured by Hydroxy-
proline assay kit (Nanjing Jiancheng Bioengineering 
Institute) according to manufacturer’s instructions.

Raman spectroscopy measurements
ProliHHs (P0, P1 and P4) were seeded on 8-Well Cham-
ber Raman Scattering Microslide (D-BAND) as cell den-
sity 100,000 cells/ml for 24  h. Cells were washed with 
PBS, fixed with 4% paraformaldehyde (Beyotime Biotech-
nology) for 15  min, washed 3 times with sterile water. 
Then, the cells on Raman Scattering Microslide were air 
dried. Raman measurements were performed with a con-
focal Raman imaging system (alpha 300 R, WITec). The 
system was included in a 532  nm laser, 1800 grooves/
mm grating (BLZ = 500 nm) and a CCD camera. Raman 
spectra (from 300 to 1800 cm−1) were collected by a 100 
× objective (N.A. = 0.9) with laser power 9 mW, integra-
tion time 10  s and accumulation number 1. Calibration 
was performed using a silicon plate with its unique peak 
located at 520.7  cm−1. Raman spectra for each cell were 
randomly acquired within the cytoplasm (n = 5) and on 
the periphery (n = 5), respectively, based on the bright-
field photo. A representative image with different focus-
ing locations of laser was shown in Additional file  1: 
Figure S1. For each cell type, Raman spectra (n = 600 in 
total) were acquired from 20 single cells per batch and 
3 replicate batches. All spectra were normalized with 
subtraction of cosmic ray, baseline correction and area 
normalization.

Raman data analysis
All Raman data analysis were done under an R 3.6.3 
environment with inhouse scripts. Linear discriminant 
analysis (LDA) and Principal component analysis (PCA)
were used to reduce data dimensions and visualize clas-
sification. The Raman bands area were integrated to 
semiquantitative associated with biomolecules. The 
results represent median. The Student’s t-test was used 
for statistical analysis, ns p ≥ 0.05, * p < 0.05, ** p < 0.01, 
*** p < 0.001, **** p < 0.0001. Machine learning models 
were applied to build databases to rapidly identify cells. 
75% data was used as a training set to establish model, 
25% as a test set to evaluate model. It was used to build 
model by tenfold cross validation with five repetitions. 
Primarily, single classifiers were measured by k-nearest 
neighbor, linear discriminant analysis, partial  least-
squares  regression, linear support vector machine, 
radial basis function kernel support vector machine and 
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random forest. In order to improve the accuracy of pre-
diction, total of single classifiers were stacked together 
forming a two-layer model by GBM algorithm. The char-
acteristics of the second layer is the single model results 
(KNN, LDA, PLS, Linear-SVM, RBF-SVM and RF), 
according to Hsu et al. protocol [33].

Results
Generation and characterization of ProliHHs
Previous researches showed that ProliHHs were bi-
phenotypical cells which expressed genes of mature 
hepatocytes and liver progenitors [15]. To some extent, 
ProliHHs could replace primary human hepatocytes for 
drug safety evaluation and cell therapy [16]. However, 
there were a lot of gene expression and function differ-
ences among PHH and different passages of ProliHHs. 
Thus, a quick and simple approach to identify cells stages 
is urgently needed. Here, PHH were induced to ProliHHs 
by HM medium and hypoxia cultured for 7d. PHH could 
expand more than 250 folds to ProliHHs at P4. PHH and 
P1were polygonal, P4 partly were long strips. (Fig.  1a). 
SOX9, as a biomarker for liver progenitor cells, mRNA 
expression was gradually increased from PHH to Proli-
HHs (P1 and P4). The nuclear receptors FXR and CAR, 
mature hepatic genes, expressed in PHH, P1 and P4. 
Interestingly, the FXR level of P4 was higher than PHH. 
The efflux transporter MRP2 mRNA level was downreg-
ulated both P1 and P4 relative to PHH. Although Proli-
HHs expressions of Phase I drug metabolizing enzymes, 
including CYP3A4 and CYP2B6, were lower than PHH. 
The CYP2B6 gene of P4 showed nearly 1/3 recovery com-
pared to PHH. Phase II drug metabolizing enzymes, such 
as UGT1A1 and UGT2B7, were also expression of P1 
and P4. In particular, the UGT1A1 level was significantly 
higher than PHH (Fig. 1b). In brief, from gene expression 
perspective, ProliHHs only maintained part of drug met-
abolic and transport genes, the cells expressed more and 
more liver progenitor biomarkers from P1 to P4.

Raman spectroscopy and classification analysis
Although the mRNA and protein levels could charac-
terize the differences between PHH and different pas-
sages of ProliHHs, those methods cost much time while 
get limited information. Therefore, we evaluated the 
potential of collected Raman spectroscopy to moni-
tor cell to cell heterogeneity. PHH, ProliHHs P1 and P4 
were respectively examined at least 600 single spectrum 
(Table  1). The fingerprint region, including more than 
90% of the cellular peaks, was collected to identify cell 
stages [34]. The averaged spectra of each type cell were 
showed in Fig.  2a. Principal component analysis (Addi-
tional file  1: Fig. S1) and linear discriminant analysis 
(Fig. 2b) were used to reduce dimension and highlight the 

spectral signatures on different cell stages. One Raman 
sample was represented as a point, at least 600 samples 
to reflect each type cells in different figures. Obviously, 
LDA was able to discriminate cell populations better 
than PCA. The significant wavenumbers in LD1 and LD2 
contributed to differences among three groups were pro-
vided in (Additional file 1: Fig. S2). This suggests the abil-
ity of Raman spectroscopy to classify cells.

Machine learning models
In addition to extract significant wavenumbers, it is suit-
able to establish Raman dataset by machine learning 
models. The entire Raman spectral (1850) was randomly 
divided into two parts, 75% to establish the training set, 
25% to verify the model. First, the single model KNN, 
LDA, PLS, Linear-SVM, RBF-SVM and RF were respec-
tively constructed to classify by tenfold cross-validation 
with five repetitions and the corresponding parameters 
were showed in Additional file  2: Table  S2. The overall 
accuracy was 83.8% in Linear-SVM model. Then, the fit-
ted results of above six models were stacked to form a 
two-layer machine learning model, which improved the 
prediction accuracy to 84.6% (Table  2). The sensitivities 
were 75.6%, 88.7%, 89.7% and specificity were 90.2%, 
95.5%, 81.2% for PHH, P1 and P4.

Potential biomarkers of cell identification
There were numbers of differences in Raman bands 
which may reflect cell biochemical components changes 
from PHH to different stages of ProliHHs (P1 and P4) 
(Fig.  3). The results suggested significant differences 
among spectral bands of cell clusters located at 480 cm−1 
(glycogen), 831  cm−1 (tyrosine), 840–860  cm−1 (poly-
saccharide), 1003  cm−1 (phenylalanine), 1080  cm−1 
(amide II, typical phospholipids), 1172  cm−1 (C–H in 
plane bending mode of tyrosine), 1206  cm−1 (hydroxy-
proline),1265  cm−1 ( α-helix, collagen, tryptophan), 
1300  cm−1 (lipids), 1337  cm−1 (Amide III), 1440  cm−1 
(CH2 and CH3 formation vibrations of lipids), 1658 cm−1 
(Amide I of proteins), 1744  cm−1 (carbonyl feature 
of lipid spectra) respectively. To further quantify the 
changes in 3 groups, relative Raman bands area were inte-
grated (Fig. 4a–m). The peak at 480 cm−1 (p ≤ 0.001) and 
831 cm−1 (p ≤ 0.001) were significant difference between 
PHH and ProliHHs (P1 and P4). The Raman bands area 
at 840–860  cm−1 (p ≤ 0.0001), 1080  cm−1 (p ≤ 0.0001), 
1265 cm−1 (p ≤ 0.001), 1300 cm−1 (p ≤ 0.0001), 1440 cm−1 
(p ≤ 0.0001), 1658  cm−1 (p ≤ 0.0001) and 1744  cm−1(p ≤ 
0.0001) were significantly decreased following ProliHHs 
derived and passaged. In contrast, the Raman bands 
area at 1003  cm−1 (p ≤ 0.0001), 1206  cm−1 (p ≤ 0.0001), 
1337  cm−1 (p ≤ 0.0001) were significantly increased. 
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Although the band at 1172 cm−1 was no change between 
PHH and P1, P4 was higher than the others.

The Raman bands changes at 1003  cm−1, 1206  cm−1 
and 1440 cm−1 were identified with reactive oxygen spe-
cies, hydroxyproline and triglyceride levels by the corre-
sponding kit. The ROS levels significant down regulated 
from PHH to ProliHHs (P1 and P4), while there was no 

difference between P1 and P4 (Fig. 5a). TG concentration 
gradually decreased from PHH to ProliHHs (Fig.  5b). 
Hydroxyproline concentration increased during the dedi-
fferentiation process, however there was no statistical 
difference (Fig. 5c). These findings indicated the potential 
biomarkers for cell quality control which is essential in 
cell therapy.

Fig. 1  ProliHHs were derived from PHH (Lot:005) and identified by mRNA. a Microscopic imaging of PHH, ProliHHs P1 and P4 (magnification, × 10). 
b The mRNA expressions of biomarkers relative to hepatocytes and progenitor cells in PHH, ProliHHs P1 and P4. The results represent means ± SD, 
ns p ≥ 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. (PHH: primary human hepatocytes, ProliHHs: proliferating human hepatocytes, P1: 
passage 1, P4: passage 4)
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Discussion
Previous researches have shown that PHH could gradu-
ally dedifferentiated from hepatocyte like to progenitor 
like state during the ProliHHs proliferating process [15, 
16]. A non-invasive and comprehensive quality control 
method is obligated to link ProliHHs functions with the 
continuous process, which is critical to apply cell trans-
plantation in clinic [35, 36]. Raman microspectroscopy 
has superiority to obtain multi- information in a label-
free and rapid analysis for different kind of alive cells. 

Table 1  Numbers of Raman spectra acquired from PHH, 
ProliHHs P1 and P4

Group Number 
of 
spectra

PHH 620

ProliHHs P1 624

ProliHHs P4 606

Fig. 2  Raman spectroscopy and classification analysis for PHH (Lot:005), ProliHHs P1 and P4. a The averaged spectra (n = 1850) collected by 
PHH (n = 620), P1 (n = 624) and P4 (n = 606) on fingerprint region. b Linear discriminant analysis clearly distinguished three cell groups. (The red, 
blue, and green colors represent PHH, ProliHHs P1 and P4 cells, respectively. PHH: primary human hepatocytes, ProliHHs: proliferating human 
hepatocytes, P1: passage 1, P4: passage 4)



Page 7 of 12Ma et al. Stem Cell Res Ther          (2021) 12:555 	

Hence, we investigated the feasibility of Raman spectros-
copy to capture the cell status in the production of the 
hepatocytes-derived progenitor like cells at single cell 
level.

ProliHHs were derived from PHH and passaged four 
times. The mRNA levels suggested that the mature 

hepatic function gradually down regulated and progeni-
tor like function up regulated, which was consistent with 
previous reports [15, 16]. At least 600 Raman spectral 
were collected for each passage stage. LDA clearly dis-
tinguished PHH, ProliHHs P1 and P4. P9 of ProliHHs 
were also collected and conducted similar analysis (Addi-
tional file 1: Fig. S3). It was found that the Raman spec-
tra of ProliHHs P4 and P9 were close but distinguishable, 
which was consistent with the fact that ProliHHs was 
more like progenitor cells after P4 [15]. Therefore, P0 
(PHH) to P4 of ProliHHs were used as a representative 
for the following research.

All Raman spectra were sufficiently used to set up a 
database by machine learning model. A two-layer model 
was successfully stacked by KNN, LDA, PLS, SVM-Lin-
ear, SVM-RBF and RF, the overall accuracy was 84.6%. 
The results suggested it was feasible to identify Proli-
HHs status by comparing their Raman bands with data-
base in a few seconds. It was reported that the Raman 
spectra collected from cell nuclei had the best signal 
to noise ratio [37]. Therefore, the samples collected 

Table 2  Machine learning by stacked (KNN, LDA, PLS, Linear-
SVM, RBF-SVM, RF) model to identify cells. Overall accuracy at 
84.6%

Reference

P1 P4 PHH

Model prediction

 ProliHHs P1 118 14 16

 ProliHHs P4 14 134 0

 PHH 24 3 139

 Sensitivity (%) 75.6 88.7 89.7

 Specificity (%) 90.2 95.5 81.2

Fig. 3  The biochemical molecules represented by the specific Raman bands in the average spectral (Lot:005)

(See figure on next page.)
Fig. 4  The peak area were semi-quantitative to compare differences of the specific Raman bands a 480 cm−1 (glycogen), b 831 cm−1 (tyrosine), 
c 840–860 cm−1(polysaccharide structure), d 1003 cm−1 (phenylalanine), e 1080 cm−1 (amide II, typical phospholipid), f 1172 cm−1 (C–H in-plane 
bending mode of tyrosine), g 1206 cm−1 (hydroxyproline, tyrosine), h 1265 cm−1 (α-helix, collagen, tryptophan), i 1300 cm−1 (lipids), j 1337 cm−1 
(amide III), k 1440 cm−1 (lipids), l 1658 cm−1 (amide I), m 1744 cm−1 (carbonyl feature of lipid spectra) in PHH (Lot:005), ProliHHs P1 and P4. The 
results represent median, ns p ≥ 0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 (PHH: primary human hepatocytes, ProliHHs: proliferating 
human hepatocytes, P1: passage 1, P4: passage 4)
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Fig. 4  (See legend on previous page.)
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in cellular center and peripheral were separately built 
with machine learning models. The results showed 
that the overall accuracy was similar (Additional file 2: 
Table  S3). It confirmed the robustness of our estab-
lished Raman machine learning model, and the location 
of collection would not affect the prediction results. 
There is always a balance between robustness and accu-
racy. When accuracy increases, robustness decreases 
accordingly [38]. Our model achieved better robust-
ness so that it can tolerate more variability between 
cell batches. The whole study was conducted twice by 
ProliHHs from similar donor PHH (Lot: 005, Novabio-
sis). Another similar study was conducted with differ-
ent donor PHH (Lot: 201678901, Novabiosis). In all the 
three independent studies, PHH were able to induce 
ProliHHs successfully, and the corresponding Raman 
spectra were collected and analyzed. The machine 
learning models were able to identify different stages 
cells with high accuracy. The result was consistent and 
attached at Additional files 3 and 4, which confirmed 
the robustness of the model. And other types cells such 
as 293FT (human embryonic kidneys), HepG2 (human 
liver hepatocellular carcinoma) and PRH (primary 
rat hepatocytes) were collected Raman spectroscopy 
(Additional file 3: Figure S8). The average Raman spec-
tra were significantly different among these cells.

Hepatocytes have various functions such as protein 
synthesis, biotransformation, energy storage and detoxi-
fication. However, its cellular components may change 
with the cell plasticity during cell dedifferentiation from 
PHH to ProliHHs [39]. It is not clear if Raman spectra 
could capture these changes. In this study, a lot of signifi-
cant changes have been identified within Raman bands.

For example, we have discovered that the mitochon-
drial associated Raman band at 1003  cm−1 (phenylala-
nine) increased during PHH dedifferentiation. The result 
suggested that the mitochondria decreased during cell 
dedifferentiation. In order to verify this, reactive oxygen 
levels were measured and it was found ROS levels in Pro-
liHHs (P1 and P4) were much lower than PHH (Fig. 5a), 
which implied the mitochondrial activity was down regu-
lated after PHH was converted to ProliHHs, progenitor-
like cells. Actually, it was reported that in order to obtain 
proliferation, pluripotency and plasticity functions as 
progenitor-like cells, the reprogramming somatic cells 
became immature and the amount of mitochondrial 
DNA was reduced [40–42], which was consistent with 
our results.

The significant decrease of the Raman band related 
to lipids were identified at 1080  cm−1, 1300  cm−1, 
1440 cm−1, 1744 cm−1 respectively. In order to verify the 
reliability of aforementioned results, triglycerides (TG) 
concentrations were determined, which was primary 
lipids storage form in hepatocyte like cells. The result 
revealed that the TG levels in ProliHHs (P1 and P4) were 
much lower than PHH (Fig.  5b), which was consistent 
with Raman measurement. Fu et  al. also described that 
the lipids genes were down regulated when PHH was 
reprogrammed to liver progenitor like cells [43]. There-
fore, the Raman lipids bands may be used as potential 
hallmarks of hepatocyte-like cell status, or even could be 
utilized to diagnose non-alcoholic fatty liver disease [44, 
45].

Another interesting finding is, with the progress of 
dedifferentiation to later passages of ProliHHs, the 
hydroxyproline content significantly increased in Raman 

Fig. 5  The potential biomarkers to identify PHH (Lot:005), P1 and P4. a Reactive oxygen species (ROS) levels decreased b triglyceride (TG) 
concentration decreased and c hydroxyproline concentration increased from PHH to ProliHHs (P1 and P4). The results represent means ± SD, ns p ≥ 
0.05, * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001 (PHH: primary human hepatocytes, ProliHHs: proliferating human hepatocytes, P1: passage 1, 
P4: passage 4)
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spectrum. Our current data revealed the increased 
hydroxyproline trend in P4 of ProliHHs (Fig.  5c). The 
up-regulated hydroxyproline may imply that the later 
passaged ProliHHs activated epithelial-mesenchymal 
transition (EMT) related pathways. Upon liver injury, 
mature hepatocytes can be reprogrammed to liver pro-
genitor-like cells (LPLCs) in  vivo. Notably, these LPLCs 
show significant induction of mesenchymal markers as 
well as progenitor markers, suggesting the activation of 
EMT pathway during the conversion [39, 46]. A recent 
single-cell transcriptomics analysis also reveals the emer-
gence of liver progenitors with mesenchymal features 
during liver development [47]. In line with these in vivo 
findings, it has been demonstrated that ProliHHs at 
late passages showed a tendency to express progenitor-
like profiles and mesenchymal markers [15]. Therefore, 
the increased hydroxyproline can possibly be applied 
as a marker for the conversion of ProliHH to liver pro-
genitors. However, this hypothesis required further 
verification.

Conclusion
In short, Raman spectra provided us a lot of information 
about the changes of biochemical molecules in the pro-
cess of somatic cells dedifferentiation. To our knowledge, 
this work is the first report that Raman spectroscopy 
could successfully identify ProliHHs from P0 to P4. A 
machine learning model was established at overall accu-
racy of 84.6%, which made it feasible to conduct real-time 
ProliHHs quality control for cell transplantation. Raman 
spectra could capture the change of ROS, hydroxypro-
line and lipids in hepatocyte-like cells, their changes were 
consistent with their physiological functions at different 
cellular status, respectively. Therefore, it is feasible to 
apply Raman spectra for the identification of progenitor-
like cells from somatic cells and obtain multiple cellular 
components information simultaneously [48].
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(n = 1829) collected by PHH (n = 619), P1 (n = 595) and P4 (n = 615) on 
fingerprint region. (B) Linear discriminant analysis clearly distinguished 
three cell groups. (The red, blue, and green colors represent PHH, ProliHHs 
P1 and P4 cells, respectively. PHH: primary human hepatocytes, ProliHHs: 
proliferating human hepatocytes, P1: passage 1, P4: passage 4). Figure 
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(A) 480 cm−1 (glycogen), (B) 831 cm−1 (tyrosine), (C) 840-860 cm−1

(polysaccharide structure), (D) 1003 cm−1(phenylalanine), (E) 1080 
cm

−1(amide II, typical phospholipid), (F) 1172 cm−1(C-H in-plane 
bending mode of tyrosine), (G) 1206 cm−1(hydroxyproline, tyrosine), 
(H) 1265 cm−1(α-helix, collagen, tryptophan), (I) 1300 cm−1(lipids), (J) 
1337 cm−1(amide III), (K) 1440 cm−1(lipids), (L) 1658 cm−1(amide I), 
(M) 1744 cm−1(carbonyl feature of lipid spectra) in PHH (Lot:201678901), 
ProliHHs P1 and P4. The results represent median, ns p ≥ 0.05, * p < 0.05, ** 
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hepatoblast (n = 207) on fingerprint region. (B) Linear discriminant analysis 
clearly distinguished three cell groups. (The red, blue, green and purple 
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1003 cm−1 (phenylalanine), (E) 1080 cm−1 (amide II, typical phospho-
lipid), (F) 1172 cm−1 (C–H in-plane bending mode of tyrosine), (G) 1206 
cm

−1 (hydroxyproline, tyrosine), (H) 1265 cm−1 (α-helix, collagen, 
tryptophan), (I) 1300 cm−1 (lipids), (J) 1337 cm−1 (amide III), (K) 1440 
cm

−1 (lipids), (L) 1658 cm−1 (amide I), (M) 1744 cm−1 (carbonyl fea-
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cells. Overall accuracy at 92.08% (Lot: 005).
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