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Abstract: In the United States, electronic health records (EHR) are increasingly being incorporated
into healthcare organizations to document patient health and services rendered. EHRs serve as a vast
repository of demographic, diagnostic, procedural, therapeutic, and laboratory test data generated
during the routine provision of health care. The appeal of using EHR data for epidemiologic research
is clear: EHRs generate large datasets on real-world patient populations in an easily retrievable
form permitting the cost-efficient execution of epidemiologic studies on a wide array of topics.
Constructing epidemiologic cohorts from EHR data involves as a defining feature the development of
data machinery, which transforms raw EHR data into an epidemiologic dataset from which appropriate
inference can be drawn. Though data machinery includes many features, the current report focuses
on three aspects of machinery development of high salience to EHR-based epidemiology: (1) selecting
study participants; (2) defining “baseline” and assembly of baseline characteristics; and (3) follow-up
for future outcomes. For each, the defining features and unique challenges with respect to EHR-based
epidemiology are discussed. An ongoing example illustrates key points. EHR-based epidemiology
will become more prominent as EHR data sources continue to proliferate. Epidemiologists must
continue to improve the methods of EHR-based epidemiology given the relevance of EHRs in today’s
healthcare ecosystem.
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1. Introduction

In the United States (US), electronic health records (EHR) are increasingly being
incorporated into healthcare organizations in response to federal legislation financially
incentivizing such organizations to implement EHR systems in a meaningful way or face
penalties for non-adoption [1–4]. As of 2015, an estimated 85% of healthcare organiza-
tions in the US reported implementing an EHR system, and this percentage is expected to
approach 100% [5]. Though the primary motivation for adopting EHRs is improved docu-
mentation of patient health and healthcare service provision with its expected benefits for
healthcare quality, medical error reduction, proper reimbursement, and litigation protection,
several secondary uses of EHR data show promise, including for the assessment of quality-
improvement initiatives, tracking population health, and epidemiologic research [6–11].
EHRs serve as a vast repository of demographic, diagnostic, procedural, therapeutic, and
laboratory test data generated during the routine provision of healthcare [1]. The appeal
of using EHR data for epidemiology is clear: EHRs passively generate large datasets on
real-world patient populations in easily retrievable form, allowing the cost-efficient and
timely execution of epidemiologic studies on a broad array of topics [10,12–14]. Despite
these conveniences, EHR-based epidemiology also entails a unique set of challenges that
must be understood and resolved prior to its widespread application.

1.1. Electronic Health Record Data as a Historical Cohort

The most logical study design accommodated by EHR data is the historical (retro-
spective) cohort, though many of the issues discussed are relevant to other study types,
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including prospective studies [15–18]. EHR data are generated through the routine in-
teractions of patients with healthcare organizations. When patients repeatedly patronize
a particular healthcare organization, a longitudinal data stream develops whose value
increases as time and data accrue [19,20]. Constructing epidemiologic cohorts from EHR
data involves as a defining feature the development of data machinery, which transforms
this raw EHR data stream into an epidemiologic dataset from which appropriate infer-
ence can be drawn. The remainder of this document focuses on three key aspects of
data machinery development of high salience to constructing cohorts in EHR-based epi-
demiology: (1) selection of research participants; (2) defining “baseline” and assembly
of baseline characteristics; and (3) follow-up for future outcomes. The defining features
and unique challenges related to each are described. Furthermore, the unique features of
EHR-based historical cohort studies are contrasted throughout with analogous features
from prospective cohort studies (Table 1).

Table 1. Comparison of study design attributes in prospective vs. retrospective studies using electronic health records.

Prospective Study Retrospective Study with EHR

Selecting Research Participants

• Inclusion and exclusion criteria
prospectively applied

• Volunteers willing to undergo study
procedures and be actively followed

• Inclusion and exclusion criteria applied
post hoc

• Patrons of a healthcare organization
• Preferably exceed some minimal

information threshold

Baseline

• Often date of some salient health
event such as diagnosis of a
condition, procedure performed, or
date informed consent provided
among generally healthy volunteers

• Any time on or between first and last
EHR-documented encounters

• Preferably on the date of an actual
encounter

• Preferably not first encounter

Assembling Baseline
Characteristics

• At baseline, measured by
questionnaires, blood tests, imaging,
and other measurement instruments
in a standardized manner among all
study participants

• Only considers data elements collected
during usual care

• Uses encounters occurring on or before the
specified baseline

• Qualitative characteristics determined by
rules for the 99%

Follow-up for Future Outcomes

• Active, standardized follow-up at
regular intervals in all study
participants

• Adjudication of claimed outcomes

• Passive follow-up
• Only study outcomes documented at study

institution are identified
• Rules for the 99% apply

1.2. Ongoing Example: Diabetes and Heart Failure Hospitalization

Here, an ongoing example is introduced that will be referenced throughout, providing
practical context to key points [21]. The historical cohort study includes 79,354 patients
with type 2 diabetes mellitus (T2DM) followed longitudinally through a single healthcare
organization’s EHR for a study endpoint of heart failure hospitalization (HFH). The primary
goal of the study was to build a predictive model for HFH from a collection of candidate
predictors derived from EHR data. The baseline date was an office visit with a known
T2DM diagnosis. Baseline dates were assigned at least two years after the first EHR-
documented encounter. Of note, T2DM could be either pre-existing or newly diagnosed at
baseline. HFH was defined as a hospital admission with heart failure documented as the
primary diagnosis.

2. Important Data Machinery Components for Historical Cohort Studies with EHRs
2.1. Selecting Research Participants

In a prospective cohort study, research participants typically consist of recruited
volunteers meeting prespecified eligibility criteria willing to undergo the array of study
procedures and agreeing to active follow-up at regular intervals, sometimes several years
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after enrollment. In an EHR-based retrospective study, eligible research participants
are necessarily limited to individuals seeking services through healthcare organizations
(i.e., patients). Importantly, some estimates suggest up to 50% of the US population has no
contact with the healthcare industry in a given year [22]. This reality may have implications
for generalizing findings from EHR-based epidemiologic studies to the broader target
population [23]. Then, beyond inclusion criteria related to study-specific conditions, the
predominant issue becomes selecting the appropriate research subset from a potentially
vast EHR patient database.

Individuals interact with healthcare organizations in different ways, and these dif-
ferences invariably impact the availability and quality of information drawn from an
EHR [6]. Furthermore, in the US, patients often seek care through multiple healthcare
organizations, and data linkage between organizations is often not possible, which also
hinders information quality [1,24–28]. Information quality in the context of EHR-based
studies has two overlapping yet distinct attributes: completeness and correctness. Data
(in)correctness—e.g., an erroneously documented diagnostic code, quantitative errors—is
a legitimate concern in EHR-based research, but unfortunately, is often unidentifiable
and largely uncorrectable by researchers in a retrospective context. Data completeness,
on the other hand, is under greater researcher control in that criteria can be applied to
enhance completeness in the research subjects ultimately chosen. Unfortunately, data
completeness—that is, the capacity of EHR data to fully characterize an individual’s med-
ical state—is a nebulous construct when appraising retrospective EHR data where true
“completeness” is ill-defined [25,29]. However, completeness clearly has a positive associa-
tion with the frequency of interaction with a healthcare organization (i.e., more interaction
implies greater completeness) and types of interaction (e.g., primary care visits typically
generate more information than specialty visits). Thus, there is a rationale for applying
some sort of “information completeness” metric when selecting research participants from
an EHR database—and only including patients exceeding a given threshold—but such
criteria can be difficult to define in an appropriately objective manner and are largely
untestable [1,7,29]. Furthermore, including research participants based on (suspected) data
completeness will inevitably over-select less-healthy patients given their greater need for
healthcare services [29–33]. Indeed, a significant ongoing analytical challenge in EHR-based
epidemiology is accounting for such differential data completeness [34].

Toward achieving the data-completeness objective, one logical starting point for
setting study inclusion criteria when warranted by a study’s objectives includes receipt
of primary care services through the healthcare organization [7]. The nature of primary
care visits typically allows a greater proportion of a patient’s medical information to
be captured, and primary care often serves as a conduit to more specialized services,
which would often be funneled through the same healthcare organization when needed
(provided the institution offers such services). Thoughtful consideration of study inclusion
criteria is important as only a fraction of patients in an EHR database may have acceptable
information quality and tradeoffs must be made between information quality and sample
size in that permitting more patients into a study is only accomplished at the expense
of reduced information quality among the additional patients (Figure 1). In the T2DM-
HFH example, the base population from which T2DM patients were drawn consisted of
approximately 500,000 patients who received primary care services through the study
institution for at least two years since the first EHR-documented encounter [21]. This
research subset represented just one-third of all patients in the entire EHR database.
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Figure 1. The information quality spectrum of electronic health record data. Patients within an electronic health record
database have highly variable information quality that is dependent on multiple factors such as frequency and types of
interactions with healthcare organizations. Moving down the information quality spectrum allows more patients to be
included in epidemiologic studies, but at the expense of information quality.

2.2. Defining “Baseline” and Assembly of Baseline Characteristics

In prospective cohort studies, a clear study start date is predefined; for instance, the
date of diagnosis of a certain condition, the date a specific procedure was performed, or, in
a study enrolling generally healthy volunteers, the date informed consent was obtained.
This start date is typically referred to as the “baseline date” (or simply “baseline”) and
serves as the starting point for the follow-up of study outcomes. A typical prospective
study measures an extensive collection of baseline characteristics through various means
such as questionnaires, blood draws, and perhaps novel measurement devices such as
imaging. Notably, prospective studies by design measure baseline characteristics in a
standardized, protocol-specified manner among all study participants.

In an EHR-based retrospective cohort study, each patient’s electronically documented
journey through a healthcare organization can be depicted as a timeline, bookended by the
first and last EHR-documented encounters with multiple, variably spaced, and qualitatively
different types of encounters between (Figure 2). Here, an encounter is broadly defined
as any professional contact between a patient and healthcare organization, including
primary care, specialty care, laboratory testing, emergency department visits, hospital
admissions, and others [1]. Even less-direct patient–provider contact such as telephone
calls and email can be considered encounters when they provide useful information for
a research study. Notably, a healthcare organization may offer only limited types of
encounters (e.g., a standalone hospital), which may be restrictive for research. The baseline
date for any EHR-based retrospective study can fall on or anywhere between the first
and last encounters, but certain considerations prevail. First, baseline dates should be
assigned in proximity to the first EHR-documented encounter (when sensible) so that post-
baseline follow-up time is maximized. However, any single encounter seldom provides
sufficient detail for adequate baseline characteristic assessment, making the first encounter
a generally unappealing baseline date [4]. Allowing more time and encounters to accrue
prior to the baseline date assignment permits a more comprehensive baseline assessment
but at the expense of reduced sample size and follow-up duration [35–39]. Indeed, it
is common for retrospective studies using electronic data sources to require at least six
months but typically two years or more of pre-baseline encounter information [35–39]. By
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the nature of the data-generating process, sicker patients with several existing medical
conditions typically need more encounters to provide a complete medical picture, while
heathier patients require fewer [29].
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2.2.1. EHR Data: What Is Available

The data elements eligible for consideration in any EHR-based epidemiologic study
are those documented during the usual course of healthcare service provision and can be
generally grouped into demographics, vital signs, diagnoses, procedures, medications, and
laboratory tests [1,2,40]. The quantitative (how much) and qualitative (how good) attributes
of EHR data undoubtedly rely on default measurement processes implemented within the
clinical enterprise and documentation tactics of individual healthcare providers [6,18,34].
Physicians spend an estimated 20% of their professional time documenting clinical encoun-
ters, and though incentives exist to be exhaustive in documentation (to maximize reim-
bursement) while not over-documenting (to avoid fraud), it is impossible to retrospectively
determine how well these principles were adhered to in practice [3–5]. Misclassification
of categorical characteristics, the measurement error of continuous characteristics, and
missing data are concerns in every epidemiologic study—concerns that are magnified in
EHR-based research by the nature of the data-generating process [25,32,41,42]. Unfortu-
nately, from a researcher’s perspective, there are no simple solutions to correcting these
data limitations at their source, but actions can be taken to minimize their impact.

2.2.2. Opportunity for Information

When determining baseline characteristics in an EHR-based retrospective study,
the baseline date serves as the reference point by which study variables are assigned
a present/absent status for dichotomous variables or a numerical value for continuous
variables. Baseline information is assembled from encounters occurring on or prior to the
baseline date, and when appropriate, from encounters occurring shortly following baseline
(e.g., 90 days). In sharp contrast to the prospective study environment, an EHR-based retro-
spective study simply cannot standardize the process of organizing baseline characteristics
in any completely acceptable way. In fact, when considering all possible permutations of
the quantitative (number of encounters) and qualitative (e.g., primary care, ED visits) ways
patients could interact with healthcare organizations, it is more likely that no two patients
will have had their baseline characteristics obtained in the same way. Here, a new construct
is introduced—Opportunity for Information (OFI)—to describe the collection of encounters
that could provide usable baseline information (Table 2). Re-expressing the initially stated
concern in terms of the OFI, it is likely that the OFI has substantial inter-patient variability
in any EHR-based research study. OFI can be quantified in terms of time, or the number of
encounters from the first EHR-documented encounter to the baseline encounter. An OFI
measure based on certain encounter types (e.g., the number of primary care visits) may also
be considered. In the T2DM-HFH example, the baseline date was assigned according to
the first office visit after two years had elapsed since the first EHR-documented encounter
and a primary care visit had occurred. Using this baseline definition, the mean (SD) OFI
time was 4.6 (3.3) years, with a range of 2.0 to 14.8 years. This wide variation in OFI
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time partially reflects the inclusion of both pre-existing (at baseline) and newly diagnosed
T2DM in the study; as expected, pre-existing T2DM had a much shorter mean OFI time
compared to new diagnoses (3.5 vs. 6.7 years). When describing OFI variability in terms
of the encounter frequency, again, a wide dispersion in OFI is observed (Figure 3). The
median (IQR) number of encounters available for determining baseline characteristics was
22 (11, 41), and the range was 2 to 1437 (in Figure 3, the number of office visits is shown
separately as the most informative encounter type).

Table 2. Definitions of terms and phrases.

Term or Phrase Definition

Encounter
Any professional contact between a patient and healthcare organization, including
primary care, specialty care, laboratory testing, emergency department visits, hospital
admissions, etc.

Opportunity for Information
The collection of pre-baseline encounters that could provide usable research information.
Can be expressed in units of time (days from first encounter to baseline encounter) or as
number of encounters (between first and baseline encounters).

Creating Rules for the 99%

When assembling baseline characteristics for an EHR-based retrospective study, rules
must be created for determining presence/absence of qualitative characteristics and
values for quantitative characteristics. This informal expression implies that imperfect
rules must be implemented that work well for the majority but rarely universally.

Looking for Yes
An expression applied when determining the presence/absence of a binary characteristic,
denoting how rules typically only look for positive affirmations of the characteristic and
rarely negative affirmations.

Hidden Missingness
A phrase describing the scenario where a qualitative condition (e.g., diagnosis) is labeled
“absent” but was never queried nor investigated in clinical practice. Thus, the condition’s
true status as present/absent is actually undetermined despite being labeled “absent”.

Weak No A scenario where a qualitative condition (e.g., a diagnosis) is labeled absent based on
weak information.

Strong No A scenario where a qualitative condition (e.g., a diagnosis) is labeled absent based on
strong information.
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As the above example reveals, the amount of eligible information for assembling base-
line characteristics can be highly variable across study patients, even among a collection
of patients all adhering to a minimal set of information criteria. The primary concern
associated with inter-patient OFI variability is the dependency of the documented presence
of certain baseline characteristics to the OFI, implying an association between OFI and
the misclassification rate for certain binary characteristics [35,37]. In particular, EHR docu-
mentation of intermittent, transient, and/or more subjectively determined characteristics
(e.g., depression, shortness of breath) is positively associated with the OFI, but permanent,
common, and more objective features (e.g., hypertension) less so [43,44]. Inevitably, lower
OFI leads to the greater false-negative classification of baseline features relative to higher
OFI [45]. Unquestionably, valid identification of pre-existing medical conditions at baseline
will be partially dependent on the OFI in that study patients with greater OFI will logically
have more opportunity for documentation of a medical condition [38,44]. A specific prob-
lem arises when the association between two OFI-dependent variables is of interest, as an
artificially inflated association can be induced [43,44]. The phenomenon acts quantitatively
similar to usual confounding, and under the appropriate conditions, can be controlled with
the usual confounding-correction tactics (by an OFI metric) [43,44]. However, these tactics
can be challenging to implement in practice, particularly with several covariates, some
OFI-dependent, but others not [43,44].

In an attempt to control for inter-patient variability in OFI and standardize the base-
line information-gathering process, many studies using electronic data sources (EHRs,
insurance claims) have applied a fixed, pre-baseline time interval for baseline assessment,
which ignores encounter information prior to the interval. The tactic will standardize OFI
time (SD = 0), but inter-patient variability in encounter-based OFI metrics will ultimately
persist. Figure 4 shows the reduction in the number of encounters considered for baseline
assessment when applying a fixed, 2-year pre-baseline time restriction in the T2DM-HFH
example (mean OFI time decreases from 4.6 to 2.0 years). The median number of total
encounters considered drops from 22 to 4, and the restriction results in about one-third
of patients using only two encounters to determine baseline characteristics (Figure 4).
This attempt at standardization also creates a new problem by increasing the rate of false-
negative misclassification [46]. Indeed, the strategy knowingly changes (presumed) correct
information into incorrect information. Table 3 shows the decrease in the prevalence of a
subset of baseline characteristics from the T2DM-HFH example when applying a 2-year
time restriction. As the table suggests, applying a pre-baseline time restriction may have
little impact on the interpretation of aggregate numbers, yet comparing counts with and
without the restriction reveals the extent of misclassification induced. Though no method
is without limitation, a strategy incorporating all available pre-baseline encounters seems
preferable [46].

Table 3. Loss of information when restricting pre-baseline time intervals for assessment of base-
line characteristics.

Baseline Characteristic No Restriction 2-Year Restriction

Hypertension 71% (n = 56,653) 67% (n = 53,350)
High cholesterol 69% (n = 54,652) 64% (n = 51,003)

Coronary bypass surgery 7% (n = 5293) 6% (n = 4673)
Heart failure 11% (n = 9026) 10% (n = 8170)

Acute myocardial infarction 8% (n = 6516) 7% (n = 5362)
Chest pain 22% (n = 17,179) 15% (n = 12,141)

Shortness of breath 16% (n = 12,993) 12% (n = 9784)
Depression 25% (n = 19,812) 21% (n = 16,901)

Numbers in table cells are percentage (number) of patients with a history of the characteristic. Denominator size
is 79,354.
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Baseline Characteristic No Restriction 2-Year Restriction 
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Coronary bypass surgery 7% (n = 5293) 6% (n = 4673) 

Heart failure 11% (n = 9026) 10% (n = 8170) 
Acute myocardial infarction 8% (n = 6516) 7% (n = 5362) 

Chest pain 22% (n = 17,179) 15% (n = 12,141) 
Shortness of breath 16% (n = 12,993) 12% (n = 9784) 

Depression 25% (n = 19,812) 21% (n = 16,901) 
Numbers in table cells are percentage (number) of patients with a history of the characteristic. Denominator size is 79,354. 
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2.2.3. Creating Rules for the 99%

The assembly of baseline characteristics derived from the vast array of elements
available within EHRs involves creating rules for the 99%—an informal expression implying
that imperfect rules must be implemented that work well for the majority but rarely
universally. The counterpoint is that it is often possible to find scenarios where strict
application of a proposed rule provides incorrect information; however, changing the
rule to accommodate the scenario improperly changes correct information for many more
study subjects and could thus be counterproductive. For instance, in T2DM, requiring
documentation of an elevated hemoglobin A1c as part of a study’s diagnostic criteria could
misclassify patients deemed diabetic by diagnosis codes only (but with missing A1c). Rule
creation for qualitative variables usually involves observing the appropriate structured
data elements at encounters within specified time intervals, perhaps with additional
criteria based on frequency (e.g., requiring >1 occasion of a code), temporal proximity
(e.g., requiring <1 year between separate code occasions), and/or context (e.g., primary
diagnoses given precedence over secondary) [7,47–52]. Ultimately, imperfect rules must be
implemented, and researchers must accept a tolerance for this noise. Indeed, a reliance on
rules is mandatory as EHR data sets are typically too large for exhaustive manual validation
of any data element. Fortunately, direct observation of electronic medical charts permits
scrutiny of EHR-based rules, allowing researchers to “pull back the curtain” to uncover and
correct suboptimal rules—a feature not available with most insurance-claims-based studies.

2.2.4. Hidden Missingness

By the nature of clinical documentation processes, EHR-based rules for binary char-
acteristics are largely restricted to positive affirmations for defining disease “presence”
(i.e., observing a documented code), and the absence of positive affirmations (i.e., not ob-
serving a code) for defining disease “absence” (see phrase “looking for yes”—Table 2) [53].
That is, structured EHR data rarely contain negative affirmations—documentation that a
certain disease was sought but not found, which would lend greater credence to its true
absence. As such, EHR-based studies have an inherent inability to differentiate “no disease”
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from “missing disease status”—the former defined by the clinical situation where a specific
disease was sought but not found, and the latter defined by a disease not sought in any
clinical context [26,53]. As a consequence, given the dependence of certain diagnoses being
documented on the OFI, EHR studies will ultimately possess a degree of hidden missing-
ness—qualitative diagnoses labeled “not present” according to rule criteria that were simply
not investigated under usual clinical circumstances. The extent of hidden missingness will
be related to information quality (and the OFI) and creates a misclassification problem.
Two related concepts introduced here are weak no and strong no—the former describing
disease-absence labels based on weak information, and the latter on strong information.

2.2.5. Quantitative Data: Measurement Error and Missing Data

The quantitative data typically available within EHRs (e.g., vital signs, laboratory
test results) are a commonly cited strength of EHR data relative to other electronic data
sources such as insurance claims. The process of assigning a single numerical value for
a quantitative data element to a baseline date should involve a hierarchical, temporal
prioritization which first favors a value measured on the baseline date, then the value
measured closest in time prior to baseline (perhaps with some limit on how far back in time
is allowable), and then finally, when appropriate, the value measured closest in time after
baseline (with a definite limit on how far forward in time is allowable) [54]. The setting
in which the measurement was taken may also warrant consideration (i.e., outpatient vs.
inpatient). Inevitably, measurement errors and missing data will abound [12]. Random
variation of quantitative measurements from an EHR is often greater than analogous
measurements taken under a standardized, prospective research protocol, and is largely
uncorrectable (e.g., blood pressure [55]). Furthermore, missing data in an EHR are seldom
missing at random [13,56,57]. For instance, in one study, the measurement of certain
quantitative health indicators varied by demographic characteristics, the extent of chronic
disease, and treatment status [56]. Oftentimes, missing data imply better health in ways
that are undocumented [58]. The tenuousness of the missing-at-random assumption
complicates the application of popular imputation techniques [58].

2.3. Follow-Up for Future Outcomes

Outcome tracking in prospective studies typically involves regularly timed, standard-
ized, and complete follow-up assessments of all study participants with the adjudication
of suspected study endpoints. In an EHR-based historical cohort study, outcome-tracking
is inherently passive. The outcome-tracking time interval starts on the baseline date and
continues through the last EHR-documented encounter or death [20]. The identification of
outcome occurrences is also subject to the creating rules for the 99% principle, as described
above. Additionally, again, in EHR studies, direct access to electronic records allows
for the adjudication of study outcomes and/or assessment and possibly alteration of the
outcome-defining rule.

Ideally, all study outcomes among study participants occurring within the follow-up
interval would be identified, though the ability of any healthcare organization’s EHR data to
accomplish exhaustive outcome detection depends on the extent to which study outcomes
manifest at the study institution. In the US, certain features of the healthcare-delivery
ecosystem might impede exhaustive outcome detection through any single healthcare
organization. First, patients often receive healthcare services through multiple organiza-
tions, and these organizations seldom share data, especially for research [19,24–26,28,45,59].
Second, many healthcare organizations only provide a limited set of healthcare services,
so certain events may never manifest at these institutions, leading to event undercount-
ing [60–63]. In the context of an EHR-based retrospective study, a simplifying assumption
is often made that study patients are validly tracked for study outcomes within the entire
follow-up period, and in contrast, that the absence of an EHR-documented study outcome
equates to no event occurrence [35,64]. These assumptions are made as it is difficult or
frequently impossible to differentiate from a single organization’s EHR non-occurrence of
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study outcomes from outcomes occurring at an external organization. These attributes of
EHR-based follow-up contrast with analogous retrospective studies using insurance-claims
data, where any salient health event occurring within a follow-up interval is assumed to be
identified with near certainty. The issue of missed events is especially relevant when acute,
life-threatening, but ultimately non-fatal events are among the outcomes being tracked
(e.g., myocardial infarction).

3. Conclusions

Drawing correct inference and estimating minimally biased effects from EHR-based
retrospective studies greatly depends on identifying the most informative patients from
an EHR database without compromising the generalizability. The various ways and
intensities by which individuals utilize healthcare services suggest a substantial fraction
of patients in an EHR system will have data shortcomings (i.e., do not meet a minimal
data-completeness standard) and should not be included in research studies. Focusing on
patient selection with an eye toward maximizing data completeness is a logical strategy
but defies a completely objective definition and will tend to over-select a less-healthy
patient population. Requiring receipt of primary care services through the EHR-bearing
organization within the study’s inclusion criteria should impart greater confidence in a
more complete ascertainment of baseline characteristics and future study outcomes, but
the overall spectrum of services provided by the organization and the extent to which
patrons use that spectrum are also vital from a data-completeness perspective. Other
attributes such as a healthcare organization’s reputation and the number of competing
healthcare organizations in the geographic area can also impact data completeness. In
most cases, some data integrity must be compromised to take full advantage of the large
patient populations and unprecedented longitudinal detail which characterize mature EHR
databases. Hidden missingness is unavoidable and impossible to quantify, yet precautions
can be taken to minimize its impact through proper patient selection and rule creation.
Unfortunately, it is easy to perform an EHR study that generates believable results yet is
fraught with preventable misclassification and missing data. Results generated from EHR
studies can have an aura of credibility because of highly precise results derived from large
sample sizes, yet they can be severely biased [65]. Despite these limitations, EHR-based
retrospective studies will likely become more prominent as EHR databases proliferate.
Epidemiologists must continue to improve the methods of EHR-based epidemiology, given
the relevance of EHRs in today’s healthcare environment.
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