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Listeria spp. are pathogens widely distributed in the environment and Listeria monocytogenes is associated with food-borne illness
in humans. Food facilities represent an adverse environment for this bacterium, mainly due to the disinfection and cleaning
processes included in good hygiene practices, and its virulence is related to stress responses. One of the recently described stress-
response systems is CRISPR-Cas. Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated
(cas) genes have been found in several bacteria. CRISPR-Cas has revolutionized biotechnology since it acts as an adaptive immune
system of bacteria, which also helps in the evasion of the host immune response. ,ere are three CRISPR systems described on
Listeria species. Type II is present in many pathogenic bacteria and characterized by the presence of cas9 that becomes the main
target of some anti-CRISPR proteins, such as AcrIIA1, encoded on Listeria phages. ,e presence of Cas9, either alone or in
combination with anti-CRISPR proteins, suggests having a main role on the virulence of bacteria. In this review, we describe the
most recent information on CRISPR-Cas systems in Listeria spp., particularly in L. monocytogenes, and their relationship with the
virulence and pathogenicity of those bacteria. Besides, some applications of CRISPR systems and future challenges in the food
processing industry, bacterial vaccination, antimicrobial resistance, pathogens biocontrol by phage therapy, and regulation of
gene expression have been explored.

1. Introduction

Listeria monocytogenes is a Gram-positive pathogenic bac-
terium that can be transmitted through food and it is related
with outbreaks [1, 2]. ,is bacterium has been identified in
two different lifestyles: a saprophytic one and a parasitic one,
causing a disease known as listeriosis [3, 4]. Listeriosis is
considered one of the leading causes of death due to food
poisoning, and it is currently estimated that approximately
16% of people that contract listeriosis die each year [5]. ,e
colonization of L. monocytogenes in food production envi-
ronments (FPEs) has been extensively studied, since bac-
terial control measures are sometimes insufficient due to the
pathogenicity mechanisms of Listeria, such as the devel-
opment of a biofilm, which is an ability that is crucial for the

survival of this bacterium in food industry environments.
[6].

,e virulence of L. monocytogenes is directly related to
invasiveness and its ability to multiply in a wide range of
eukaryotic cells [7]. Different virulence factors have been
related to these important pathogenicity mechanisms of
L. monocytogenes [8]. L. monocytogenes is classified phylo-
genetically and genotypically into at least four evolutionary
lineages (lineages I–IV). It has been concluded that all
lineages have different genetic, phenotypic, and ecological
characteristics, which can affect their ability to be trans-
mitted through food and cause human diseases, as well as
their ability to thrive in the environment surrounded by
phages [9]. Listeria has a virulence gene list that extends to
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noncoding RNA (ncRNA) molecules. One of these ncRNAs
is the CRISPR arrays [4].

1.1. CRISPR-Cas Basic Concepts. One of the recently de-
scribed stress-response systems is CRISPR-Cas. Clustered
regularly interspaced short palindromic repeats (CRISPR)
and CRISPR-associated (cas) genes have been found in
several bacteria. CRISPR-Cas has revolutionized biotech-
nology since it acts as an adaptive immune system of bacteria
protecting from infection caused by bacteriophages and
other genetic elements like DNA, which also helps in the
evasion of the host immune response [10–12].

CRISPR-Cas adaptive immune systems are found in
roughly 50% of bacteria and 90% of archaea [13–15]. ,e
common structure of a CRISPR locus is a set of cas genes and
a CRISPR arrangement [16]. Due to complex machinery,
small sequences derived from phage DNA (known as
spacers) are integrated into a locus of repeat sequences
(CRISPR) [17, 18].,e abovementioned statement generates
a genetic record of past viral infections [19].

,e basic steps in the operation of CRISPR systems are
adaptation, expression, and interference [20, 21]. ,e
CRISPR complex demands a protospacer adjacent sequence
motif (PAM) to evade the marking of the CRISPR array in
order to avoid autoimmunity and self-cleavage. ,is motif is
in the marked DNA [16, 18].

1.2. CRISPR Classification. Within the organization of
CRISPR-Cas systems, 2 groups have been classified taking
into account the Cas complex [11]. Systems that comprise
class 1 (types I, III, and IV) employ a set of multi-units and
subunits of Cas proteins for the identification of the tagged
material, unlike class 2 systems (types II, V, and VI), which
use a set of proteins with a single effector for the detection
and cleavage. ,ese 2 groups are divided into 6 types and 25
subtypes, which have a great variety of genes cas and operon
arrangement [14, 16, 22–25]. ,e type 2 system is known to
have a simple CRISPR-Cas organization since it has a dis-
tinctive operon scheme, the cas9 gene and a short trans-
activating crRNA (tracrRNA). ,erefore, for the interfer-
ence step, this system only needs cas9, tracrRNA, and host
RNAse III; the other cas genes are not required [17, 18].

2. CRISPR Systems in Listeria

Different bioinformatic studies show that CRISPR-Cas
systems can be found in 10% of different bacterial genomes
and approximately 40–50% of bacteria that can be cultured
[18, 26], but this has not been demonstrated in experiments
in vivo. In the case of L. monocytogenes, it has been found
that 41.4% of some strains contain putative cas genes, and in
one study, the weak activity of a CRISPR-Cas type 2 system
against plasmids containing related spacers and PAM se-
quences was identified. Nevertheless, the action of this type
of systems on Listeria against phages has not yet been
thoroughly studied since L. monocytogenes regularly con-
tains prophage-encoded anti-CRISPR proteins [9, 27].
Moreover, in the case of the species L. ivanovii, its operation

has not yet been analyzed in detail, but the CRISPR-Cas
arrangement has been found, and maybe they play a putative
role in the inactivation of invading phage DNA [4, 18, 28].

,ree CRISPR loci have been described in the genome of
L. monocytogenes. Locus 1: described as CRISPR RliB; locus
2 located approximately 10 kb downstream of locus 1, as-
sociated with the cas subset “Tneap” (cas2, cas1, cas4, cas3,
cas5t, cst2, cst1, cas6), which belongs to the CRISPR-Cas
type-1B system; and locus 3 located in strain 1/2a EGD-e
associated with cas subset “Nmeni” (csn2, cas2, cas1, cas9),
which belongs to type-IIA [25, 29, 30]. Di [9] showed that
not all strains contained the three CRISPR loci at the same
time, so a classification based on CRISPR can be useful to
subtype strains of serotype 1/2a (lineage II) and 1/2b (lineage
I), but it is limited for many strains of lineage I that show
absence of a typical CRISPR structure.

In the study of CRISPR-Cas systems in Listeria, a small
CRISPR RNA (RliB) has been described in L. monocytogenes
strain EGD-e. No cas genes were found either close to RliB or
anywhere else in the genome of that strain. However, despite
the absence of Cas proteins, RliB is expressed and signifi-
cantly increased in bacteria isolated from mice and in
bacteria that grow in human blood or that are exposed to
hypoxia. ,erefore, the authors demonstrated that RliB is
involved in the virulence of L. monocytogenes and that it
binds and is a substrate for polynucleotide phosphorylase
(PNPase), which is likely responsible for its processing into a
mature form. In bioinformatic analysis, RliB-CRISPR has
been discovered in L. monocytogenes strains and in other
Listeria species at the same genomic locus [4, 31].

2.1. Anti-CRISPR Proteins in Listeria. ,e fight for survival
between phages and bacteria has resulted in the evolution of
different bacterial defense systems and their opponents
[32, 33]. Different mechanisms against phages have been
reported in Listeria, principally in L. monocytogenes [34],
and anti-CRISPR (Acr) proteins codified by prophages have
been described [18, 35]. ,e role of the Acr proteins is
particularly important since it can be directly related to the
absence or deficiency of CRISPR-Cas systems in some
bacteria due to the integration of prophages in the genetic
material of the host and the Acr expression. ,e first ex-
amples of Acr proteins were found in Pseudomonas aeru-
ginosa. ,e anti-CRISPR genes are very important because
they represent a mechanism of phages to overcome and
inhibit targeting of the CRISPR/Cas systems [13, 16, 36].

So far, 45 groups of Acr proteins have been identified,
which are classified into 2 classes. In this last group, the Acr
proteins described in L. monocytogenes are found. Several
acr genes have been described to coexist with a conglomerate
of genes named “anti-CRISPR-associated genes” (aca) [16].
Seven aca genes have been identified, and although their
exact function has not yet been established, these genes
frequently codify a protein with a helix-turn-helix (HTH)
motif, which is related to a regulatory function and an
N-terminal domain (NTD), whose role has not been de-
scribed in all the Acr proteins [35]. ,e aca genes have been
used to find new Acr proteins and vice-versa [37].
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In Listeria phages, some anti-CRISPRs proteins, such as
AcrIIA1, AcrIIA12, AcrIIA2, AcrIIA3, and AcrIIA4 have
been described [23]. AcrIIA1 is a transcriptional autor-
epressor of the Acr locus that is needed for optimal lytic
growth and prophage induction [35]. AcrIIA2 and AcrIIA4
could block CRISPR-Cas target DNA producing an effect in
the different protein subunits, employing steric or non-steric
forms of inhibition, and interfering with guide RNA [16, 32].
,ese proteins were found to inactivate the type II-A
CRISPR–Cas9 proteins of L. monocytogenes Cas9 (Lmo-
Cas9) and Streptococcus pyogenes Cas9 (SpyCas9) in vivo.
,erefore, these represent potential tools in the toolkit of
Cas9-mediated genome editing [38].

Some Listeria prophages have developed anti-CRISPR
proteins to avoid being degraded. Different Listeria phages
have been described to inactivate the activity of the CRISPR-
Cas system by encoding proteins such as AcrIIA1. ,is
protein can bind to the Cas9 HNH domain to stimulate its
degradation and maintain the lysogenic state (AcrIIA1 only
binds effectively to Cas9 during the lysogenic cycle, not in
the lytic cycle). Phages use the independent protein Acr for
their lytic replication (Figure 1) [19]. ,e study of these
proteins is of utmost importance since AcrIIA1 NTD ho-
mologs have been identified in some host bacteria, which
could lead to an “anti-anti-CRISPR” activity, repressing the
display of anti-CRISPR phages, giving a potential advantage
to those bacteria [35].

2.2. CRISPR in Listeria and0eir Relationship with Virulence
andPathogenicity. ,e role of CRISPR systems goes beyond
defense against viruses and plasmid conjugation. One of the
applications of the CRISPR-Cas system related to bacterial
virulence is to be able to distinguish between species re-
sistant to antibiotics with a wide variety of plasmids carrying
resistance genes, from less resistant species since CRISPR
interferes with the uptake of phages that carry some viru-
lence genes in many bacteria (e.g., toxins and antibiotic
resistance genes) [39]. For example, in the case of Entero-
coccus faecium, the relationship between some clinical
strains and the loss of the cas1 gene was studied, although all
isolates had a type II-A cas operon. It was concluded that the
increase in antibiotic resistance, as well as phage uptake and
pathogenicity islands of this bacterium were due to deletions
of the cas gene [40]. Another example is enterohemorrhagic
Escherichia coli (EHEC), in which CRISPR polymorphisms
were found to correlate with the presence of two EHEC
virulence genes, stx and eae, which encode the Shiga toxin
released by the phage and the intimin virulence factor, re-
spectively. Strains that have lost the CRISPR locus have also
been reported to be less invasive or virulent since poly-
morphisms in genes of associated virulence factors can
also be identified with CRISPR [25, 41, 42]. On the con-
trary, in the case of Campylobacter jejuni, it has been
observed that the expression of Cas9 in strains that have
lost the CRISPR locus increases virulence and that when
cas9 is lost, swarming increases and cytotoxicity is reduced
in human cells [31]. ,erefore, the abovementioned ex-
amples envision a wide field of study to determine whether

these characteristics apply to different microorganisms and
the full role that CRISPR has with bacterial virulence.

,e role of the biofilm as a pathogen and persistent
mechanism for L. monocytogenes has been described
[6, 43–48]. ,e ability to proliferate in cold and humid
environments, as well as the ease of adherence to surfaces,
makes L. monocytogenes capable of forming biofilms on
materials such as plastics, metals, and food [49]. Moreover,
the CRISPR-Cas systems could be involved in the regulation
of virulence gene expression [25, 26], and it would be in-
teresting to elucidate the relationship between the presence
of CRISPR in Listeria and the biofilm formation capacity of
this bacterium in different materials (for example: prosthetic
materials and FPEs) [50–53].

,e role of CRISPR during intracellular growth of dif-
ferent bacteria has been demonstrated [25, 54]. ,is possible
relationship of CRISPR with stress-response factors makes
the study of intracellular microorganisms such as
L. monocytogenes interesting [3]. In the case of Neisseria
meningitidis, Cas9 has been shown to promote its invasion
and replication in human cell lines [31]. Furthermore,
CRISPR-Cas systems have shown to improve the integrity of
the bacterial envelope, promote antimicrobial resistance,
and evademultiple innate defense pathways during infection
[55].

It has been debated whether CRISPR has importance
within commensal microorganisms since it poses a probable
regulation of their immune recognition. ,is could be
particularly important in the case of pathobionts, where
there is a transition between commensal and pathogenic
lifestyle [25, 56, 57]. It has been described that approximately
between 0.5% and 5% of the human population carries
transiently and asymptomatically low levels of
L. monocytogenes in the gastrointestinal tract [58–60], and
CRISPR could play a role in some stages of this transition
process, such as colonization.

3. Applications of CRISPR Systems in Listeria
and Other Bacteria

CRISPR and CRISPR-Cas systems are transforming disci-
plines such as biotechnology and biology, and various
technologies derived from them have been applied in bac-
teria, although they have been mostly applied in eukaryotes.
Some areas in which these technologies have been used are
genome editing and gene expression regulation [12, 15, 33].
CRISPR-Cas systems have been used as diagnostic tools,
epidemiological, and bacterial evolution studies. CRISPR-
Cas systems have been used as a complementary typing tool,
for example, in Mycobacterium tuberculosis, as a routine
genotyping and epidemiology method, or with C. jejuni for
the study of phylogenetic relationships between strains
[11, 33].

CRISPR-based subtyping has been useful for different
pathogens, but in the case of L. monocytogenes, Taylor and
Stasiewicz [61] suggested that the use of CRISPR spacers as a
marker to differentiate persistent from sporadic strains are
not useful to improve that identification, in comparison with
the existing methods, such as Whole Genome Sequencing
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(WGS) and Single Nucleotide Polymorphism (SNP)
subtyping.

,e practical application of CRISPR has a wide range of
industrial significance and breadth of bacteria where it can
be used, such as typing and tracking of bacterial strains (to
determine the chronology in the diversification of strains,
and therefore, their evolutionary trajectory), bacterial vac-
cination (important in order to prevent contamination with
phages in dairy products), development of antimicrobial
agents, and to know the virome that surrounds a bacterial
population. One of the future applications of CRISPR is the
advanced imaging of bacterial chromosomes due to the

specificity and simplicity of Cas9 to tag a specific genomic
locus for high resolution imaging. For example, in
L. monocytogenes has been devised the use of artificial
CRISPR arrays to kill pathogenic bacteria by targeting an-
tibiotic resistance or virulence genes [33, 62]. All these
techniques can directly impact areas such as the food in-
dustry, health, and specific ones, such as bioremediation,
biogeography, or biorefineries [17, 20, 25, 26].

Hupfeld [18] demonstrated that by transferring phage
constructs based on the CRISPR locus of L. ivanovii to other
species of the genus, specific bacterial control could be
achieved in different co-cultures. Applying it to other species
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could control and modify complex bacterial environments,
by balancing and shaping specific microbiomes as in the
stomach. ,e abovementioned method shows a broad
overview of the applications of CRISPR-Cas in this area.
Treatment with phages could also be related to one strategy
that has been proposed for the control of biofilm formed by
L. monocytogenes in FPEs in the food industry [6] since
CRISPR technology could innovate the control process of
this bacterial pathogenicity mechanism.

CRISPR spacers are considered a historical fingerprint of
intruders in the host DNA; in the case of L. monocytogenes, it
has been suggested that strains of a certain lineage could
diverge to different genotypes when encountering various
invaders, which would be related to evolution between
strains of different lineages, depending on specificity of the
phage. L. monocytogenes has a great importance in the food
industry, so the information that the CRISPR system can
provide would be an alternative to eradicate or regulate it,
due to the function that it has within the bacteria [9].

For most CRISPR-Cas systems from different bacteria,
known inhibitors have not yet been described, suggesting
that many families of anti-CRISPR proteins have not yet
been discovered, so this field of study is quite broad in the
future [23]. ,e use of Acr proteins has been proposed as
regulators of the CRISPR-Cas system through an on-off
switch process since some of them have been described to
inhibit Cas9 activity in cell cultures. ,erefore, its use could
be optimized for gene editing processes in applications as
varied in areas as therapeutics and biotechnology. For ex-
ample, Acr proteins could benefit gene drive technology, to
prevent vector-borne diseases and eliminate pests. Also,
some phages already described could exert an inhibition
mediated by Acr proteins against multidrug resistant bac-
teria, resulting in an improvement in the treatment of
different diseases [16]. Another application could be the
addition of genes encoding Acr proteins to different bac-
teriophages to be used in biocontrol processes [2], which in
the case of L. monocytogeneswould be very useful in the food
industry (Figure 1).

4. Conclusions

All the previously described applications of the use of
CRISPR within bacterial virulence and pathogenicity in
areas as diverse as industry and microbiology give an idea of
the powerful strategy that this system must be used in the
study of different bacteria. In the case of L. monocytogenes,
several Acr proteins have been identified, which gives the
possibility of using them as a tool for genome editing and
identification of “anti-anti-CRISPR” activity It would also be
an advantage for these bacteria, which could be linked to
increased virulence; also, the study of these proteins could
improve the treatment with phages within the food industry or
in the environment where L. monocytogenes persists and must
be eliminated (biocontrol) since the CRISPR system has al-
ready been suggested in this bacterium to be effectively labeled
and controlled for its determinants of antimicrobial resistance.

More than 30 years have passed since the first de-
scription of the CRISPR system, so tools as varied as, for

example, the use of Acr proteins, envisage a very promising
future to be applied in biocontrol, which is why subsequent
studies of the search for CRISPR in isolated strains of dif-
ferent sources will help to recognize all the functions that
this system can provide and the potential that it has in order
to understand important aspects, such as the evolution of the
genus.

Conflicts of Interest

,e authors declare that there are no conflicts of interest.
MREM is the recipient of SNI and EDI fellowships.

Acknowledgments

,e authors are also grateful to SofiaMulia for correcting the
English writing style of the manuscript and Paul Ugalde-
Silva for electronically drawing the figure. ,is work was
supported by the SIP-IPN Grant Nos. 20200585, 20211264,
and 20221388.

References

[1] A. J. Kayode, E. O. Igbinosa, and A. I. Okoh, “Overview of
listeriosis in the Southern African hemisphere-review,”
Journal of Food Safety, vol. 40, no. 1, Article ID e12732, 2020.
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