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Abstract

O-Linked b-N-acetylglucosaminyl transferase (OGT) plays an important role in the glycosylation of proteins, which is
involved in various cellular events. In human, three isoforms of OGT (short OGT [sOGT]; mitochondrial OGT [mOGT]; and
nucleocytoplasmic OGT [ncOGT]) share the same catalytic domain, implying that they might adopt a similar catalytic
mechanism, including sugar donor recognition. In this work, the sugar-nucleotide tolerance of sOGT was investigated.
Among a series of uridine 59-diphosphate-N-acetylglucosamine (UDP-GlcNAc) analogs tested using the casein kinase II (CKII)
peptide as the sugar acceptor, four compounds could be used by sOGT, including UDP-6-deoxy-GlcNAc, UDP-GlcNPr, UDP-
6-deoxy-GalNAc and UDP-4-deoxy-GlcNAc. Determined values of Km showed that the substitution of the N-acyl group,
deoxy modification of C6/C4-OH or epimerization of C4-OH of the GlcNAc in UDP-GlcNAc decreased its affinity to sOGT. A
molecular docking study combined with site-directed mutagenesis indicated that the backbone carbonyl oxygen of Leu653
and the hydroxyl group of Thr560 in sOGT contributed to the recognition of the sugar moiety via hydrogen bonds. The
close vicinity between Met501 and the N-acyl group of GlcNPr, as well as the hydrophobic environment near Met501, were
responsible for the selective binding of UDP-GlcNPr. These findings illustrate the interaction of OGT and sugar nucleotide
donor, providing insights into the OGT catalytic mechanism.
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Introduction

O-GlcNAc modification, namely O-GlcNAcylation, is an

essential post-translational modification with a single b-N-

acetylglucosamine linked to Ser or Thr residues of various

nucleocytoplasmic proteins [1,2]. It contributes to various

cellular cascades, including signal transduction [3–5], gene

expression [6,7] and protein trafficking [8]. Dysregulation in O-

GlcNAcylation is assumed to be tightly linked to chronic

diseases, such as cancers [9–11], diabetes [12] and neurode-

generative diseases [13,14].

O-GlcNAcylation is mediated by the unique pair of enzymes O-

GlcNAc transferase (OGT) and O-GlcNAcase (OGA). OGT

catalyzes the transfer of GlcNAc from UDP-GlcNAc to the Ser/

Thr residues in a protein or peptide, while OGA is responsible for

sugar removal. The human ogt gene is located on the X

chromosome at position Xq13.1, and three variants (ncOGT,

mOGT and sOGT) are produced by alternative splicing during

gene expression [15]. Sequence alignment indicates that all the

three OGT isoforms comprise mainly two functional regions: an

N-terminal tetratricopeptide region (TPR) and a C-terminal

multidomain catalytic region. The TPRs, consisting of a varied

number of TPR units among different isoforms, are proposed to

regulate protein-protein interactions and are associated with

substrate specificity of OGT [16–19]. The C-terminal region,

where the active site lies, is composed of two conservative

domains: CDI and CDII [20,21].

Structural information helps us get deep into the catalytic

mechanism of OGT. The first line of structural information

arose from a comparative study of sequence-similar proteins:

phosphatase and N-GlcNAc transferase, giving a structural

model for the TPR domain and catalytic domain, respectively.

It is indicated that the C-terminal region of human OGT

(hOGT) consists of two Rossmann-like domains and a

conserved motif in the second Rossmann domain points to

the UDP-GlcNAc donor binding site [22]. In 2004, Jinek et al.

reported the crystal structure of the N-terminal TPR domain of

hOGT. This indicated that the TPR domain plays an

important role in OGT dimerization, as well as its interaction

with nup62 and other substrate proteins [23]. Later, a bacterial

OGT from Xanthomonas campestris (XcOGT) was co-crystallized

with the sugar donor –UDP-GlcNAc [24,25]. The high

sequence similarity between XcOGT and hOGT (up to 36%)

allows its application in modeling and mechanism studies for

hOGT. The structure in combination with sequence alignment
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and site-directed mutagenesis illustrates that OGT has a

conserved UDP-GlcNAc binding pocket. In hOGT, Lys842/

Gln839 was involved in interactions with phosphates, while

Asp925/Lys898 might interact with the nucleoside of the sugar

donor. Thr202 in XcOGT (corresponding to Thr560 in hOGT)

was shown to form a hydrogen bond (H-bond) with the C4-OH

of UDP-GlcNAc. In 2011, a truncated hOGT isoform

containing the N-terminal 4.5 TPRs and the full length C-

terminal domain was co-crystallized with UDP and the CKII

peptide [21]. Once again, Lys842/His498/His558 was shown to

play an important role in hOGT activity. In addition, an

independent mutagenesis analysis on CDI and CDII domains

also indicated certain amino acids in this region play crucial

roles in OGT activity [20]. Recently, mechanism studies for

OGT have been conducted via a crystallographic snapshot

method by two research groups [26,27]. It was found that OGT

uses a dissociative SN2 mechanism involving electrophilic

migration of the anomeric center, which is consistent with

previous studies on other glycosyltransferases [28].

In the present work, we describe another way to understand the

interaction between OGT and a sugar donor. A strategy

combining a substrate screen with molecular docking was used

to study the roles of sugar moiety in the substrate recognition of

OGT. A series of UDP-GlcNAc analogs was applied to profile

donor substrate specificity of sOGT, four of which could be used

as donor substrates. Subsequent molecular docking and site-

directed mutagenesis analysis indicated that the hydrogen bonds

between some residues (Leu653 and Thr560) in the sOGT active

site pocket and the hydroxyl groups at C4, C6 of UDP-GlcNAc

play crucial roles in sOGT recognition of UDP-GlcNAc. The

steric hindrance between the N-acyl group and Met501 and

hydrophobic environment near Met501 may also participate in

selective binding of UDP-GlcNAc analogs.

Results and Discussion

Profiling Sugar Donors of sOGT
Since the catalytic domain is identical for the three isoforms of

OGT, they should adopt a same or similar catalytic mechanism,

including sugar donor recognition. Considering the facility of the

prokaryotic expression system, codon optimized sOGT was

expressed in E. coli. It was found that codon optimization could

markedly improve sOGT expression in comparison with the

original gene sequence. After one-step purification, the purity of

sOGT reached up to 95% (data not shown). The purified sOGT

was concentrated to 1.72 mg/mL.

A library of 26 UDP-GlcNAc analogs (Figure 1) was applied to

evaluate their availability as donor substrates of sOGT. Among

these, 14 compounds were substituted at C2, 8 compounds are

substituted at C6, and the rest were derived from UDP-GalNAc.

Compared with the positive control (UDP-GlcNAc) and negative

control (without sugar donor), 4 compounds, including UDP-

GlcNPr, UDP-4-deoxy-GlcNAc, UDP-6-deoxy-GalNAc and

UDP-6-deoxy-GlcNAc, could be used as active sugar donors for

sOGT (Table 1). The different yields for these analogs suggested

that they might have different affinity to sOGT (Figure 2A).

Herein, in the 14 analogs substituted at the C2 N-acyl group, only

UDP-GlcNPr was active. Other compounds, either with a polar

substitution or with a bulkier substitution, did not work, indicating

that polarity or steric hindrance might affect their recognition by

sOGT. Only UDP-6-deoxy-GlcNAc was active in the 8 analogs

substituted at C6, and other substitutions with a bulkier group did

not work, indicating that an enlargement change at C6 was not

bearable. The configuration change of C4-OH to an equatorial

bond (UDP-GalNAc) is not active, but an additional C6-deoxy

modification (UDP-6-deoxy-GalNAc) made it active again. In

addition, the deoxy-analog at C4 (UDP-4-deoxy-GlcNAc) also

worked. The results from substrate screening suggested that C4-

OH might participate in sOGT recognition of sugar donors and

double changes at C4/C6-OH might have changed the spatial

conformation of the parent compound and made them flexible to

fit into the active site pocket of sOGT.

Based on the results of substrate screening, we propose that it is

stringent for the hydroxyl groups at C4 and C6 during sOGT-

sugar donor recognition. In contrast, the C2 N-acyl group can

bear certain substitutions, such as in UDP-GlcNPr, though bulkier

or hydrophilic substitution could not be accepted. Previous works

indicated that UDP-GlcNAz, UDP-GlcNAc6N3 and UDP-Gal-

NAc could be used as sugar donors by hOGT [26,29–31].

Moreover, UDP-GlcNAz could be used in the glycosylation of

nup62 and a peptide from human a-A crystallin in vitro or

metabolized onto O-GlcNAcylated proteins in vivo, indicating

these sugar donors should be acceptable by OGT [32,33]. The

different results in our experiment might be due to the selection of

a different acceptor substrate [34]. To test this, these three sugar

donors were tested using an octapeptide (YAVVPVSK, derived

from protein EMSY, UniProt Q7Z589) as acceptor [35,36]. It was

found that UDP-GlcNAz is active with less product yield than that

of UDP-GlcNAc. However, GlcNAc6N3 and UDP-GalNAc were

still nonreactive (data not shown), indicating sugar donor

recognition of OGT is affected by acceptor substrates.

Measure of the Affinity of Sugar Donors
Km is an inverse measure of the substrate’s affinity for an

enzyme –a small Km indicates high affinity and vice versa.

Compared with product yields, Km is more suitable to reflect the

donor substrate affinity to sOGT. Therefore, we characterized

kinetic parameters of active sugar donors, which are summarized

in Table 2. Three active sugar donors with higher yields were

applied in an apparent kinetic parameters assay, using UDP-

GlcNAc as a positive control. Reactions were performed with a

fixed concentration of CKII peptide and varying concentrations of

sugar donors. The product yield corresponding to each sugar

donor was assayed by HPLC, and the data were analyzed with

Graphpad Prism 5 by fitting a nonlinear regression analysis for

enzyme kinetics (Figure 2B and Table 2). The kinetic constants of

sOGT with UDP-GlcNAc is in agreement with the value reported

previously [21]. For four active sugar donors, the Km change was

consistent with the aspect of yield (Km[UDP-GlcNAc] ,,Km[UDP-6-

deoxy-GlcNAc] ,Km[UDP-GlcNPr] ,Km[UDP-4-deoxy-GlcNAc]). The results

further demonstrated that the substitutions at the C2 N-acyl group

and C4/C6-OH could affect the affinity of the sugar donor to

sOGT, and the change at C4-OH might have a more significant

influence on the affinity.

Modeling the Interactions between the Sugar Donor and
sOGT

Obviously, the hydroxyl group changed at C4 and C6, and the

hydrophilic or bulkier substitution of the C2 N-acyl group

decreased the affinity between the sugar donor and sOGT to

some extent. We assume that the hydroxyl group at C4 or C6 may

contribute to the binding of OGT and UDP-GlcNAc via a specific

H-bond, while the space around the N-acyl group may be

insufficient to seat a bulkier group or may not be suitable for the

access of a hydrophilic group. To confirm this hypothesis, a

molecular docking study was performed using the resolved hOGT

structure (PDB ID: 3PE4). Based on the docking parameters

obtained from the redocking of UDP (uridine-59-diphosphate) with

The Sugar Donor Recognition Mechanism of OGT
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the hOGT structure [21], a comparative study of the docking state

of UDP and UDP-GlcNAc was processed, showing that UDP-

GlcNAc could adopt almost the same conformation as that

observed in the reported hOGT-UDP-peptide complex (the

RMSD value between the UDP part of UDP-GlcNAc and co-

crystal UDP was 1.54 Å; see Figure 3A). In this docking position,

close contact was found between C4-OH and the carbonyl oxygen

of Leu653, or between C6-OH and the hydroxyl group of Thr560,

which renders the formation of H-bond interactions. The

hydrogen bond between C4-OH and Leu653 was different from

that in XcOGT [24], which might be due to the marked difference

of the amino acid sequence between these two OGTs. In addition,

two other H-bonds might have formed between C3-OH and

Gly654, and between C2-acetamido and His920 (Figure 3B).

There was not sufficient space to accommodate a bulkier group

substitution in these positions. The N-acyl group of UDP-GlcNAc

extended to the Met501 residue in the active site pocket, and

limited space was between them (Figure 3C). Polarity analysis of

the active site pocket indicated that the space near Met501 was

mainly constituted of hydrophobic residues, indicating a hydro-

phobic substitution of the N-acyl group might be bearable

(Figure 3D). The results of molecular docking might provide a

reasonable interpretation for either of the changes at C4/C6-OH

or at the C2 N-acyl group showing decreased affinity to sOGT.

Mutagenesis Analysis of Interactions between the Sugar
Donor and sOGT

To confirm the molecular docking results, mutagenesis analysis

was performed for three key amino acids: Leu653, Thr560 and

Met501. The first two amino acids were predicted to be

responsible for forming an H-bond with the sugar moiety of

UDP-GlcNAc, Thr560 via the side chain hydroxyl group, and

Leu653 via its backbone carbonyl oxygen. The hOGT structure

showed that Leu653 lies in a flexible loop region, suggesting a

bulkier amino acid residue might potentially influence its spatial

position, and break the H-bond between the carbonyl oxygen and

C4-OH in the sugar donor. Based on this hypothesis, Leu653 was

substituted by either amino acids with larger side chains (Tyr or

Phe), or amino acids with small side chains (Val or Ile), while

Thr560 was substituted by either a similar Ser or hydrophobic

amino acid; e.g. Ala or Val. All the mutants (T560S, T560A,

T560V, L653V, L653I, L653Y and L653F) showed decreased

Figure 1. Structures of UDP-GlcNAc analogs used in this work. 14 compounds in the first panel shared the same structure with UDP-GlcNAc
except the part at C2 (A). 8 compounds in the second panel were substituted at C6 (B). The rest are UDP-4-deoxy-GlcNAc and UDP-GalNAc derivatives
(C). The red part indicates the difference between analog and UDP-GlcNAc.
doi:10.1371/journal.pone.0063452.g001

Table 1. List of UDP-GlcNAc analogs in this study and the
glycosylation yields.

Entry Donor Substrate Yield (%) EntryDonor Substrate Yield (%)

1 UDP-Glc NDa 14 UDP-GlcNPh ,1

2 UDP-Man NDa 15 UDP-6-deoxy-GlcNAc 85.08

3 UDP-GlcN NDa 16 UDP-GlcNAc6NH2 NDa

4 UDP-Man2F NDa 17 UDP-GlcNAc6N3 ,1

5 UDP-Man2N3 NDa 18 UDP-Glucuronic Acid NDa

6 UDP-Glc2N3 NDa 19 UDP-GlcNAc6S NDa

7 UDP-ManNAc NDa 20 UDP-GlcNAc6NGc NDa

8 UDP-GlcNS NDa 21 UDP-GlcNAc6AcN3 NDa

9 UDP-GlcNPr 49.57 22 UDP-GlcNAc6NPh NDa

10 UDP-GlcNGc ,1 23 UDP-4-deoxy-GlcNAc 22.21

11 UDP-GlcNAz ,1 24 UDP-GalNAc ,1

12 UDP-GlcNTFA ,1 25 UDP-Gal NDa

13 UDP-GlcNBu NDa 26 UDP-6-deoxy-GalNAc 37.72

NDa: not detected.
doi:10.1371/journal.pone.0063452.t001

The Sugar Donor Recognition Mechanism of OGT
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catalytic capability against UDP-GlcNAc in contrast to the wild

type sOGT (Figure 4A). However, T560S showed higher catalytic

capability compared with T560A or T560V, while L653V and

L653I both showed higher enzymatic activity compared with

L653Y or L653F. As Ser shares a similar side chain as that of Thr,

T560S might still form an H-bond with UDP-GlcNAc via the

hydroxyl group at C2, but T560A and T560V could not. For

L653 mutants, an amino acid with a bulkier side chain (L653Y

and L653F) seemed to be more influential on the spatial position of

the backbone carbonyl oxygen. Combining these results with that

of screening and Km values of non-hydroxyl analogs, it can be

inferred that the H-bonds between these two amino acids and

sugar donors might play significant roles in sOGT-sugar donor

recognition.

Met501 has been predicted to be responsible for the steric

hindrance. To decrease the steric hindrance between Met501 and

the C2 N-acyl group, Met was substituted with amino acids with

smaller side chains; i.e., Ala or Val. Both the mutants (M501A/

M501V) showed decreased activity in contrast to the wild type

sOGT, using either UDP-GlcNAc or UDP-GlcNPr as the sugar

donors. However, the ratio of conversion rates (UDP-GlcNPr/

UDP-GlcNAc), which indicates substrate selectivity of an enzyme,

illustrated that both mutants were prone to use UDP-GlcNPr in

contrast to UDP-GlcNAc, especially M501V (Figure 4B). Unfor-

tunately, neither of the mutants showed broader substrate

specificity when UDP-GlcNAc analogs substituted at C2 were

used as sugar donors. The results indicate steric hindrance

between M501 and the C2 N-acyl group is an influential factor

in sOGT-sugar donor recognition. In a previous study of OGT

inhibitors, it was also found that compounds with a short linker

between the C2 N-acyl group and a fluorophore disturbed its

binding to OGT, while a longer linker made it work, which is

consistent with our results showing that the limit space impedes the

binding of some analogs [37].

Conclusions
O-GlcNAcylation is an important post-translational modifica-

tion of proteins. OGT and OGA are the only two enzymes

responsible for the sugar addition and removal, respectively. In

this study, we investigated the sugar binding mechanism of sOGT

and unraveled several influential factors in OGT-sugar donor

recognition. This implicated that the backbone carbonyl oxygen of

Leu653 and the hydroxyl group of Thr560, and especially the

latter one, probably contributed to its binding to UDP-GlcNAc via

hydrogen bonds. The close vicinity between Met501 and the N-

acyl group and the hydrophobic environment around the N-acyl

group were influential factors for sOGT recognition of some UDP-

GlcNAc analogs. Our results are in keeping with recent studies

[26,27]. These results may help with the rational design of donor

analogs or inhibitors, which could be used to detect O-

Figure 2. The substrate slectivity of sOGT. (A) The conversion ratio of sOGT with active sugar donors. All reactions were performed under the
same conditions. After quenching and removal of proteins, the yields were analyzed with HPLC based on the integrated areas of the products and
acceptor substrate. This histogram shows the relative activities of the mutants compared to the wild-type (WT) protein; (B) The Michaelis-Menten
curve of sOGT with active sugar donors. Assays were performed using 600 mM CKII peptide and varying concentrations of sugar donors. Reactions
were run at 37uC for 30 min with 76 mg of sOGT for the Km measurements. Data were analyzed by Graphpad Prism 5.
doi:10.1371/journal.pone.0063452.g002

Table 2. Apparent kinetic parameters of active sugar donors.

Kinetic Constants UDP-GlcNAc UDP-6-DeO-GlcNAc UDP-GlcNPr UDP-4-DeO-GalNAc

Km (mM) 8.562.36 141.8628.14 282.1647.02 369.5671.58

Vmax (mM Nmin-1) 1.360.078 2.560.28 4.360.48 3.760.59

Vmax/Km (min-1) 0.1660.034 0.01860.0016 0.01560.00084 0.009960.00034

doi:10.1371/journal.pone.0063452.t002
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GlcNAcylated proteins and elucidate their importance in cellular

events.

Materials and Methods

Materials
Unless stated otherwise, all materials were purchased from

Beijing Dingguo Changsheng Biotechnology Co. Ltd., China.

CKII peptide (KKKYPGGSTPVSSANMM; purity.95%) and

octapeptide (YAVVPVSK; purity.95%) were synthesized by GL

Biochem (Shanghai) Ltd., China [17,21]. UDP-GlcNAc and its

analogs, including UDP-6-deoxy-GlcNAc, UDP-GalNAc, UDP-4-

deoxy-GlcNAc, UDP-6-deoxy-GalNAc, UDP-GlcNBu and UDP-

GlcNPr, were prepared as previously described [38]. The synthesis

of other UDP-GlcNAc analogs has been reported previously

[39,40].

Figure 3. Molecular docking. (A) Co-crystal ligand UDP can be well re-docked into its own binding pocket with RMSD= 0.353 Å. After the re-
docking, UDP-GlcNAc was docked into the binding pocket with the co-crystal peptides present, performing the same conformation as UDP. Red stick:
co-crystal UDP in 3PE4. Green surface: surface of hydrophobic residues. Blue surface: surface of hydrophilic residues and GLY. (B) There were four
possible hydrogen-bond between GlcNAc and transferase; i.e. C6-OH,Thr560, C4-OH,Leu653, C3-OH,Gly654 and the C2 N-acyl group,His920. (C)
The C2-acetamido points to a hydrophobic cave constituted by Met501, Leu502 and Tyr841. (D) There were six possible hydrogen-bonds between
UDP-GlcNAc and O-GlcNAc transferase with a peptide substrate. Two of them were from UDP. One was between phosphate and Lys842. The other
was between phosphate and Ser21 of the peptide substrate. The yellow dashed lines show the potential hydrogen-bonds. Green surface: surface of
hydrophobic residues. Blue surface: surface of hydrophilic residues and GLY. Purple line: CKII peptide. The PyMOL molecular graphics system (Version
1.3r1 Schrödinger, LLC, USA) was used to conduct polarity analysis following manufacturer’s instruction [43].
doi:10.1371/journal.pone.0063452.g003
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Cloning, Expression and Purification of sOGT
The human mOGT gene (GI: 2266993) codon optimized for E.

coli heterologous expression was synthesized by GeneArt (Ger-

many) and was cloned into pMA vector. The gene encoding

sOGT was amplified from the constructed vector using the

forward primer 59-CCGGAATTCATGCATTATAAA-

GAAGCC-39 and reverse primer 59-ACGCGTC-

GACTGCGCTTTCGGTAACTT-39 with restriction sites un-

derlined. The sOGT gene was subsequently inserted into pET-28a

between EcoR I and Sal I (Thermo Scientific, Life Science

Research, FastDigest, USA). The recombinant vector was

transformed into E. coli BL21 (DE3) to obtain a fusion protein

with a C-terminal and N-terminal His-tag. For protein expression,

20 mL of LB medium (10 g tryptone, 5 g yeast extract and 10 g

NaCl per liter) containing 35 mg/mL kanamycin was inoculated

with a colony picked from the plate and grown at 37uC and 250

r.p.m. overnight. The culture was used to inoculate 1 L of LB

medium that was induced with isopropyl b-D-1-thiogalactopyr-

anoside at a final concentration of 0.05 mM until OD600nm

reached 0.4–0.6, and grown at 13uC and 110 r.p.m. for 20 h.

Cells were harvested by centrifugation at 8,0006g for 10 min and

suspended in lysis buffer (20 mM Tris-HCl, pH 7.4, 0.3 M NaCl,

and 0.1% Triton-X 100). The cells were disrupted by ultra-

sonication using a microtip with 45% power for 20 min (2 sec on

and 4 sec off) on ice and applied to centrifugation (130006g for

30 min) to remove precipitants. The supernatants of bacterial cell

lysates were loaded onto a nickel affinity chromatography column

packed with 6 mL Ni-NTA agarose (QIAGEN GmbH, Hilden,

Germany), which was balanced with equilibrium buffer (20 mM

Tris-HCl, pH 7.4, 0.3 M NaCl and 0.1% dithiothreitol). After

washing unbounded proteins with washing buffer (30 mM,

Figure 4. Mutational analysis of key amino acids in sOGT. HPLC analysis of the glycosylation reactions of variant sOGT mutants against UDP-
GlcNAc and UDP-GlcNPr. (A) Yields of wild type sOGT and M501A, M501V, T560A, T560V,T560S, L282F, L282Y, L282V and L282I mutants against UDP-
GlcNAc. All mutants sustained a great loss in enzyme activity; (B) wild type sOGT and M501A, M501V against UDP-GlcNAc and UDP-GlcNPr. The ratio
of conversion rates (UDP-GlcNPr/UDP-GlcNAc) indicates the selectivity of the enzyme against UDP-GlcNPr.
doi:10.1371/journal.pone.0063452.g004

Table 3. Site mutation primers used in this study.

Mutation Site* Forward Primer** Reverse Primer**

M501A 59CATAGCGCGCTGTATCCGCTGTCTC39 59ATACAGCGCGCTATGATGCGGATGA39

M501V 59CATAGCGTGCTGTATCCGCTGTCTC39 59ATACAGCACGCTATGATGCGGATGA39

T560A 59CATCCGGCCAGCCATCTGATGCAGA39 59ATGGCTGGCCGGATGATTACCAAAA39

T560V 59CATCCGGTCAGCCATCTGATGCAGA39 59ATGGCTGACCGGATGATTACCAAAA39

T560S 59CATCCGAGCAGCCATCTGATGCAGA39 59ATGGCTGCTCGGATGATTACCAAAA39

L653F 59ATGTGGTTCGGTTATCCGGGTACAA39 59ATAACCGAACCACATTGCCTGAATC39

L653Y 59ATGTGGTACGGTTATCCGGGTACAA39 59ATAACCGTACCACATTGCCTGAATC39

L653V 59ATGTGGGTGGGTTATCCGGGTACAA39 59ATAACCCACCCACATTGCCTGAATC39

L653I 59ATGTGGATAGGTTATCCGGGTACAA39 59ATAACCTATCCACATTGCCTGAATC39

*Corresponding to hOGT isoform 1.
**Underlined base(s) indicates the mutation sites.
doi:10.1371/journal.pone.0063452.t003

The Sugar Donor Recognition Mechanism of OGT
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50 mM, 80 mM and 100 mM imidazole, respectively, in 20 mM

Tris-HCl, pH 7.4, 0.3 M NaCl, and 0.1% dithiothreitol), the

fusion proteins were eluted with elution buffer (250 mM imidazole

in 20 mM Tris-HCl, pH 7.4, 0.3 M NaCl, and 0.1% dithiothre-

itol). The purified protein was concentrated using a 30 kD

AmiconH Ultra Centrifugal Filter Unit (Millipore, Ireland), and

the buffer was changed to reaction buffer (125 mM NaCl, 1 mM

EDTA, 2.5 mM THP, 20 mM Tris-HCl, pH 7.4) to remove

imidazole. Protein expression and purification were analyzed by

12% SDS-PAGE. The protein concentration was determined by

the Bradford method.

Screening Assay
The reactions were performed at 37uC for 45 min, in a total

volume of 100 mL containing 200 mM CKII peptide, 1 mM UDP-

GlcNAc analogs, 76 mg sOGT, 12.5 mM MgCl2 and buffer

(125 mM NaCl, 1 mM EDTA, 2.5 mM THP, 20 mM Tris-HCl,

pH 7.4). After quenching by adding an equal volume of methanol,

the reaction mixtures were centrifuged at 12, 0006g for 30 min

and filtered with a 0.22 mm filter. The reaction mixture (40 mL)

was loaded onto a C-18 reverse-phase chromatographic column to

quantify the product. The yield was analyzed based on the

integrated areas of products and acceptor substrate. Each reaction

was repeated at least three times.

Enzyme Assays
The reactions for kinetic measurements of the active sugar

donor substrates were performed as described above, except that

the mixture was incubated at 37uC for 30 min. The apparent

kinetic parameters of active sugar donor substrates were obtained

by varying UDP-GlcNAc analogs from 2.0 mM to 200.0 mM

(2.0 mM, 5.0 mM, 10.0 mM, 20.0 mM, 30.0 mM, 50.0 mM,

100.0 mM and 200.0 mM) at a fixed concentration of CKII

(600 mM). All reactions were then quenched by the addition of an

equal volume of methanol and analyzed by HPLC, using UDP-

GlcNAc as a positive control and the mixture without enzymes as

a negative control. The apparent kinetic parameters were obtained

by fitting the data into the Michaelis-Menten equation using

Graphpad Prism 5 (LA Jolla, CA, USA). Data were expressed as

mean6SD of triplicate samples from independent experiments.

Molecular Docking
AutoDock 4.2 was used to perform molecular docking [41]. We

re-docked the co-crystal ligands of human O-GlcNAc transferase

complex (PDB ID: 3PE4) as a training set to get rational docking

parameters [21]. The ligand UDP-GlcNAc was sketched in Sybyl-

X 2.0 (Tripos, Certara Inc., USA), and 30 rounds of simulated

annealing (200–700 k) was performed to find reasonable confor-

mation for docking. Docking experiments were performed with

the following parameters: grid spacing was 0.375 Å, the number of

points in each dimension was set to 50, 48 and 60, the grid center

was set to 219.364, 28.687 and 8.804 to make sure that whole

binding pocket could be covered. Docking simulations were done

using the Lamarckian genetic algorithm with: GA runs = 250,

population size = 200, quaternion = 30.0 and torsion = 30.0. Other

parameters were set to the default. The results were evaluated

following User Guide for AutoDock 4.2 [42].

Site-directed Mutagenesis
Mutation sites were predicted by molecular docking. All

position information in the present work refers to the hOGT

isoform 1 (UniProt O15294-3). Mutations were performed using

an Easy Mutagenesis System (Beijing TransGen Biotech Co.

China) according to the manufacturer’s instructions. All mutation

primers are shown in Table 3. All mutants were proofed by DNA

sequencing.
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