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Molecular insights into genome-wide association
studies of chronic kidney disease-defining traits
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Fehzan Ashraf1, Jabran Nawaz1, Sanjeev Pramanik 1, John Bowes 3, Xiao Jiang 1, John Dormer4,

Matthew Denniff5, Andrzej Antczak6, Monika Szulinska 7, Ingrid Wise 8, Priscilla R. Prestes 8,

Maciej Glyda9, Pawel Bogdanski 10, Ewa Zukowska-Szczechowska11, Carlo Berzuini 2, Adrian S. Woolf12,

Nilesh J. Samani5,13, Fadi J. Charchar 5,8,14 & Maciej Tomaszewski 1,15

Genome-wide association studies (GWAS) have identified >100 loci of chronic kidney

disease-defining traits (CKD-dt). Molecular mechanisms underlying these associations

remain elusive. Using 280 kidney transcriptomes and 9958 gene expression profiles from 44

non-renal tissues we uncover gene expression partners (eGenes) for 88.9% of CKD-dt

GWAS loci. Through epigenomic chromatin segmentation analysis and variant effect pre-

diction we annotate functional consequences to 74% of these loci. Our colocalisation analysis

and Mendelian randomisation in >130,000 subjects demonstrate causal effects of three

eGenes (NAT8B, CASP9 and MUC1) on estimated glomerular filtration rate. We identify a

common alternative splice variant in MUC1 (a gene responsible for rare Mendelian form of

kidney disease) and observe increased renal expression of a specific MUC1 mRNA isoform as

a plausible molecular mechanism of the GWAS association signal. These data highlight the

variants and genes underpinning the associations uncovered in GWAS of CKD-dt.
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Chronic kidney disease (CKD) affects 10–15% of the
population worldwide and is now recognised as the most
rapidly increasing contributor to global burden of

disease1,2. The costs related to CKD and end-stage renal disease
(the terminal manifestation of CKD) are an enormous burden for
all healthcare systems around the world3. The role of heritable
factors in predisposition to CKD is well documented—our earlier
family-based studies revealed high narrow-sense heritability for
estimated glomerular filtration rate (eGFR) in two independent
collections of European families4. These are consistent with a
significant contribution of additive genetic factors to the overall
variance in kidney function. The recent genome-wide association
studies (GWAS) uncovered over 100 single-nucleotide poly-
morphisms (SNPs) associated with CKD-defining traits (CKD-dt:
CKD, blood urea nitrogen, serum creatinine levels, eGFR and/or
albuminuria) in the general population5–7. Some of the risk
variants identified in these studies also predispose their carriers to
the development of CKD in prospective case–control investiga-
tions8. Unfortunately, the biological mechanisms underlying the
identified associations remain elusive as ≈90% of the genetic
variants lie within non-coding DNA with no apparent function.
Mechanistically, these variants do not act through the alteration
of content/structure of the encoded messenger RNA (mRNA)/
protein. Instead, they are more likely to exert their effects on the
susceptibility to diseases through quantitative changes in gene
expression, possibly largely in a tissue-specific manner. Indeed,
these seemingly neutral variants appear to colocalise pre-
ferentially within chromosomal regions of regulatory importance
for transcription and the variants associated with CKD-dt in
GWAS show stronger enrichment for colocalisation to regulatory
DNA in renal than non-renal cells6. These data suggest that
variants associated with CKD-dt in GWAS may act through
alterations of renal gene expression. Thus, human kidney tissue is
essential to unravel the effects of these variants on the tran-
scriptome. However, in contrast to other organs/tissues, large
collections of human kidneys required for gene expression studies
have not been widely available. For example, only 39 kidneys with
full genome/transcriptome information are available in NIH-
funded Genotype-Tissue Expression (GTEx) project9. This
shortage of kidneys explains why a majority of functional gene
expression analyses following GWAS for CKD-dt used mostly
non-renal tissues or small collections of kidneys characterised by
microarrays5,10. Unlike the latter, RNA-sequencing (RNA-seq)
permits to refine transcriptome profiling by capturing all
expressed transcripts directly without any a priori
annotation11,12. RNA-seq is also more accurate at quantification
of low abundance transcripts including long non-coding RNAs
(lncRNAs), which are generally poorly represented on traditional
microarrays. The recent RNA-seq-based analysis of kidneys from
Tissue Cancer Genome Atlas (TCGA) offered the first glimpse
into the renal identity of target genes for a small number of
variants associated with CKD-dt in GWAS13.

Here, through the analysis of 280 kidney transcriptomes pro-
filed by RNA-seq and genotyped at DNA-wide level, we uncover
renal gene expression partners (eGenes) for 25.6% of SNPs
associated with CKD-dt in previous GWAS. We further
demonstrate that a majority of these eGenes are associated with
CKD or kidney function. Through single-tissue and multi-tissue
analyses conducted in 44 non-kidney tissues from GTEx, we
assign eGenes to additional 63.3% of CKD-dt GWAS SNPs. We
also provide at least one functional annotation in silico for 74% of
CKD-dt GWAS SNPs, either directly or by proxy. Our colocali-
sation studies and Mendelian randomisation (MR) analysis show
causal effects of renal expression of three kidney eGenes (NAT8B,
CASP9, and MUC1) on eGFR. Additional studies focused on
MUC1 (a gene responsible for medullary cystic kidney disease

(MCKD) type 1) reveal that renal expression of alternatively
spliced mRNA isoform of MUC1 may be the key biological
mechanism behind the genetic association signal captured in
previous GWAS of CKD-dt.

Results
Kidney cis-expression quantitative trait locus analysis. We first
conducted a separate cis-expression quantitative trait locus (cis-
eQTL) analysis using a total of 5,499,848 SNPs and 14,518 and
19,862 kidney genes from 180 and 100 kidney transcriptomes
from the TRANScriptome of renaL humAn TissuE (TRANS-
LATE) study14,15 and The Cancer Genome Atlas (TCGA)16,
respectively (Fig. 1a). The brief characteristics of recruited indi-
viduals are given in Supplementary Table 1. We then combined a
common panel of 5,499,848 genetic variants and up to 20,225
genes from 280 kidney transcriptomes in the joint analysis of
both studies. This analysis revealed 382,669 significant
eSNP–kidney gene pairs after a correction for multiple testing
(Fig. 1a). A total of 3786 unique renal eGenes (approximately
17.2% of all kidney genes) had at least one associated eSNP within
a distance of 1 Mb after correction for multiple testing (Supple-
mentary Data 1, Fig. 1a).

We then quantified the extent to which the best eSNP can
account for the renal expression of their partner eGenes. Similar
to previous studies in other tissues17, we noted a wide range in the
magnitude of the genetic effect on kidney expression. Indeed, the
variance in eGene expression explained by the most significant
eSNP varied from very significant (73.5% (rs12366—LINC01291,
P= 7.66 × 10−31)) to negligible (0.000042% (rs1483780—
ALDH7A1, P= 7.65 × 10−7)). For the most significant protein-
coding renal eGene (ERAP2), the best eSNP (rs2927608)
accounted for 60.8% variance in its renal expression (P=
3.74 × 10−304, Fig. 1b).

To determine which of the eGenes have a kidney-enriched
pattern of expression, we overlapped our collection of 3786 renal
eGenes with those determined as having “tissue-specific” or
“tissue-enriched” expression in the Human Protein Atlas (HPA)
(Supplementary Data 2). We found over-representation for our
eGenes within HPA kidney-enriched genes when compared to all
other kidney genes identified in the dataset (25% (75/305), vs.
19% (3711/19,920), P= 0.0096 (Supplementary Data 2)).

Taken together, these data suggest that the abundance of
almost one in five genes expressed in the kidney is under genetic
control of common variants in -cis. We have also identified that
renal eGenes are over-represented within HPA kidney-enriched
genes.

Kidney cis-eQTL analysis of CKD-dt GWAS SNPs. We then
sought to examine which variants associated with CKD-dt in
GWAS (CKD-dt GWAS SNPs) are transcriptionally active in the
kidney and uncover the identity of their partner renal genes. We
identified 117 CKD-dt GWAS SNPs in publicly available
resources (Fig. 1c, Supplementary Data 3). Of those, 30 (25.6%)
overlapped (r2 >0.8) with our kidney eSNPs (Fig. 1d, Supple-
mentary Data 4) and 5 (4.3%) with the best kidney eSNPs (Fig. 1e,
Supplementary Data 4). A total of 35 renal genes were expression
partners for CKD-dt GWAS SNPs (Supplementary Data 4–5, Fig.
1c). In total, 57 eSNP–eGene pairs were identified through an
overlap analysis of CKD-dt GWAS SNPs with our eQTL catalo-
gue. Some of CKD-dt GWAS eSNPs were associated with renal
expression of more than one eGene; for example, rs7763262 was
associated with seven renal genes (Fig. 1f). Ten percent of the
identified CKD-dt GWAS eGenes were either lncRNAs or pseu-
dogenes (Fig. 1f). For 26 (86.7%) CKD-dt GWAS eSNPs, the
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associated eGene was different from the closest gene (Supple-
mentary Data 6).

We next investigated whether CKD-dt GWAS SNPs are
enriched for kidney eSNPs. This analysis showed 4.0-fold and
1.8-fold over-representation of kidney eSNPs amongst CKD-dt
GWAS SNPs when compared to the matched sets of randomly
selected autosomal SNPs or non-CKD-dt GWAS variants,
respectively (P= 1.60 × 10−10 and P= 1.90 × 10−3).

We then investigated the cell-type specificity of the renal
eGenes partnered with CKD-dt GWAS SNPs using single-cell
RNA-seq database generated from three specimens of apparently
normal human kidney secured after cancer nephrectomies18.
Overall, we mapped 14 CKD-dt GWAS eGenes onto at least one
of 14 separate cellular clusters; each corresponding to a different
cell lineage (Supplementary Data 7). Several of the eGenes
showed a ubiquitous pattern of abundance across renal cell
clusters, while others were specific to one particular cellular
lineages—that is, DPEP1 mapped exclusively to proximal tubule
cells and TFDP2 was associated with cells of the ascending loop of
Henle.

These findings provide evidence for the key role of CKD-dt
GWAS SNPs in regulation of gene expression in the kidney. By
uncovering the identity of the expression partners of CKD-dt
GWAS eSNPs, our results refine the association signals to specific

targets within the locus and map them (where possible) onto the
specific renal cell types.

Kidney eGenes and renal phenotypes in Nephroseq. Of the 35
renal eGenes, 29 were available for investigation in at least one of
seven eligible gene expression datasets deposited in Nephroseq19.
We explored associations between the renal expression of these
genes and either case–control status (patients with kidney disease
vs. controls) or eGFR in separate meta-analyses (Supplementary
Data 8–9). Our analysis revealed that 13 (45%) and 16 (55%) of
kidney eGenes were associated with kidney disease or eGFR after
the correction for multiple testing in the absence of heterogeneity
(Supplementary Data 8–9). A total of 20 (69%) eGenes were
associated with at least one renal phenotype in Nephroseq. For 12
(41%) of these eGenes, the direction of association with renal
phenotype(s) in Nephroseq was consistent with that expected
from the allelic effects identified in GWAS and cis-eQTL analysis.
For example, renal expression of SPATA5L1 showed positive
association with CKD, consistent with the effect of CKD-
detrimental allele of GWAS rs2467853 on the increased expres-
sion of this gene in our cis-eQTL studies (Fig. 1f). In some cases,
the Nephroseq analysis helped to narrow down the list of CKD-
relevant targets. For example, of two renal eGenes associated with
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Fig. 1 Cis-expression quantitative trait locus (cis-eQTL) analysis in human kidney. a Study flow of cis-eQTL meta-analysis. SNPs—single nucleotide
polymorphisms, eSNPs—genetic variants with at least one renal expression partner eGene. b Association between rs2927608 genotype and renal
expression of ERAP2—the most significant result from cis-eQTL meta-analysis. RBINT—rank-based inverse normal transformation. The boxplot centre line
shows the median, the two hinges show the upper and lower quartiles and the two whiskers show 1.5 times the interquartile range above and below the
upper and lower quartiles respectively. c Flowchart showing the overlap between 117 variants associated with CKD-dt in genome-wide association studies
(CKD-dt GWAS SNPs), their statistical proxies (linkage disequilibrium, r2 >0.8) and kidney eSNPs (variants with at least one renal expression partner
eGene). d Venn diagram—overlap between CKD-dt GWAS SNPs plus proxies (orange) and kidney eSNPs (green). e Venn diagram—overlap between
CKD-dt GWAS SNPs plus proxies (orange) and kidney best eSNPs (purple). f Circular representation of findings from cis-eQTL analysis for variants
identified CKD-dt GWAS. eGenes are ordered radially by genomic and chromosomal location, coloured by gene biotype (green—protein coding, purple—
long non-coding, yellow—pseudogene) and labelled by their HUGO symbol. eGenes are connected to their eSNPs by lines whose colours are determined
by the direction of gene expression change by GWAS CKD-dt risk allele (red—increase, blue—decrease). dbSNP reference cluster IDs are shown for each
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the same CKD-dt GWAS eSNP (rs2049805), only one (MUC1)
was associated with CKD and eGFR in Nephroseq.

In summary, these data show that a majority of renal partner
genes for CKD-dt GWAS eSNPs are associated with CKD or
kidney function.

cis-eQTL analysis of CKD-dt GWAS SNPs in other tissues. We
took advantage of transcriptome-wide information from 44 tis-
sues in GTEx project to examine what proportion of the tran-
scriptionally active CKD-dt GWAS SNPs is exclusive to the
kidney. In addition, we exploited non-kidney cis-eQTL analyses
to assign expression partners to CKD-dt GWAS SNPs without
renal eGenes in our kidney discovery dataset.

Of 30 CKD-dt GWAS eSNPs (and 1208 proxies), 28 (93%) also
act as eSNPs in at least one non-renal GTEx tissue (Fig. 2a, b).
However, six of them are associated with different eGenes than
those in the kidney (Fig. 2b). For example, PLG is a partner to
rs3127573 in the kidney, while in non-renal GTEx tissues, this
variant is associated with the expression of SLC22A3. Another
CKD-dt GWAS eSNP (rs9275424) was associated with the same
eGene (HLA-DRB1) in the kidney and GTEx tissues but the
direction of this association was different between renal and non-
renal tissues. In total, nine eSNP–eGene pairs (15.8% CKD-dt
GWAS eSNP–eGene pairs) appear as kidney-specific.

Further single-tissue analysis in GTEx revealed that of 87
CKD-dt GWAS SNPs (and 1871 proxies) without evidence for
kidney eGenes, 49 operate as eSNPs in at least one non-renal
tissue partnering with 193 eGenes. Nine of these eSNPs have an
expression partner in only one GTEx tissue, while 79 other eSNPs
are associated with eGenes in more than one GTEx non-renal
tissues (Fig. 2a, b, Supplementary Data 10–11).

We then applied multiple tissue meta-analysis20 to 38 CKD-dt
GWAS SNPs (and their 546 proxies) without any evidence for
eGenes in either the kidney of non-kidney single-tissue analyses.
This approach identified 190 additional unique eSNP–eGene
pairs covering 25 unique CKD-dt GWAS loci and 176 unique
eGenes (Fig. 2a, b, Supplementary Data 12).

Using PhenoScanner21 we then compared kidney-specific and
“ubiquitous” CKD-dt GWAS non-HLA eSNPs for association
with non-CKD phenotypes from previous GWAS (Supplemen-
tary Data 13). This analysis showed that significantly fewer
kidney-specific variants were associated with non-CKD traits in
GWAS when compared to “ubiquitous” CKD-dt GWAS non-
HLA eSNPs, respectively (P= 0.03, Supplementary Table 2).

In summary, using single-tissue and multi-tissue analyses we
showed that a vast majority (88.9%) of CKD-dt GWAS loci are
transcriptionally active within renal and non-renal human tissues.
We also showed that a significant proportion of the uncovered
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SNP–gene pairs is exclusive to the kidney and that kidney-specific
subset of CKD-dt GWAS eSNPs is less likely to exhibit pleiotropic
effects in GWAS when compared to “ubiquitous” CKD-dt GWAS
eSNPs. Altogether, after these analyses, only 13 (11.1%) of CKD-
dt GWAS loci were left without an expression partner eGene in
any human tissue.

In silico functional analysis of CKD-dt GWAS SNPs. We used
Ensembl variant effect predictor (VEP)22 and newly derived adult
kidney chromatin state segmentations (from ENCODE/Road-
map23 Epigenomics raw data) of renal cells to functionally
annotate all SNPs in each CKD-dt GWAS locus. We first deter-
mined that 19 of 117 sentinel CKD-dt GWAS SNPs variants
(16%) mapped to exons across 22 overlapping genes, but only
nine (8%) of these led to amino-acid changes in encoded proteins
(Supplementary Data 14). Further analysis of 2672 proxies for
CKD-dt GWAS SNPs identified 194 exonic variants, 22 of which
led to amino-acid change (Supplementary Data 15). In total, 63
(54%) independent CKD-dt GWAS loci were classified as exonic
either directly or by proxy (Supplementary Data 14) and 24 (21%)
of these lead to an amino-acid substitution (with the remainder
modifying sequence in untranslated exons or non-coding
transcripts).

Twenty two (19%) sentinel CKD-dt GWAS SNPs mapped onto
regulatory DNA regions (either “transcription start site” or
“enhancer” chromatin states) in adult human kidney tissue
(Supplementary Data 14). In addition, three of them overlapped
with a CpG island and one was localised directly in a
transcription factor-binding site (Supplementary Data 14). The
analysis of all proxies identified further 259 regulatory variants
including 54 internal to CpG island, nine overlapping a
transcription factor-binding site and 248 mapping onto either
“transcription start site” or “enhancer” chromatin in adult human
kidney tissue (Supplementary Data 15). In total, 69 (59%)
independent CKD-dt GWAS loci showed evidence for a
regulatory effect on gene expression either directly or by proxy.
Of these, 23 (20%) showed no overlap with the VEP annotations
(no evidence for exonic sequence modification).

In summary, through the most comprehensive analysis of all
known independent variants associated with CKD-dt in genome-
wide scans, we uncovered at least one functional annotation for a
vast majority (86 of 117 (74%)) of them, either directly or by
proxy. These annotations provide an important additional
support for the biological interpretation of the findings from
GWAS (Supplementary Data 14). For some of the CKD-dt
GWAS loci, this additional level of annotation may help to
prioritise the variants within the same locus. For example, the
sentinel rs9962915 variant in EPB41L3 gene and 40 out of its 41
proxies have no regulatory or coding implications. Only one
proxy SNP (rs1785418) of rs9962915 maps onto a promoter
region of highly transcriptionally active chromatin in renal cells
(Supplementary Data 15). These data suggest that rs1785418 is
the strongest functional driver of the association uncovered in
GWAS.

Colocalisation of CKD-dt GWAS SNPs and kidney cis-eQTLs.
We took advantage of access to individual level data from 280
kidney transcriptomes to calculate regulatory trait concordance
(RTC) score for each of 26 CKD-dt GWAS non-HLA cis-eQTL
signals. We chose to use RTC over Bayesian-based approaches
(such as coloc)24 for several reasons. First, unlike coloc (that uses
summary statistics), RTC makes full use of individual level data
so that no information is lost unnecessarily25. Second, RTC is also
known as generally more powerful in detecting colocalisation
signals than coloc since it does not have to rely on the overlapping

variants in both GWAS and eQTL datasets for analysis—a
requirement that may reduce the chances of identifying sig-
nificant results25. In addition, in the presence of multiple causal
variants within a locus RTC shows greater accuracy (defined as
the ratio of correctly predicted observations to the total obser-
vations) and recall rate (defined as the ratio of correctly predicted
positive observations to the all actual positives) than coloc24. We
found that seven out of 26 (27%) signals tagged the same causal
variant (RTC ≥0.9)—the CKD and eQTL association mapped to
the same SNP within these loci (Supplementary Table 3). In some
cases, the colocalisation analysis highlighted which of the eGenes
associated with the same eSNP was a more likely driver of the
association with CKD-dt—that is, rs2049805 was linked to two
different expression partners (GBAP1 and MUC1), but only one
of them passed the RTC threshold for colocalisation (MUC1)
(Supplementary Table 3). In other cases, the RTC-based analysis
suggested that none of the expression partners of the CKD-dt
GWAS eSNP (i.e. rs2467853) colocalised with the CKD-dt GWAS
association signal. In summary, we demonstrate which of the loci
have evidence of sharing the same causal variant between renal
gene expression changes and the risk of CKD.

MR analysis. We then used cis-eQTL data from the TRANSLATE
study and TCGA and GWAS summary data from CKDGen
consortium6 to robustly investigate whether the renal expression
of seven eGenes (implicated in the colocalisation analysis) is
causal to changes in eGFR. These MR studies demonstrated
causal effects of expression of three kidney eGenes (NAT8B,
CASP9, and MUC1) on eGFR in at least two out of three MR
models (Supplementary Data 16). The most consistent MR evi-
dence for causality was detected for renal expression of NAT8B
and MUC1 (Supplementary Data 16). Collectively, the MR ana-
lyses uncovered the renal genes through which the genetic var-
iants are most likely to act on the risk of CKD.

Combined annotation-dependent depletion framework of
MUC1. Given the insights from MR and the evidence for the role
of MUC1 in kidney disease26, we have selected this gene as a
target for further analyses. Of 16 variants in proximity to sentinel
MUC1 variant (rs2049805), seven have functional annotations
(Supplementary Data 15, Fig. 3a). Using Combined Annotation-
Dependent Depletion (CADD) we calculated the functionality
scores for all these variants to identify those with the highest
biological likelihood of effect on MUC1 expression. The highest
relative CADD scores were assigned to rs4072037 and rs12411216
(12.19 and 10.61, respectively) (Supplementary Table 4). These
scores put rs4072037 in the top 6% and rs12411216 in the top
10% of most functionally significant SNPs in the human genome.
Of these, rs12411216 maps onto the CpG island within the
promoter region for MUC1, while rs4072037 operates as an
alternative splice site acceptor (Fig. 3a).

Analysis of rs12411216 effect on MUC1 promoter methylation.
Given the role of hypermethylation of MUC1 promoter in its
transcriptional repression shown in different cells and tissues27,
we examined if rs12411216 may operate through this mechanism
in the human kidney. We conducted genome-wide methylation
analysis of 96 renal samples from the TRANSLATE study. A total
of six CpG sites were identified within the CpG island overlaying
the MUC1 promoter region. However, none of them showed
association with rs12411216 genotype (Supplementary Table 5).
There was also no correlation between renal methylation within
either of these CpG sites and kidney expression of MUC1 (Sup-
plementary Table 6). Thus, the effect of rs12411216 on promoter
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methylation is unlikely to mediate the association between CKD-
dt GWAS variant and MUC1 expression in the kidney.

Effect of rs4072037 on alternative splicing of kidney MUC1.
Rs4072037 maps to exon 2 of MUC1 and the presence of its
alternate allele (T) creates a novel exon boundary in MUC1 and a
novel mRNA isoform27,28. To confirm the presence of this spe-
cific MUC1 mRNA isoform in the kidney, we examined the
transcriptome of all the TRANSLATE study and TCGA kidneys
at the transcript level. Amongst 10 MUC1 mRNAs identified in
the kidney, the alternatively spliced isoform was the second most
abundant on average (Supplementary Table 7). Our data con-
firmed that the expression of this isoform was heavily dependent
on the genotype of rs4072037 (Fig. 3b). Indeed, carriers of one
and two copies of the alternate allele of this splice variant have

intermediate and the highest expression levels of the alternatively
spliced MUC1 isoform when compared to the reference genotype
(almost non-existent expression levels) (Fig. 3b). The total renal
expression of the MUC1 gene and its alternatively spliced isoform
showed similar associations with the genotype (Fig. 3b, c). Most
importantly, our follow-up MR analysis revealed that the
expression of alternatively spliced MUC1 mRNA isoform is
causally related to eGFR in a stronger manner than the total level
of renal MUC1 (Supplementary Table 8). These data suggest that
the rs4072037-driven allelic effect on expression of a specific
MUC1 mRNA isoform may be the key biological mechanism
behind the genetic association signal captured in previous GWAS.

Computational analysis of MUC1 protein isoforms. The alter-
natively spliced MUC1 mRNA differs from the reference renal
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transcript (ENST00000612778) only by a 27-nucleotide deletion.
This in-frame indel results in the removal of nine amino acids in
the translated peptide and occurs toward the end of the signal
peptide region (which is responsible for directing mucin-1 to the
extracellular matrix, Fig. 3d). Bioinformatics analyses predicted
that the signal peptide cleavage site shifts from a TTA|PK motif in
the reference protein to VTG|SG in the alternatively spliced
isoform (Fig. 3d, e). Therefore, the N-terminal amino-acid
sequence in the protein isoform arising from the alternatively
spliced mRNA loses nine residues (PKPATVVTG, Fig. 3e).
Although neither of the protein isoforms have a defined sec-
ondary structure (they are eminently, long, unstructured peptides
protruding from the cell membrane), the rigidity of proline might
confer particular properties to the reference protein isoform
(Fig. 3f) that are lost in the alternatively spliced isoform. Both the
reference and alternatively spliced protein isoforms contain all the
common functional sites and domains expected in a MUC1
isoform.

Discussion
Over 100 variants associated with CKD-dt have been uncovered
in large-scale genetic studies6,7,13,29. Yet, the biological mechan-
isms underlying the genetic susceptibility to CKD have remained
elusive and the progress in clinical translation of the findings
from GWAS has been slow. We have made the first steps to
eliminate the existing knowledge gap between sequence and
consequence by: (i) shedding light on the functional character-
istics of CKD-dt GWAS variants, (ii) assigning their robust gene
expression partners (eGenes), (iii) providing evidence for caus-
ality between some of the identified eGenes and CKD and (iv)
illuminating the molecular mechanisms of genetically mediated
susceptibility to CKD.

A majority of GWAS usually report only the most apparent
molecular consequences of the sentinel variants, that is, SNPs in
coding exons leading to amino-acid changes of the encoded
proteins. Those typically represent only 5–10% of signals in
GWAS of complex traits. Through extensive functional annota-
tions including both coding and non-coding exons, alternative
splicing, transcription factor-binding sites, CpG islands and
transcriptionally active chromatin states (such as enhancers and
promoters) in cells of kidney origin, we uncovered at least one
potential molecular consequence of DNA sequence variation for
74% of CKD-dt GWAS loci. Functionally, the strongest evidence
for biological significance of a GWAS SNP is represented by the
union of in silico annotations with a signature of transcriptional
activity in the kidney—for example, several variants in linkage
disequilibrium (LD) with rs10206899 CKD-dt GWAS on chro-
mosome 2 not only act as eSNPs for NAT8B but also map to
transcriptionally active enhancer regions in renal cells from
Roadmap Epigenomics. However, due to LD, eQTL analyses—
even when combined with regulatory annotations—are not
always sufficient to nominate the strongest biological genetic
variant as the driver of the detected association.

Our cis-eQTL analyses have identified eGenes for variants in
89% of CKD-dt GWAS loci. The eGenes are the key component
in the chain of molecular events triggered by a sequence variant
and culminating in CKD. As such, they represent legitimate
targets for further mechanistic studies and the development of
diagnostic and therapeutic strategies. We anticipate that larger
collections of samples and/or different strategies (i.e. trans-eQTL
studies) will be necessary to uncover eGenes for the variants in
the remaining 11% of CKD-dt GWAS loci. Most importantly, our
project reassigned the SNP–gene relationships within the
majority of CKD-dt GWAS loci from that based on SNP–gene
proximity to justification by molecular biology30. GWAS

automatically assigned their top SNPs to their closest protein-
coding gene(s), yet a majority of these variants operate through
different genes; commonly very distant to the original association
signal31. It is becoming increasingly clear that DNA variants may
regulate expression of remote genes through interactions facili-
tated by chromatin looping32. High-throughput chromosome
conformation capture studies can illuminate how the regulatory
sequence variants can be brought into physical contact with a
linearly distant target (i.e. eGene). Such studies will be necessary
to further the functional interpretation of CKD-dt GWAS
findings.

The existence of an overlap between GWAS and eQTL analyses
does not automatically mean that the identified eGene is the
driver of the association between the SNP and CKD. Indeed,
several other molecular scenarios including linkage (whereby two
separate variants in LD are independently linked to the GWAS
and expression signal) and pleiotropy (whereby the same genetic
variant is associated with the gene expression and the phenotype
in an independent manner) are recognised consequences of the
apparent union of signals from GWAS and eQTL analysis33. Our
results are robust to the alternative explanations, with the caus-
ality being confirmed in more than one MR method and the
analyses being immune to the presence of heterogeneity and
pleiotropy.

One of the most important deliveries of this project is the
illumination of a molecular mechanism underlying an association
between a common and functionally neutral variant on chro-
mosome 1 (rs2049805) and several CKD-dt in a previous
GWAS34. The GWAS signal was initially thought to operate
through either MTX1 or GDA genes, none of which exhibits a
particularly strong pathophysiological connection to the kidney34.
Our cis-eQTL studies uncovered that two other genes within this
locus (GBAP1 and MUC1) act as the renal expression partners for
the GWAS signal, but only one of them (MUC1) is causally linked
to the risk of CKD. MUC1 encodes a membrane-bound glyco-
protein present on the apical surface of epithelial cells as a part of
the mucosal barrier against exogenous insults35. Renal expression
of MUC1 has been localised to the loop of Henle and the distal
nephron (including the collecting ducts). Single rare autosomal
dominant mutations in this gene are a known cause of MCKD
type 1—a monogenic form of CKD presenting with renal cysts
and a progressive drop of eGFR36. Our data uncovered that
rs4072037 (one of the common variants in strong LD with the
sentinel GWAS SNP) influences the renal expression of MUC1
through an alternative splicing mechanism. Indeed, acting as an
alternative splice site acceptor, rs4072037 stimulates renal pro-
duction of aMUC1 mRNA isoform with a 27-nucleotide deletion.
Renal expression of this specific MUC1 isoform shows stronger
causal relationship with the drop in eGFR than other MUC1
mRNAs or in fact total MUC1 expression. Further studies will be
required to uncover the exact cellular mechanisms underpinning
the association between CKD and the alternatively spliced iso-
form of MUC1, but it is tempting to speculate that it may impair
the physiological qualities of the mucus layer possibly through
altering the physico-chemical properties of the N-terminal region
of the isoform. Interestingly, a recent proteomic analysis of urine
revealed that urinary excretion of MUC1 is associated with the
risk of renal impairment in the general population37 and that the
diagnostic value of urinary MUC1 to predict eGFR decline was
actually stronger than that of microalbuminuria37.

We are aware of both certain limitations and strengths of our
analysis. For example, to maximise the power of gene discovery
we had to combine many available resources with transcriptome-
derived information on the human kidney. In particular, gene
expression-phenotype meta-analyses conducted in Nephroseq
were based on data from several different studies and included
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patients with different aetiologies of CKD. This may have resulted
in a degree of phenotypic heterogeneity impeding on our power
to uncover genes of relevance to CKD. The development of large-
scale resources integrating genotype information with renal gene
expression profiles from populations with lower degree of phe-
notypic heterogeneity should help to refine existing and uncover
new molecular mechanisms underlying the predisposition to
CKD in the future. On the other hand, our study is based on the
largest number of RNA-seq-derived transcriptomes of apparently
normal human kidneys collected for a purpose of eGene dis-
covery. This sample size may explain why the number of renal
eGenes for CKD-dt GWAS SNPs identified by us is much larger
(by approximately 4-fold) than in the previous report that used
fewer than 100 kidneys13.

The progress in CKD management has been hampered by the
limited knowledge of its genetic mechanisms. Our study has
contributed to the narrowing down of this research-practice gap
by highlighting the specific genes whose tissue expression
explains the genetic susceptibility to CKD uncovered by GWAS.
Some of the uncovered kidney genes whose RNA or protein
products are clinically measurable (i.e. MUC1) may become
attractive targets for the development of future diagnostics, that
is, to detect an early decline in kidney health prior to the irre-
versible drop in eGFR. GWAS signals and their eGenes are also
promising targets for the development of future treatments.
Indeed, pharmacological therapies informed by genomics are
already available for patients with cancer/cardiovascular disease
but not yet those with kidney disease. To this end, further omics-
based analyses of the kidney could help to catalyse the conversion
of the current treatment of CKD from the management largely
based on its modifiable risk factors into tailored
nephroprotection.

Methods
Ethical compliance. The studies adhered to the Declaration of Helsinki and were
approved/ratified by the Bioethics Committees of the Medical University of Silesia
(Katowice, Poland), Bioethics Committee of Karol Marcinkowski Medical Uni-
versity (Poznan, Poland), Ethics Committee of University of Leicester (Leicester,
UK) and the University of Manchester Research Ethics Committee (Manchester,
UK). Informed written consents were obtained from all individuals recruited into
the TRANSLATE Study. For the deceased donors from TRANSLATE-T, the
consent was obtained from the members of the family.

General characteristics of the discovery populations. The TRANSLATE study
recruited patients diagnosed with unilateral non-invasive renal cancer, eligible for
elective nephrectomy and with no apparent history of primary nephropathy14,15.
Phenotyping included taking personal history (by the use of coded questionnaires),
physiological measurements (including height, weight, waist circumference, blood
pressure) and securing blood/urine samples for further biochemical/molecular
analysis14,15. Small fragments of renal tissue were taken directly from the healthy
(unaffected by cancer) pole of the kidney immediately after nephrectomy for
further DNA/RNA extractions14,15 and renal histology. A recent extension of the
TRANSLATE study (TRANSLATE-T) conducted “zero time” pre-implantation
biopsy from deceased donors’ kidneys prior to transplantation38. A needle biopsy
samples were collected within 6–28 h since the extraction time (donation after
brain death)38. The material from each kidney biopsy sample was then used for
further molecular processing. Basic clinical information about the donors was
collected from available hospital documentation.

DNA was extracted from the frozen kidney samples (upon prior
homogenisation) using Qiagen DNeasyBlood and Tissue Kit. The extracted DNA
was hybridised to Infinium® HumanCoreExome-24 beadchip array composed of
547,644 markers. Genotype calls were made using GenomeStudio.

RNA was extracted from kidney samples immersed in RNAlater using RNeasy
Kits (Qiagen). Upon checking of RNA purity and integrity, a total of 1 μg of kidney
RNA was subjected to Illumina TruSeq RNA Sample Preparation protocol with
poly-A selection. The TRANSLATE libraries were sequenced using either 100 bp
reads (on an Illumina HiSeq 2000) or 75 bp paired-end reads (on an Illumina
NextSeq or HiSeq 4000) producing an average of 31 million paired reads and 5.3
Gb per sample.

TCGA is a National Institute of Health (NIH)-sponsored resource with tissue
samples collected from over 10,000 individuals with cancer39. Apart from cancer
specimen, TCGA collected neo-plastically unaffected sample from the removed

organ (where appropriate). Similar to the TRANSLATE study, a sample from
cancer-unaffected part of the kidney was secured after its surgical removal and used
for RNA isolation and transcriptome profiling. These samples have been used as a
source of information on normal kidney transcriptome in both our and others’
studies13,15. TCGA individuals have only basic demographic information (age, sex,
ethnicity) available for analysis40.

DNA was extracted from blood using QiAAmp Blood Midi Kit40, hybridised
with probes on Affymetrix SNP 6.0 array composed of 906,600 probes; genotype
calls were conducted using the Birdseed algorithm. TCGA genotype data were
downloaded from the GDC Portal’s legacy archive. Five hundred and twenty three
cases/files were identified using the following query criteria: “project
name”—“TCGA”, “primary site”—“kidney”, “sample type”—“solid tissue normal”,
“race”—“white”, “data category”—“simple nucleotide variation”, “data
type”—“genotypes”, “experimental strategy”—“genotyping array” and
“access”—“controlled”. We downloaded the data for 110 individuals who had
matching RNA-seq data from normal kidney tissue.

Kidney RNA was extracted from snap-frozen samples using a modification of
the DNA/RNA AllPrep Kit (Qiagen). The mRNA libraries were sequenced with 50
bp reads on a HiSeq 2000 yielding an average of 80.6 million paired reads and 7.9
Gb per sample.

We used the same set of quality control filters for genotyped markers in both
the TRANSLATE study and TCGA. Variants were excluded if their genotyping rate
was <95%, they mapped to Y or mitochondrial DNA or had ambiguous
chromosomal location or violated Hardy–Weinberg equilibrium (HWE) (P <0.001)
or had minor allele frequency (MAF) <5%. In total, 272,343 variants passed the
quality control criteria in the TRANSLATE study and 659,711 in TCGA.

All individuals in both the TRANSLATE study and TCGA were subjected to the
same set of quality control filters. Individuals were excluded if their genotype
missing rate was >5%, their heterozygosity rate was outside ±3 standard deviations
from the mean value, they failed cryptic relatedness test based on identity-by-
descent (IBD), they had ancestry other than European or had discordant sex
information. The genotype missing rate and the heterozygosity rate were calculated
using plink. The analysis of cryptic relatedness based in IBD was conducted using
king41. Individuals’ ancestry was determined using SNPWeights42 and
EIGENSTRAT43. Screening for inconsistency between declared and genetic sex was
carried out using plink. Two individuals from the TRANSLATE study and seven
from TCGA were excluded based on the above quality control filters.

Genotype imputation was conducted using minimac3 algorithm with 1000
Genomes Project’s Phase 3 European population as the reference panel on
Michigan Imputation Server. The total number of imputed variants was 47,100,201
in the TRANSLATE study and 47,101,134 in TCGA. The following post-
imputation quality control criteria were applied to all imputed markers. We
excluded variants mapping to the same genomic position, non-SNPs, variants with
imputation coefficient R2 <0.4, variants with MAF <5% or those violating HWE (P
<1 × 10-6). Both MAF and HWE were calculated in each study separately based on
data for individuals who passed genotype quality control and had matching
transcriptome information. Supplementary Table 9 shows numbers of markers
flagged for exclusion based on post-imputation quality control filters. A total of
5,760,291 and 5,892,571 survived post-imputation quality filters and 5,499,848
common SNPs were included in further analyses of the TRANSLATE study and
TCGA, respectively.

Genotype principal components were calculated using plink and only using
genotyped data that passed all genotype quality control filters. In line with the
GTEx project9,44, the top three principal components were used as independent
variables in all downstream analyses (where appropriate). In the TRANSLATE
study, the top three principal components accounted for 16% of variation in
genotypes and in TCGA for 17%. Similar percentages were reported in the GTEx
project.

Processing of next-generation RNA-seq data. All generated raw reads were
stored in FASTQ format. The base call and read quality were evaluated using
FastQC (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The input
library complexity was assessed using RNA-SeQC. The pre-processing of reads for
adapter trimming was conducted by Trimmomatic. The reads were then pseu-
doaligned to the GRCh38 Ensembl transcriptome reference (Ensembl release 83).

Data were downloaded from the GDC Portal using the following query criteria:
“project name”—“TCGA”, “primary site”—“kidney”, “sample type”—“solid tissue
normal”, “race”—“white”, “data category”—“raw sequencing data”, “data
type”—“aligned reads” and “experimental strategy”—“RNA-Seq”. In total, 112
cases/files were identified; 103 of them had matching array-based DNA
information that passed all quality control filters.

Renal expression was quantified in transcripts per million (TPM) at a transcript
level using Kallisto. Transcript expression values were then summed to give gene-
level expression values. A gene was selected for downstream analyses if its
expression in at least 50% of kidney samples within each population/sequencing
batch was >0.1 TPM. Genes not meeting the above threshold of expression
criterion or those on sex chromosomes were excluded from further analyses.

Prior to any analyses, all sequenced samples underwent quality control checks
including: (i) number of total reads, (ii) D-statistic test (a measure of within tissue
sample—sample correlation)41, (iii) sex compatibility check (consistency between
the reported sex and gene expression sex—determined based on XIST and male-
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specific region of the Y-chromosome genes expression), (iv) verification of correct
sample labelling based on comparing DNA base calls obtained from RNA-seq
using GATK45 and DNA genotype calls and (v) visual inspection of principal
component plots of processed TPM data.

In the TRANSLATE study, 22 samples were excluded because their D-statistic
was <0.75. In TCGA, one sample was excluded because it did not pass sex
compatibility check and two more samples because they appeared as outliers in
principal component plots of processed TPM data. The final number of samples
that passed all sample quality control filters and had matching genotype data was
180 in the TRANSLATE study and 100 in TCGA.

After applying gene expression quality control filters, 14,518 renal genes were
identified for further analyses in the TRANSLATE study and 19,862 in TCGA.

Prior to any statistical analyses, a set of normalisation procedures was applied to
gene expression data measured in TPM in both populations. First, robust quantile
normalisation46 across all samples was applied to the logarithm of TPM values with
offset of one (the robust version of quantile normalisation uses medians rather than
the means of empirical quantiles). Second, extreme outliers (observations with a
residual three times interquartile range below/above the lower/upper quartile of the
model residuals) at the gene level were identified using robust linear regression and
replaced with imputed values from re-fitted models without outliers. Third, for
each gene, the TPM values were normalised using rank-based inverse normal
transformation47. Fourth, probabilistic estimation of expression residuals48 (PEER)
was used to estimate hidden factors in the expression data: 30 hidden factors for
the TRANSLATE study and 15 for TCGA. The number of hidden factors was
determined based on sample sizes as suggested in the GTEx project9,44.

cis-eQTL analysis. A total of 180 TRANSLATE study individuals and 100 subjects
from TCGA were included in cis-eQTL analyses. Of 180 TRANSLATE study
subjects, 14 were recruited into TRANSLATE-T. The TRANSLATE study and
TCGA provided information on renal expression of 14,518 and 19,862 genes,
respectively. For the purpose of cis-eQTL meta-analysis, we used 14,155 kidney
genes common to both studies. Further 6070 genes passed all quality control filters
in one dataset (either TRANSLATE or TCGA). The same panel of 5,499,848 SNPs
passed all quality controls in both studies and was used consistently in all cis-eQTL
analyses in both studies. For all genes, transcripts and variants we used GRCh37
coordinates in all downstream analyses. The eQTL analysis was conducted using
linear regression models, where the association between the genotype dosage and
the normalised gene expression was adjusted for age, sex, the top three genotype
principal components from autosomal DNA, PEER-derived hidden factors (as
specified above) and TRANSLATE/TRANSLATE-T indicator (source of kidney
tissue: nephrectomy or biopsy). An SNP was included in analysis if it was located
within 1 Mb from the nearest boundary of the gene. The eQTL analyses were
conducted initially in each study separately. If a gene was present in kidneys from
only one study, the final statistical estimates of association between the gene and its
in-cis SNPs were derived from this study. For renal genes expressed in both studies,
the nominal P-values for association between SNPs and gene expression were
combined using weights based on inverse variances of study-specific effect esti-
mates in fixed-effect meta-analysis. All eQTL analyses were carried out using
MatrixEQTL R package49.

The first level of multiple testing correction was computed for each gene
separately based on its all in-cis SNPs and permutation test. A total of 2000
permutations were performed on each SNP–gene pair. At each permutation (i)
gene expression values coupled with covariates (except genotype and principal
components) were randomly arranged, (ii) the association between each gene and
each of its cis-SNPs was re-estimated, (iii) the re-estimated P values of each
gene–SNP pairs from the two studies were combined (where appropriate, i.e. for
common genes for both studies as described above). For each gene, the smallest
combined P value was recorded providing the empirical distribution of the smallest
meta-P value for each gene. Then, the smallest meta-P value for each gene was
adjusted based on the gene’s empirical distribution of the smallest meta-P values.
Finally, the permutation-adjusted meta-P values (one for each gene) were used to
calculate FDR using qvalue R package. Genes with q values <5% were defined as
eGenes.

To determine a set of SNPs that had a statistically significant association with
the expression of their in-cis genes, we adopted the same strategy as the GTEx
project9,44. First, a genome-wide empirical (permutation-adjusted) P value
threshold, Pt, was chosen as the permutation-adjusted P value for the gene whose q
value was closest to 5%. Then, assuming that Fi(x) is the empirical cumulative
distribution function of the smallest meta-P value for the ith gene (estimated using
permutations), the threshold for the nominal meta-P values for the ith gene was
defined as Pt;i ¼ F�1

i Ptð Þ, where F�1
i �ð Þ is the inverse function of Fi(·).

Variants associated with CKD-dt in previous GWAS. We took advantage of the
catalogue of 107 independent SNPs implicated in GWAS of CKD-dt from Ko
et al.13. We then identified further 10 SNPs associated with CKD-dt by searching
GWAS catalogue and PubMed against the following criteria: (i) statistically sig-
nificant (P <5 × 10−8) association with one of the following phenotypes; creatinine
levels, eGFR, cystatin, blood urea nitrogen, urinary albumin–creatinine ratio, CKD,
end-stage renal disease, nephropathy, proteinuria, (ii) r2 <0.2 with the SNPs in the
catalogue by Ko et al.13. Thus, a total of 117 independent CKD-dt GWAS SNPs

together with 2672 statistical proxies (r2 >0.8) were available for our further ana-
lysis (Supplementary Tables 15–16).

Kidney gene expression profiles in Nephroseq. We used Nephroseq19—a web-
based platform for integrative data mining of comprehensive renal disease gene
expression datasets—as a resource for association analysis between 35 eGenes and
CKD-dt. A total of 214 kidney samples from five eligible studies by Nakagawa
et al.50 (53 individuals—48 cases with CKD and five controls), Ju et al.51 (52
individuals—21 CKD patients and 31 controls), Peterson et al.52 (31 individuals—
25 lupus nephritis patients and six controls), Reich et al.53 (31 individuals—25 IgA
nephropathy cases and six controls) and Berthier et al.54 (47 individuals—32 lupus
nephritis cases and 15 controls) were available for analysis of association between
renal eGenes and qualitative CKD-dt (based on comparison of cases and controls).
In each of these studies, CKD-dt cases had a different renal diagnosis including
CKD50,51, lupus nephritis52–54 or glomerulonephritis53. A total of 350 kidney
samples from five eligible studies by Ju et al.51 (186 samples), Sampson et al.55

(49 samples), Reich et al.53 (24 samples), Rodwell et al.56 (69 samples) and Peterson
et al.52 (22 samples) were available for analysis of association between eGFR and
eGenes. Rodwell et al.56 samples were the only kidney tissues secured from patients
without kidney disease. All gene expression profiles were originally generated in
those studies using microarrays; the data were then deposited in and re-processed
by Nephroseq to facilitate analyses of association between individual genes and
different renal phenotypes. For each of 29 available genes we generated a quanti-
tative measure of association with the renal outcome. For qualitative phenotypes,
this was a fold-difference (log base 2) in gene expression between the cases
(patients with kidney disease) and controls. In analysis of association between
eGenes and eGFR, we used Pearson’s correlation coefficient. The measures of
association were then meta-analysed across studies by Stouffer’s Z method
(weighted based on sample size and the binomial distribution of P values57,
respectively)—for CKD case–control studies and Olkin–Pratt fixed-effect meta-
analysis approach58—for eGFR studies. The level of statistical significance from the
meta-analysis was then corrected for multiple testing using Bonferroni adjustment.
The corrected level of statistical significance was calculated at 0.0017. Hetero-
geneity was examined using Cochran’s Q test.

Analyses in GTEx project. This NIH-sponsored publicly available database brings
together information from DNA analysis and RNA-seq-derived transcriptome-
wide profiles of 53 normal human tissues collected from 544 post-mortem donors
(https://www.gtexportal.org/home/tissueSummaryPage, accessed 31 July 2017)9.
For the purpose of cis-eQTL analysis, we selected data from 44 tissues (with a
number of individual matching genotype-expression samples of at least 100)9.
With only 32 samples, the kidney tissue was not available for this analysis. Basic
demographic information (age, sex and ethnicity) was obtained directly from the
GTEx portal. In total, we used information from 9958 samples from 44 tissues for
several purposes. First, to identify kidney-specific eGenes we examined the overlap
between eGenes identified in the discovery renal dataset with the set of eGenes
identified for each of 44 non-renal tissues. The information for all statistically
significant eSNP–eGene pairs identified in each tissue separately was obtained from
GTEx cis-eQTL analysis (v7 release)9,44. Second, we used the same type of overlap
analysis to examine what proportion of the transcriptionally active CKD-dt GWAS
SNPs is exclusive to the kidney. We used all statistically significant eSNP–eGene
pairs from cis-eQTL analysis9,44 in v7 GTEx. These were obtained from the GTEx
portal (data accessed October 2017). Briefly, cis-eQTLs were identified for each
tissue using a window of 1Mb upstream and downstream from each transcription
start site with a significance threshold of 5% FDR. The cis-eQTL analysis was
conducted using genotypes of variants with MAF >0.01 from whole-genome
sequencing and expression values of genes with expression above 0.1TPM in 20%
of samples per tissue and at least six reads in at least 20% of samples. Third, we
adopted a recently developed method to identify significant eQTLs in collections of
mixed tissues by combining the results at each SNP through meta-analysis of
samples from different tissues. The method, RECOV20, was developed based on the
RE2 meta-analysis framework59 and uses a covariance matrix to explicitly model
the correlation of an SNP effect on the same gene’s expression in multiple tissues.
Specifically, RECOV development was motivated by the insight that the same SNP
may have similar effect on the same gene in related tissues (which was not con-
sidered by the previous methods)20. Summary statistic (i.e. SNP effect and its
variance) at each SNP in 44 tissues from GTEx eQTL analysis (v7 release)9 was
downloaded from GTEx portal (data accessed October 2017). The statistical sig-
nificance of the identified eQTLs was assessed by meta-P values and those with
Benjamini–Hochberg FDR <0.05 were considered as statistically significant.

Functional annotations. The 15-state chromatin segmentation in adult kidney
tissue was calculated from ChIP-seq signal data for four different histone mod-
ifications (H3K4me1, H3K4me3, H3K36me3, H3K9me3) in adult kidney tissue
from Roadmap Epigenomics GEO Series GSE19465 (data accessed September
2017). The input bed files were binarised (using the background input signal) and
combined into a single chromatin state segmentation using ChromHMM60 fol-
lowing the standard Roadmap Epigenomics protocol23 for the 15-state segmenta-
tion. The 15-state model file from Roadmap (http://egg2.wustl.edu/roadmap/
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web_portal/chr_state_learning.html#core_15state), data accessed September 2017)
was used for the final segmentation by ChromHMM. These data were used to
provide functional context to kidney eSNPs and CKD-dt GWAS SNPs.

Ensembl VEP. Ensembl VEP GRCh37, release 90 (http://grch37.ensembl.org/
Homo_sapiens/Tools/VEP?db= core) was used to quantify the proportion of
CKD-dt GWAS SNPs (and their proxies) that lead to changes in the sequence of
exons in both coding and non-coding transcripts. The functional annotations were
obtained for each of the core SNPs and all statistical proxies and then summarised
by each core SNP. The data were obtained directly from Ensembl GRCh37 (release
90) using the biomaRt R package.

The hg19 CpG island track “cpgIslandExt” was downloaded from the UCSC
table browser (accessed 9 February 2018). It contains all CpG islands in the human
genome with a GC content >50%, length >200 bp and a ratio of observed CG
dinucleotides to expected CG dinucleotides (as determined by the number of
individual C and G nucleotides in the region) of >0.6.

All CKD-dt GWAS SNPs (and their proxies) were converted to vcf format and
uploaded to the CADD web server v1.3 (accessed 10 May 2018, http://cadd.gs.
washington.edu) for annotation and scoring. The generated scores should be
interpreted as measures of biological significance of a given SNP. The outputs were
ordered by the PHRED-scaled CADD score from largest to smallest. All PHRED-
scaled scores and SNP summary information are provided in Supplementary
Table 20.

Enrichment analyses. We first tested whether the overlap between the kidney
eSNPs and SNPs from GWAS of CKD-dt was greater when compared to an overlap
between kidney eSNPs with random set of common autosomal SNPs. A total of 100
random sets of autosomal SNPs (and their proxies in LD at r2 >0.8) were used as
reference SNPs61. These sets were generated with SNPsnap using unique kidney
eSNPs as the input. SNPs were matched for MAF, number of SNPs in LD (“LD
buddies”), gene density and distance to the nearest gene, allowing for maximum
deviation of ±10% for MAF and ±50% for the other three criteria. All matched sets
were non-overlapping with the input variants. The 1000 Genomes Phase 3 Eur-
opean population was used as the genotype reference panel. The statistical sig-
nificance was calculated using Fisher’s exact test.

We tested whether kidney eSNPs are over-represented amongst GWAS CKD-
associated SNPs when compared to non-CKD-dt GWAS SNPs. We searched
NHGRI–EBI GWAS catalogue downloaded on 17 October 2017 (released 10
October 2017) as the source of information for GWAS SNPs. Entries with missing
positional or OR/beta information were removed and the positions of the
remaining entries were converted to hg19 with the Bioconductor BiomaRt R
package. We identified 13,168 unique genetic variants significantly associated with
a trait at genome-wide level (P <5 × 10−8). All SNPs associated with CKD-dt were
removed and the remaining 12,984 GWAS non-CKD-dt SNPs (and their proxies in
LD of r2 >0.8) were used for enrichment analysis. The statistical significance of the
enrichment analyses was calculated using Fisher’s exact test.

We divided 53 CKD-dt GWAS non-HLA eSNPs into those with kidney-specific
eGenes and those with non-exclusively renal eGenes (ubiquitous). We then
examined each group for association with 408 non-CKD traits and phenotypes in
previously conducted GWAS using Phenoscanner21. We used P <5 × 10−8 as a
threshold for identification of significantly associated phenotypes in GWAS. The
statistical difference for over-representation amongst non-CKD-dt GWAS SNPs
between both groups was examined using Fisher’s exact test.

Colocalisation analysis. Colocalisation between CKD-dt GWAS and kidney cis-
eQTL signals was examined using the RTC62. In brief, given the abundance of cis-
eQTLs in the human genome, the interval overlap only is not sufficient to claim
that a GWAS SNP and a cis-eQTL SNP tag the same causal variant25,62. However,
if the GWAS SNP and the cis-eQTL indeed tag the same causal variant, con-
ditioning on the GWAS SNP in regression analysis is expected to remove any
significant association of the cis-eQTL signal observed within the locus63. For all
genes with a significant cis-eQTL in a given interval, RTC approach takes the
residuals of the standard linear regressions of normalised expression values of the
genes on the GWAS SNP, namely pseudo-phenotypes, to re-examine cis-eQTL
regressions in each test interval. Each SNP is then ranked based on their corre-
sponding P values in the regressions using pseudo-phenotypes—the higher P value
the smaller the rank. We assessed the impact of correcting for the GWAS SNP
effect on each of the SNPs in the tested interval, using the RTC score of each SNP
((N-rank)/N, where N is the total number of the SNPs in the interval); the higher
the rank the smaller the score. If the same functional variant is tagged by the
GWAS SNP and the cis-eQTL SNP, one would expect a high impact of correction
for the GWAS SNP effect, and thus, a high P value in the pseudo-phenotype
regression and a small rank and a high RCT score62. In our analysis, individual
level data from 180 TRANSLATE and 100 TCGA kidney transcriptomes were
pooled together to calculate RTC scores for each of 26 CKD-dt GWAS non-HLA
cis-eQTL signals. Each of the examined loci was defined based on recombination
coldspots63 and we used a RTC score ≥0.9 as indicative for the colocalisation signal.

MR studies. MR analyses were conducted to examine whether seven kidney
eGenes implicated in colocalisation studies are causally related to changes in eGFR.
Summary meta-analysis data for association between these SNPs and eGFR from
133,413 individuals was downloaded from the CKDGen Consortium6. Summary
data for association between SNPs and gene expression was obtained from our cis-
eQTL analysis conducted in the TRANSLATE study/TCGA. The most significant
independent SNPs (r2 <0.2, P <0.08) associated with expression of eGenes were
selected for the analyses as instruments. We used three MR methods (robust
inverse variance-weighted (IVW) method, penalised weighted median method and
robust MR-Egger regression)64 to estimate the causal effect of gene expression on
eGFR. These methods provide protection against failure of assumptions of
instrumental variables. The robust IVW and penalised weighted median methods
down-weight the contribution to the causal estimate of candidate instruments with
heterogeneous ratio estimates. Robust MR-Egger regression allows for all instru-
mental variants to be invalid and provides robust estimate with robust regression64.
We set the following criteria for the indication of positive finding of causality:
causal effect estimates from at least two of the three robust methods must be
significant after multiple testing corrections. Point estimates and standard errors
were calculated for each method separately. Since SNP–gene expression associa-
tions were estimated using standardised gene expression, the MR estimates can be
interpreted as the effect on eGFR per 1-SD increment in gene expression. As
sensitivity analyses, MR-Egger regression was used to detect pleiotropy and het-
erogeneity. Bonferroni adjustment was used for multiple corrections and the sig-
nificance level was calculated at 0.05/7= 0.0071. MR and sensitivity analyses were
implemented in the R package MendelianRandomization65.

Kidney DNA methylation analysis. To determine the pattern of 5-methylcytosine
residues in kidney DNA, we used 96 TRANSLATE study renal DNA samples (750
ng). DNA underwent bisulphite conversion with the use of the Zymo EZ DNA
Methylation Kit. The converted DNA samples (4 μL, at 50 ng μL−1 concentration)
were then hybridised with the Illumina HumanMethylation450 BeadChip array.
The arrays were processed through Illumina confocal laser scanning system and the
extent of regional methylation was quantified in M values—the latter correspond to
the ratio of methylated intensity to un-methylated intensity and have statistical
advantage over commonly used β-values66.

Out of 96 TRANSLATE study individuals whose kidney DNA was hybridised to
HumanMethylation450 BeadChip array, two were excluded because of sex
information inconsistency between DNA methylation data and the reported sex
data. One individual was excluded because of missing clinical information. All
remaining 93 samples had call rate (calculated based on detection P value threshold
of 1 × 10−16) of at least 98%.

Out of the 485,512 probes, 15,311 probes were excluded due to a call rate below
95% (based on detection P value threshold of 1 × 10−16). Eleven thousand six
hundred and forty eight probes on X/Y chromosomes, 29,233 cross-reactive probes
and 17,302 probes containing common SNPs (MAF ≥ 1%) were also excluded. This
left 418,581 probes available for downstream analyses.

DNA methylation data that passed the above quality control filters was
processed using the “dasen” method from the wateRmelon R package67. Each
consonant letter in “dasen” stands for a specific type of data normalisation: “d”—
background adjustment by adding the offset between Type I and Type II probe
intensities to Type I intensities, “s”— between-sample quantile normalisation
applied to Type I and Type II probes separately and “n”—indicating no dye bias
adjustment (the two vowels, “a” and “e”, were added by the authors for ease of
pronunciation). In addition to the wateRmelon R package, the following R
packages were used for pre-processing DNA methylation data: minfi29 and
missMethyl.

For the purpose of the MUC1-focused analyses, we selected six CpG sites
mapping to the promoter region of MUC1. We examined an association between
methylation at each of these sites and the genotype of rs12411216 under an additive
model of inheritance using linear regression. This analysis was conducted in 93
TRANSLATE study individuals with matching DNA methylation data and array-
based genotypes. The analysis of association between the extent of methylation at
each of six MUC1 promoter CpG sites and renal expression of MUC1 was
conducted using the same cis-eQTL gene expression values in 82 TRANSLATE
study individuals with matching transcriptome and kidney methylome data.

Quantification of transcript-specific abundance of MUC1 isoforms. Transcript
abundances were estimated by Kallisto68 from all available kidney samples (180
from TRANSLATE study and 100 from TCGA) and input data used in the cis-
eQTL analysis described above. Kallisto was run in a manner identical to the global
cis-eQTL analysis except that a single additional transcript sequence
(ENST00000612778 with 27 bp of exon 2 removed) was added to the reference
transcriptome. The edited transcript sequence was labelled as “ENST00000612778-
as”. TotalMUC1 gene expression was calculated as for the purpose of the global cis-
eQTL analysis (the sum of all MUC1 mRNA TPM values in each sample). All
transcript and gene expression values were transformed and normalised in a
manner identical to the cis-eQTL analysis.

Analysis of association between MUC1 mRNA isoforms and genotype was
conducted under an additive model of inheritance by multiple regression whereby
the renal abundance of each MUC1 isoform was a dependent variable, SNP
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genotype, age, sex, batch, technical hidden factors and three principal components
were used as independent variables. Robust IVW method was used to examine if
MUC1 isoforms are causally associated with eGFR. MR-Egger regression was used
to detect pleiotropy and heterogeneity. Bonferroni adjustment was used to correct
for multiple testing and the corrected level of significance was calculated at 0.05/11
= 0.0045 (adjusted for the number of all MUC1 isoforms and total MUC1). MR
and sensitivity analyses were implemented in the R package
MendelianRandomization65.

Bioinformatic analysis of MUC1 isoforms. The translated peptide sequence of the
alternatively spliced MUC1 transcript was identified using the ExPaSy server
(https://web.expasy.org/translate/). This protein sequence was compared to isoform
ENSP00000484824 reported in the Ensembl database, and isoform P15941-1
(https://www.uniprot.org/uniprot/P15941) found in the UniProtKB database.

The pairwise protein alignments were computed using the Needleman–Wunsch
algorithm69 with default parameters (https://www.ebi.ac.uk/Tools/psa/
emboss_needle/). Alignment of the N-terminal regions of each sequence are
presented with amino acids coloured according to their physico-chemical
properties70.

Overall prediction of functional domains and motifs was performed with
InterPro (https://www.ebi.ac.uk/interpro/). Identification of signal peptides and
transmembrane regions was completed with SignalP (http://www.cbs.dtu.dk/
services/SignalP/), TMHMM (http://www.cbs.dtu.dk/services/TMHMM/), and
TOPCONS (http://topcons.cbr.su.se/pred/). NetSurfP was used to predict both the
residue accessibility and the secondary structure of the peptides. The secondary
structure predictions (including transmembrane regions and unstructured regions)
were further confirmed with Quick2D (https://toolkit.tuebingen.mpg.de/#/tools/
quick2d). The predicted positions of O-glycosylation and N-glycosylation sites
were obtained from the UniProtKB entry P15941. The primary structure of the
polymorphic peptide region (differing between the reference transcript and the
alternatively spliced transcript) was drawn with PepDraw (http://pepdraw.com).

Reporting Summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings from these investigations are available within the
article and the supplementary data files or are available upon reasonable request to
the authors. The normalised (prior to PEER-adjustment) gene expression data
from the TRANSLATE study are deposited in the public domain at the Dryad
digital repository (https://doi.org/10.5061/dryad.10r1pt0). A reporting summary
for this Article is available as a Supplementary Information file.
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