

Supplemental Material 1. Search strategy

Supplemental Material 2. Funnel plot of BCVA change

Supplemental Material 3. Funnel plot of CRT change

Supplemental Material 4. Funnel plot of IOP change

Supplemental Material 5. Funnel plot of SAE occurrence

Supplemental Material 6. BCVA change – subgroup analysis of nonresistant DME patients

Supplemental Material 7. BCVA change – meta-regression

Supplemental Material 8. CRT change – subgroup analysis of nonresistant DME patients

Supplemental Material 9. CRT change – meta-regression

Supplemental Material 10. Forest plot of IOP change and subgroup analysis of nonresistant DME patients

Supplemental Material 11. IOP change – meta-regression

Supplemental Material 12. Severe ocular adverse events and subgroup analysis of nonresistant DME patients

Supplemental Material 13. Risk of bias assessment (ROB)

Supplemental Material 14. Risk of bias assessment ROBINS-1 (BCVA)

Supplemental Material 15. Subgroup analysis - type of Anti-vegf - BCVA change

Supplemental Material 16. Subgroup analysis - type of Anti-vegf - CRT decrease

Supplemental Material 17. Subgroup analysis - study design - BCVA change

Supplemental Material 18. Subgroup analysis - study design - CRT decrease

Supplemental Material 19. Summary of OCT biomarker

Supplemental Material 1 Search strategy

Primary search steps:

#1 anti- vascular endothelial growth factors

#2 anti-VEGF

#3 ranibizumab

#4 lucentis

#5 aflibercept

#6 eylea

#7 bevacizumab

#8 avastin

#9 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8

#10 ozurdex

#11 intravitreal dexamethasone implant

#12 dexamethasone

#13 #10 OR #11 OR #12

#14 diabetic retinopathy

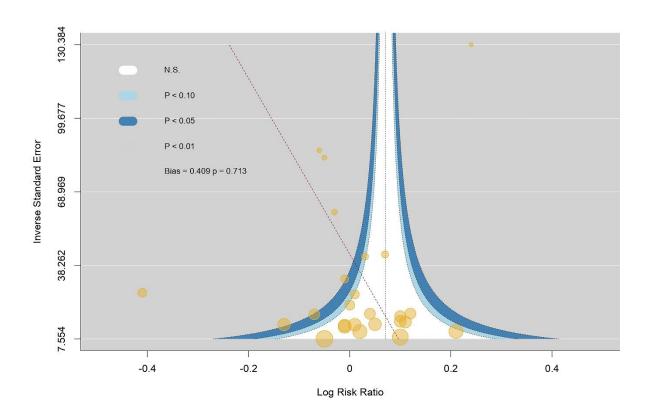
#15 diabetic macular edema

#16 DME

#17 DMO

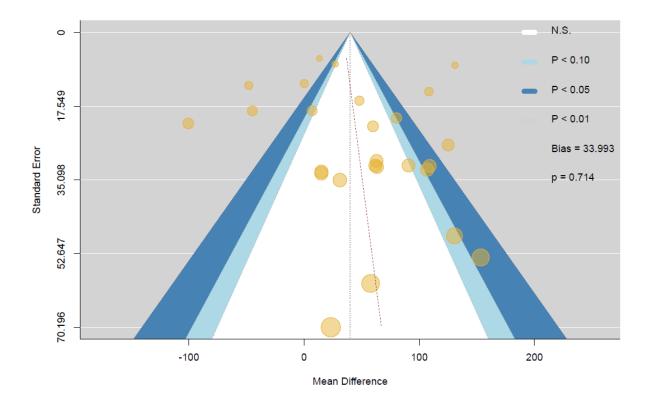
#18 cystoid macular edema

#19 CME

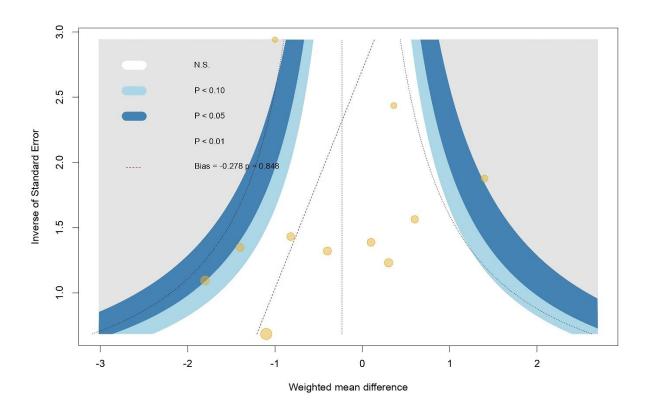

#20 #16 OR #17 OR #18 OR #19

#21 #9 AND #13 AND #20

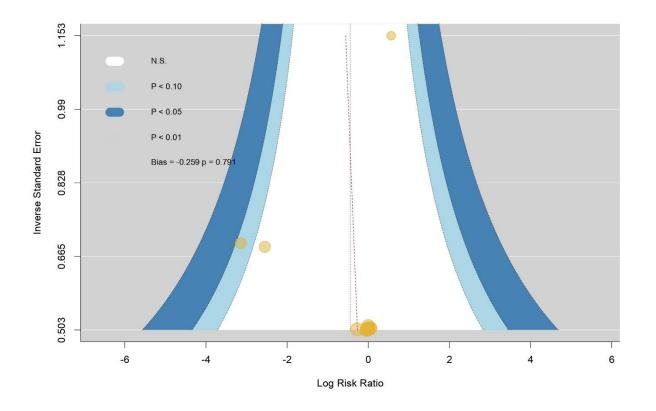
Final syntax in PubMed (an example):



Funnel plot of BCVA change

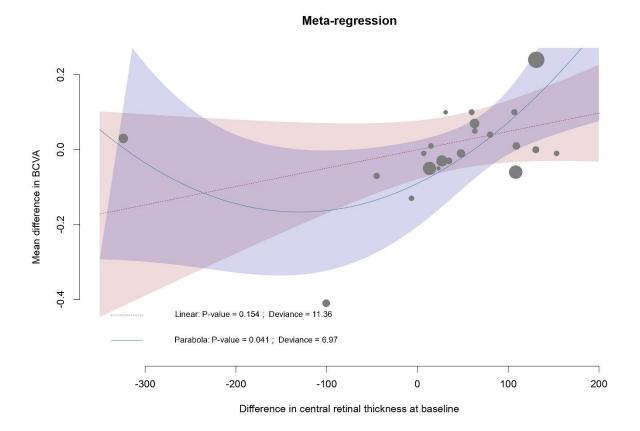


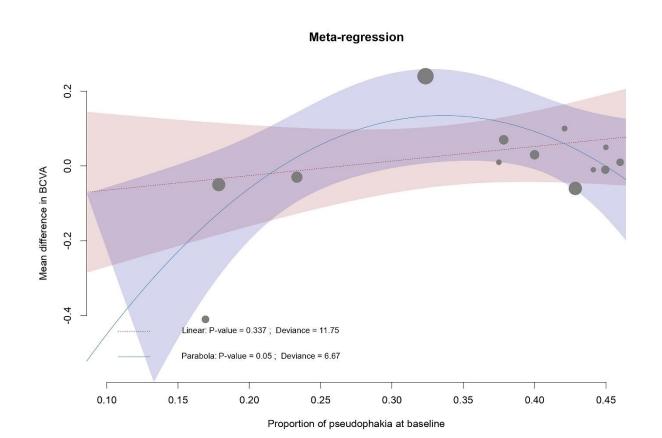
Funnel plot of CRT change



Funnel plot of IOP change

Funnel plot of SAE occurrence

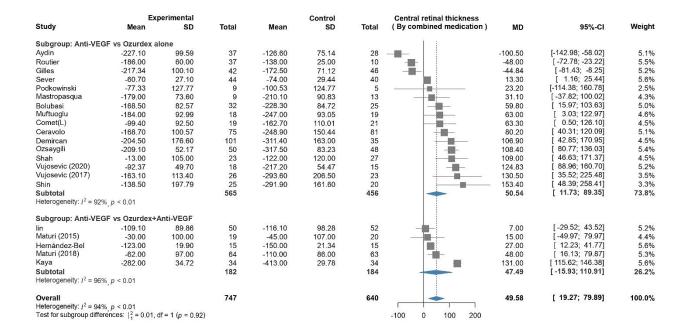




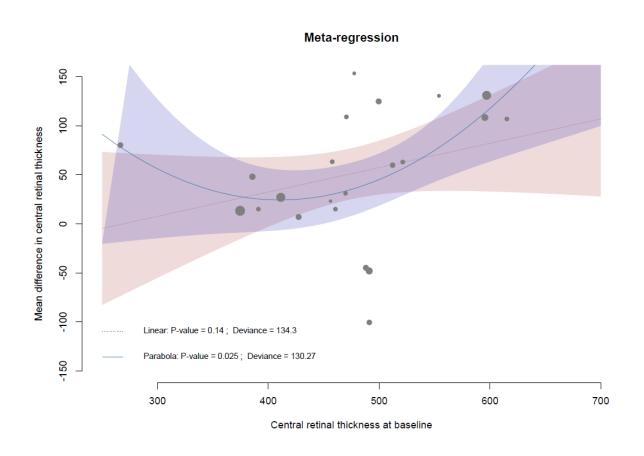
BCVA change – subgroup analysis of nonresistant DME patients

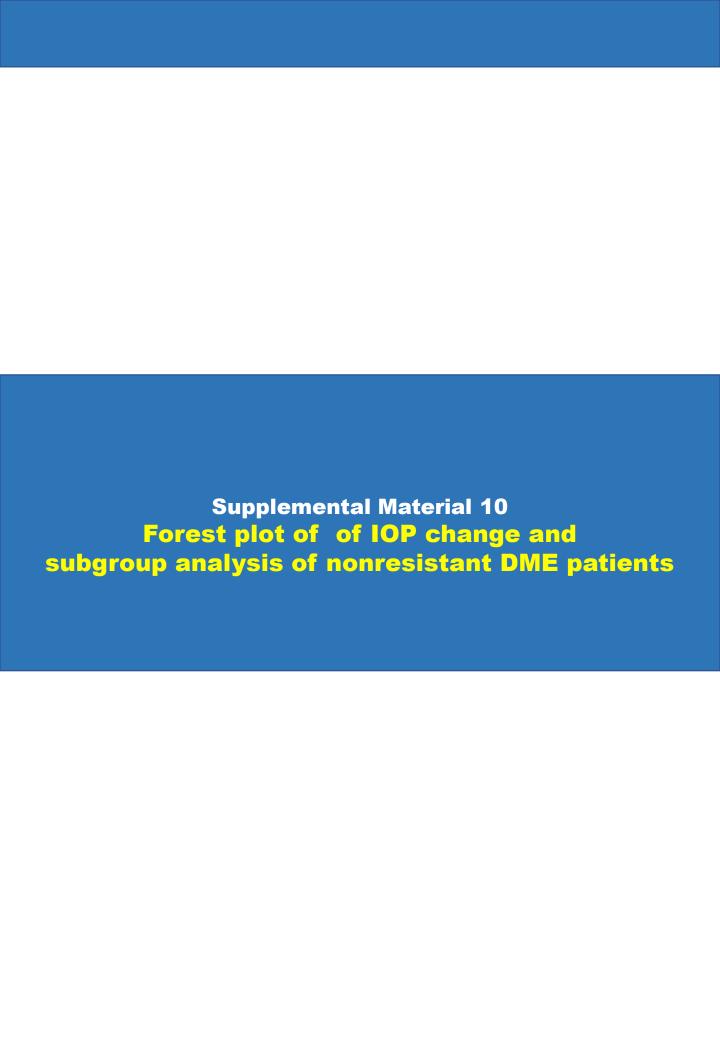
	Expe	rimental			Control		BCVA change			
Study	Mean	SD	Total	Mean	SD	Total	(By combined medication)	MD	95%-CI	Weight
Subgroup: Anti-VE	GF vs Ozurdex	alone					Ī			
Aydin	-0.55	0.17	37	-0.14	0.13	28	-	-0.41	[-0.48; -0.34]	5.1%
Mishra	-0.23	0.32	50	-0.10	0.41	50		-0.13	[-0.27; 0.01]	4.5%
Gilles	-0.18	0.18	42	-0.11	0.33	46		-0.07	[-0.18; 0.04]	4.8%
Ozsaygili	-0.19	0.04	50	-0.13	0.07	48		-0.06	[-0.08; -0.04]	5.3%
Podkowinski	-0.20	0.25	9	-0.15	0.23	5		-0.05	[-0.31; 0.21]	3.3%
Sever	-0.11	0.06	44	-0.06	0.05	40		-0.05	[-0.07; -0.03]	5.3%
Shin	-0.23	0.20	25	-0.22	0.29	20	-	-0.01	[-0.16; 0.14]	4.4%
Vujosevic	-0.13	0.15	26	-0.13	0.17	23	- <u>ii</u> -	0.00	[-0.09; 0.09]	5.0%
Shah	-0.11	0.12	23	-0.12	0.15	27	-	0.01	[-0.06; 0.08]	5.1%
Routier	-0.13	0.05	37	-0.16	0.05	5	T-	0.03	[-0.02; 0.08]	5.2%
Ceravolo	-0.11	0.35	75	-0.15	0.34	81		0.04	[-0.07; 0.15]	4.8%
Comet(L)	-0.14	0.24	19	-0.19	0.22	21	-	0.05	[-0.09; 0.19]	4.5%
Muftuoglu	-0.09	0.08	18	-0.16	0.06	19		0.07	[0.02; 0.12]	5.2%
Demircan	-0.10	0.30	101	-0.20	0.30	35		0.10	[-0.02; 0.22]	4.7%
Mastropasqua	-0.10	0.35	9	-0.20	0.10	13		0.10	[-0.14; 0.34]	3.5%
Bolubasi	-0.30	0.25	32	-0.40	0.25	25	-	0.10	[-0.03; 0.23]	4.6%
Subtotal			597			486		-0.02	[-0.09; 0.05]	75.4%
Heterogeneity: $I^2 = 90^\circ$	%, p < 0.01									
Subgroup: Anti-VE	GF vs Ozurdex	+Anti-VEGF	8							
Hernández-Bel	-0.25	0.05	15	-0.22	0.04	15		-0.03	[-0.06; 0.00]	5.3%
lin	-0.10	0.34	50	-0.09	0.45	52	-1-	-0.01	[-0.16; 0.14]	4.4%
Maturi (2018)	-0.06	0.14	64	-0.05	0.20	63	-	-0.01	[-0.07; 0.05]	5.2%
Maturi (2015)	-0.10	0.25	19	-0.11	0.21	20	- -	0.01	[-0.14; 0.16]	4.5%
Kaya	-0.19	0.02	34	-0.43	0.04	34	T	0.24	[0.22; 0.26]	5.3%
Subtotal			182			184		0.04	[-0.10; 0.19]	24.6%
Heterogeneity: $I^2 = 99$	%, p < 0.01									
Overall			779			670	1	-0.00	[-0.06; 0.05]	100.0%
Heterogeneity: $I^2 = 98$	% p < 0.01									
Test for subgroup diffe	erences: $\chi^2 = 1.19$	9, $df = 1$ ($p = 0$	0.27)				-0.4-0.2 0 0.2 0.4 0.6 0.8 1			

Supplemental Material 7
BCVA change –
meta-regression



CRT change -

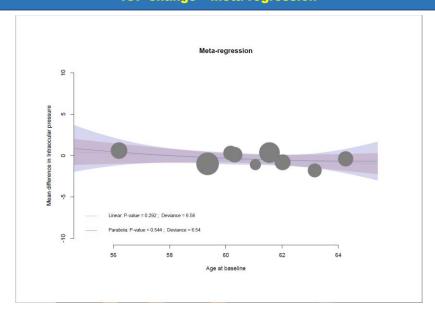

subgroup analysis of nonresistant DME patients

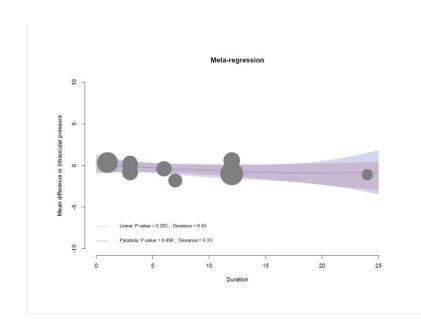


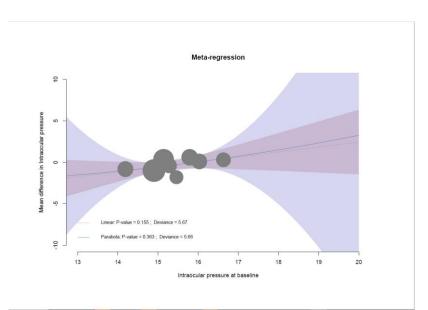
Supplemental Material 9
CRT change –
meta-regression

Supplemental Material 9 CRT change -

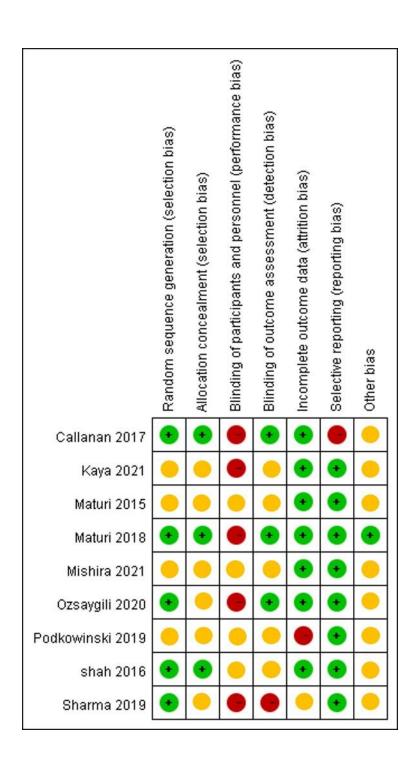
meta-regression


Forest plot of IOP change and subgroup analysis of nonresistant DME patients


	Expe	rimental			Control		IOP change			
Study	Mean	SD	Total	Mean	SD	Total	(By resistant)	MD	95%-CI	Weight
Subgroup: non-resis	stant						1.1			
Shah	-0.70	2.50	23	1.10	3.90	27		-1.80	[-3.59; -0.01]	6.5%
Wickranasingle	-1.30	5.70	22	-0.20	3.80	22 -		-1.10	[-3.96; 1.76]	3.0%
Aydin	0.80	1.43	37	1.80	1.30	28	-	-1.00	[-1.67; -0.33]	19.1%
Muftuoglu	-0.45	2.07	18	0.37	2.18	19		-0.82	[-2.19; 0.55]	9.6%
lin	0.00	4.22	50	0.40	3.36	52		-0.40	[-1.88; 1.08]	8.6%
Bolubasi	0.40	2.55	32	0.30	2.81	25		0.10	[-1.31; 1.51]	9.2%
Shin	0.40	2.67	25	0.10	2.74	20		- 0.30	[-1.29; 1.89]	7.8%
Karakurt(L)	0.08	2.58	81	-0.28	2.16	54		0.36	[-0.44; 1.16]	16.7%
Sever	0.50	3.01	44	-0.10	2.85	40	41-	- 0.60	[-0.65; 1.85]	10.7%
Subtotal			332			287		-0.33	[-0.92; 0.27]	91.2%
Heterogeneity: $I^2 = 39\%$	$b_{i}p = 0.11$									
Subgroup: resistant										
Sharma	-1.57	2.35	20	-0.17	2.34	20		-1.40	[-2.85; 0.05]	8.8%
Overall Heterogeneity: $I^2 = 40\%$ Test for subgroup difference	p = 0.09 ences: 2 = 1.87	' df = 1 (n = (352			307	-3 -2 -1 0 1	-0.42 2	[-1.00; 0.15]	100.0%
reaction dubgroup differ	011000.	, a (p - c	2.17)				-5 -2 -1 0 1	2		


	Expe	rimental			Control		IOP change			
Study	Mean	SD	Total	Mean	SD	Total	(By combined medication)	MD	95%-CI	Weight
Subgroup: Anti-VE	GF vs Ozurdex	alone					11			
Shah	-0.70	2.50	23	1.10	3.90	27		-1.80	[-3.59; -0.01]	7.1%
Wickranasingle	-1.30	5.70	22	-0.20	3.80	22		-1.10	[-3.96; 1.76]	3.2%
Aydin	0.80	1.43	37	1.80	1.30	28		-1.00	[-1.67; -0.33]	21.2%
Muftuoglu	-0.45	2.07	18	0.37	2.18	19		-0.82	[-2.19; 0.55]	10.4%
Bolubasi	0.40	2.55	32	0.30	2.81	25		0.10	[-1.31; 1.51]	10.0%
Shin	0.40	2.67	25	0.10	2.74	20		0.30	[-1.29; 1.89]	8.5%
Karakurt(L)	0.08	2.58	81	-0.28	2.16	54		0.36	[-0.44; 1.16]	18.5%
Sever	0.50	3.01	44	-0.10	2.85	40		0.60	[-0.65; 1.85]	11.7%
Subtotal			282			235		-0.32	[-1.01; 0.37]	90.6%
Heterogeneity: $I^2 = 47^\circ$	$%_{,} \rho = 0.07$									
Subgroup: Anti-VE	GF vs Ozurdex	+Anti-VEGF	:							
lin	0.00	4.22	50	0.40	3.36	52		-0.40	[-1.88; 1.08]	9.4%
Overall Heterogeneity: I ² = 39 ⁴ Test for subgroup diffe		1 df = 1 (p = (332			287	3 -2 -1 0 1 2	-0.33	[-0.92; 0.27]	100.0%
root for outgroup unio	1011000.	., a	3.52)				-5 -2 -1 0 1 2			

IOP change – meta-regression

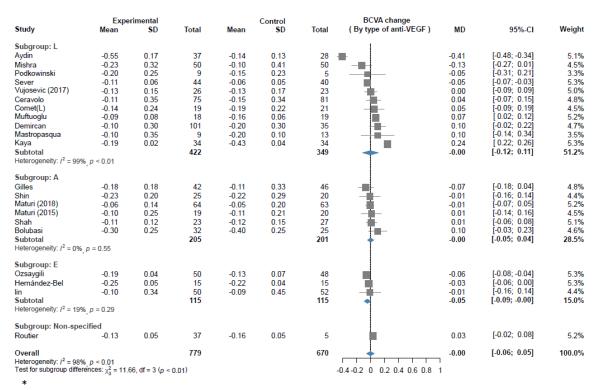

Severe ocular adverse events and subgroup analysis of nonresistant DME patients

	Exp	erimental		Control	Serious adverse event			
Study	Events	Total	Events	Total	(By resistant)	RR	95%-CI	Weight
Subgroup: non-res	istant				11			
Callanan	0.0	182.0	11.0	181.0	← ■	0.04	[0.00; 0.73]	10.5%
Maturi (2018)	0.0	64.0	6.0	65.0		0.08	[0.00; 1.36]	10.3%
Aydin	0.5	37.5	0.5	28.5	8 22	0.76	[0.02; 37.16]	5.5%
Ozsaygili	0.5	50.5	0.5	48.5		0.96	[0.02; 47.45]	5.5%
Kaya	0.5	34.5	0.5	34.5		1.00	[0.02; 48.98]	5.5%
Maturi (2015)	0.5	20.5	0.5	20.5		1.00	[0.02; 48.03]	5.6%
Comet(L)	0.5	20.5	0.5	21.5		1.05	[0.02; 50.43]	5.6%
Muftuoglu	0.5	18.5	0.5	19.5		1.05	[0.02; 50.43]	5.6%
Shah	3.0	23.0	2.0	27.0		1.76	[0.32; 9.64]	29.0%
Subtotal		451.0		446.0		0.56	[0.18; 1.72]	83.2%
Heterogeneity: $I^2 = 8\%$	$p_{i} p = 0.37$							
Subgroup: resistan	t							
Limon	0.5	30.5	0.5	29.5		0.97	[0.02; 47.17]	5.5%
Sharma	0.5	20.5	0.5	20.5		1.00	[0.02; 48.03]	5.6%
Thomas	0.5	11.5	0.5	11.5		1.00	[0.02; 46.24]	5.7%
Subtotal		62.5		61.5		0.99	[0.94; 1.04]	16.8%
Heterogeneity: $I^2 = 0\%$	p = 1.00							
Overall		513.5		507.5	-	0.64	[0.28; 1.49]	100.0%
Heterogeneity: $I^2 = 0\%$	p = 0.63					1		
Test for subgroup diffe	rences: $\chi_1^2 = 1.36$,	df = 1 (p = 0.24)	1)	0.0	003 0.1 0.51 2 10 5	51		

	Exp	erimental		Control	Serious adverse event			
Study	Events	Total	Events	Total	(By combined medication)	RR	95%-CI	Weight
Subgroup: Anti-VE	GF vs Ozurdex a	lone			l i			
Callanan	0.0	182.0	11.0	181.0	←	0	[0; 1]	13.1%
Aydin	0.5	37.5	0.5	28.5		1	[0; 37]	7.2%
Ozsaygili	0.5	50.5	0.5	48.5		1	[0;47]	7.2%
Comet(L)	0.5	20.5	0.5	21.5		1	[0; 50]	7.3%
Muftuoglu	0.5	18.5	0.5	19.5		1	[0; 50]	7.3%
Shah	3.0	23.0	2.0	27.0		2	[0; 10]	30.7%
Subtotal		332.0		326.0		1	[0; 3]	72.7%
Heterogeneity: $I^2 = 22$	%, p = 0.27							
Subgroup: Anti-VE	GF vs Ozurdex+	Anti-VEGF						
Maturi (2018)	0.0	64.0	6.0	65.0		0	[0; 1]	12.8%
Kaya	0.5	34.5	0.5	34.5		1	[0;49]	7.2%
Maturi (2015)	0.5	20.5	0.5	20.5		1	[0; 48]	7.3%
Subtotal		119.0		120.0		0	[0; 14]	27.3%
Heterogeneity: $I^2 = 0$ %	6, p = 0.42							
Overall		451.0		446.0		1	[0; 2]	100.0%
Heterogeneity: 12 = 89	6 p = 0.37							
Test for subgroup diffe	erences: $\chi_1^2 = 0.56$,	df = 1 (p = 0.45)	5)	0.	003 0.1 0.51 2 10 5	1		

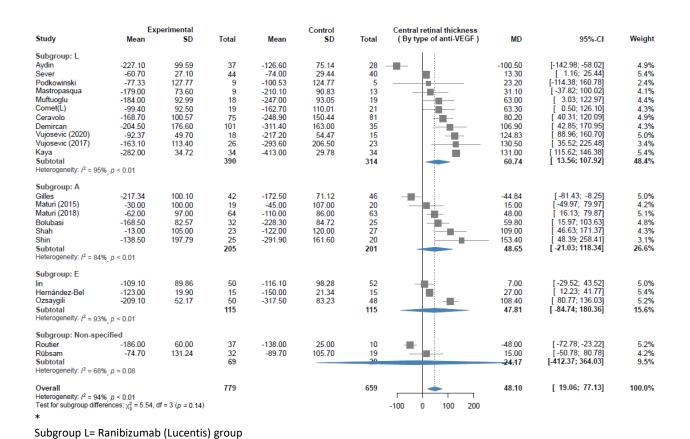
Supplemental Material 13
Risk of bias assessment
ROB

Risk of bias assessment (ROB)


Supplemental Material 14
Risk of bias assessment
ROBINS-1 (BCVA)

Risk of bias assessment ROBINS-1 (BCVA)

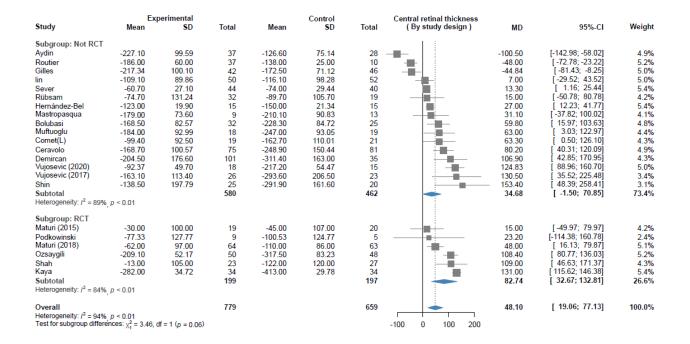
Study	Bias due to confounding	Bias in selection of participants into the study	Bias in classification of interventions	Bias due to deviations from intended interventions	Bias due to missing data	Bias in measurement of outcomes	Bias in selection of the reported result	Overall Bias
AKSOY 2020	Serious	Low	Low	NI	Low	Moderate	Moderate	Serious
Aydin 2020	Low	Low	Low	NI	Low	Moderate	Low	Moderate
Bolubasi 2019	Serious	Low	Low	NI	Low	Moderate	Low	Serious
Busch 2019	Moderate	Low	Low	NI	Low	Low	Low	Moderate
Ceravolo 2020	Low	Low	Low	NI	Low	Moderate	Low	Moderate
Comet 2020	Low	Low	Low	Moderate	Low	Moderate	Low	Moderate
Demircan 2018	Serious	Low	Low	NI	Low	Moderate	Low	Serious
Hernández-Bel 2019	Low	Low	Low	NI	Low	Moderate	Low	Moderate
Limon 2021	Low	Low	Low	Low	Low	Moderate	Low	Moderate
Lin 2021	Serious	Low	Low	NI	Low	Moderate	Low	Serious
Mastropasqua 2019	Low	Low	Low	NI	Moderate	Moderate	Low	Moderate
Muftuogluet 2021	Low	Low	Low	Low	Low	Moderate	Low	Moderate
Routier 2021	Serious	Low	Low	NI	Low	Low	Low	Serious
Rübsam 2021	Serious	Low	Low	NI	Low	Low	Low	Serious
Sever 2017	Serious	Low	Low	NI	Low	Moderate	Low	Serious
Shin 2017	Serious	Low	Low	NI	Moderate	Low	Low	Serious
Thomas 2016	Low	Low	Low	NI	Low	Moderate	Low	Moderate
Vujosevic 2017	Serious	Low	Low	Low	Low	Moderate	Low	Serious

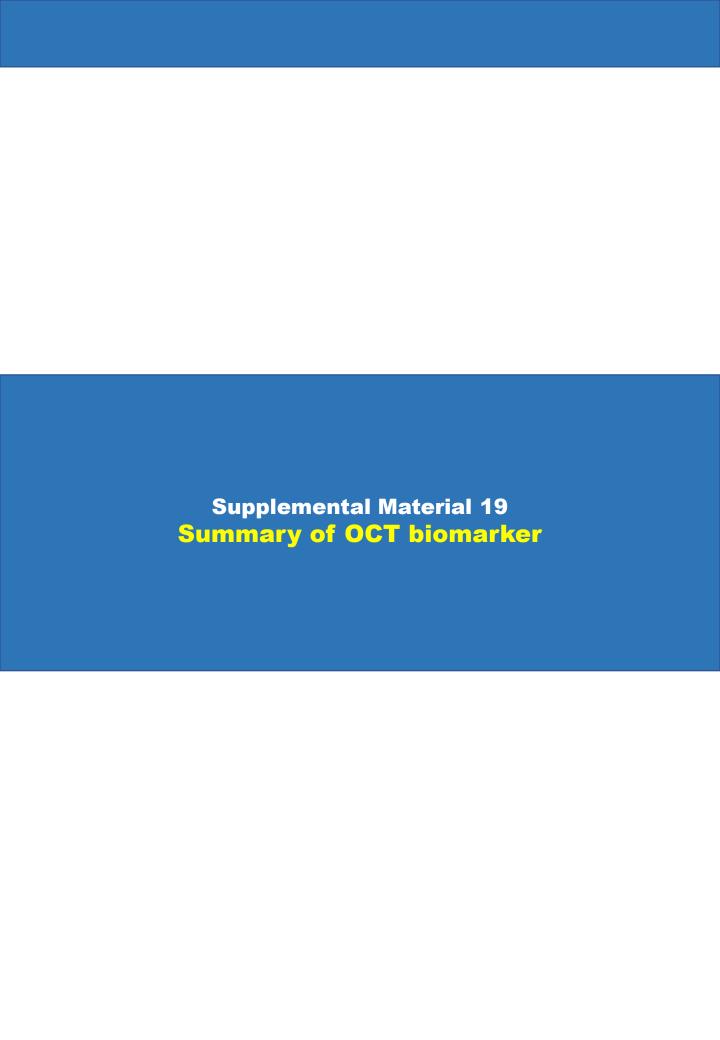

Supplemental Material 15
Subgroup analysis
type of Anti-vegf
BCVA change

Subgroup analysis type of Anti-vegf BCVA change

Subgroup L= Ranibizumab (Lucentis) group Subgroup A= Bevacizumab (Avastin) group Subgroup E= Aflibercept (Eylea) group Supplemental Material 16
Subgroup analysis
type of Anti-vegf
CRT decrease

Subgroup analysis type of Anti-vegf CRT decrease


Subgroup A= Bevacizumab (Avastin) group Subgroup E= Aflibercept (Eylea) group Supplemental Material 17
Subgroup analysis
study design
BCVA change


Supplemental Material 17 Subgroup analysis study design BCVA change

	Expe	rimental			Control		BCVA change			
Study	Mean	SD	Total	Mean	SD	Total	(By study design)	MD	95%-CI	Weight
Subgroup: Not RCT										
Aydin	-0.55	0.17	37	-0.14	0.13	28	-	-0.41	[-0.48; -0.34]	5.1%
Gilles	-0.18	0.18	42	-0.11	0.33	46		-0.07	[-0.18; 0.04]	4.8%
Sever	-0.11	0.06	44	-0.06	0.05	40		-0.05	[-0.07; -0.03]	5.3%
Hernández-Bel	-0.25	0.05	15	-0.22	0.04	15		-0.03	[-0.06; 0.00]	5.3%
Shin	-0.23	0.20	25	-0.22	0.29	20	-	-0.01	[-0.16; 0.14]	4.4%
lin	-0.10	0.34	50	-0.09	0.45	52		-0.01	[-0.16; 0.14]	4.4%
Vujosevic (2017)	-0.13	0.15	26	-0.13	0.17	23	-	0.00	[-0.09; 0.09]	5.0%
Routier	-0.13	0.05	37	-0.16	0.05	5		0.03	[-0.02; 0.08]	5.2%
Ceravolo	-0.11	0.35	75	-0.15	0.34	81		0.04	[-0.07; 0.15]	4.8%
Comet(L)	-0.14	0.24	19	-0.19	0.22	21		0.05	[-0.09; 0.19]	4.5%
Muftuoglu	-0.09	0.08	18	-0.16	0.06	19		0.07	[0.02; 0.12]	5.2%
Demircan	-0.10	0.30	101	-0.20	0.30	35	 	0.10	[-0.02; 0.22]	4.7%
Mastropasqua	-0.10	0.35	9	-0.20	0.10	13		0.10	[-0.14; 0.34]	3.5%
Bolubasi	-0.30	0.25	32	-0.40	0.25	25	 -	0.10	[-0.03; 0.23]	4.6%
Subtotal			530			423	+	-0.01	[-0.09; 0.06]	66.9%
Heterogeneity: /2 = 91%	6 _, <i>p</i> < 0.01									
Subgroup: RCT										
Mishra	-0.23	0.32	50	-0.10	0.41	50		-0.13	[-0.27; 0.01]	4.5%
Ozsaygili	-0.19	0.04	50	-0.13	0.07	48		-0.06	[-0.08; -0.04]	5.3%
Podkowinski	-0.20	0.25	9	-0.15	0.23	5		-0.05	[-0.31; 0.21]	3.3%
Maturi (2018)	-0.06	0.14	64	-0.05	0.20	63		-0.01	[-0.07; 0.05]	5.2%
Maturi (2015)	-0.10	0.25	19	-0.11	0.21	20		0.01	[-0.14; 0.16]	4.5%
Shah	-0.11	0.12	23	-0.12	0.15	27	# _	0.01	[-0.06; 0.08]	5.1%
Kaya	-0.19	0.02	34	-0.43	0.04	34		0.24	[0.22; 0.26]	5.3%
Subtotal			249			247	*	0.01	[-0.10; 0.12]	33.1%
Heterogeneity: /2 = 99%	6 _, p < 0.01									
Overall			779			670	+	-0.00	[-0.06; 0.05]	100.0%
Heterogeneity: /2 = 98%	6 p < 0.01									
Test for subgroup differ	ences: $\chi_1^2 = 0.14$	1, $df = 1 (p = 0)$).71)				-0.4-0.2 0 0.2 0.4 0.6 0.8	1		

Supplemental Material 18
Subgroup analysis
study design
CRT decrease

Subgroup analysis study design CRT decrease

Supplemental Material 19 Summary of OCT biomarker

	Treatment	Hyperreflective	Hyperreflective dots (HRD)	Subfoveal serous	Change of choroidal	disorganization of inner
Study		dots (HRD) change	yes/no, after treatment(eye)	retinal detachment	thickness change (um)	retinal layers (DRIL)
		(numbers)		(SRD) change (um)		(um)
Aksoy	1. Aflibercept				-92.94	
et al	2. Ozurdex				-94.58	
Bolubasi	1. Bevacizumab	•	•	-110.69	,	•
et al	2. Ozurdex			-162.66*		
Ceravolo	1. Ranibizumab	-6.7		-37.4	-1.9	
et al	2. Ozurdex	-13.22*		-89.3*	-28.6	
Demircan	1. Ranibizumab	•	•	-133.6		
et al	2. Ozurdex			-133.6		
Hernández-Bel	1. Aflibercept	•	10/5	5/10 (resolution after tx)	•	•
et al	2. Ozurdex+		7/8	7/6 (resolution after tx)		
	Aflibercept					
Vujosevic	1. Ranibizumab	-28		5/10 (resolution after tx)	-9.3%	
et al 2017	2.Ozurdex	-32.4		7/6 (resolution after tx)	-11.3%	
Vujosevic	1. Ranibizumab	-5.94		-96.7%		-80.52
et al 2020	2.Ozurdex	-21.38*		-86.8%		-394.65

 $[\]ensuremath{^{*}}$ Ozurdex group had significant change comparing with Anti-VEGF group