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INTRODUCTION

During development of the airways and the pulmonary 
circulation, multiple cell types adapt to changing chemical 
and physical signals to establish appropriate lung 
structure and function. Progenitor cells of various vascular 
cell types proliferate, migrate and reorient themselves to 
form nascent vessels and airways that eventually mature 
to the adult phenotype. During disease development there 
are also adaptive changes in function and structure, some 
of which are maladaptive and some of which oppose the 
disease process. Functional adaptations are manifest in 
the pulmonary circulation in pulmonary hypertension 
syndromes as hypercontractility.

Structural adaptations are manifest as vascular pruning, 
medial thickening, leukocyte invasion and development 
of a variety of occlusive lesions. The initial triggers 
or stimuli for these remodeling events are under 
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intense investigation, as are the pathways and proteins 
altered during pulmonary diseases. Structural studies 
suggest multiple cell types including lung fibroblasts, 
myofibroblasts, smooth muscle, epithelial, endothelial and 
progenitor cells all undergo varying degrees of phenotypic 
modulation during disease development. Blood vessel 
remodeling events include matrix remodeling, secretion 
of numerous cell signaling molecules, cell and tissue 
hypertrophy, and hyperplasia. In all hollow organs, 
including pulmonary blood vessels, smooth muscle cells 
undergo dynamic changes in gene expression and protein 
composition to adapt to changes in the local environment. 
When such changes are long-lasting, they are described 
as being due to “cellular plasticity.” The set of proteins 
expressed is determined by multiple parallel signal 
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transduction pathways that ultimately regulate one or 
more events in transcription, translation, mRNA half-life 
and protein degradation. Transcriptional controls have 
been studied extensively in vascular cells, but epigenetic 
mechanisms contributing to smooth muscle phenotype 
are not as well defined. Dynamic changes in methylation 
of CpG sites in key promoters, histone modifications and 
microRNA-induced gene silencing are subjects of intense 
study in cardiovascular physiology. These phenomena 
are not nearly as well defined in smooth muscle cells as 
they are in cardiac muscle cancer cells and the immune 
system.[1-3] 

The goal of this review is to summarize emerging 
knowledge of the microRNA (miRNA) class of small, 
noncoding RNAs in vascular smooth muscle cell phenotypes 
in normal tissue and in pulmonary diseases. We will focus 
on miRNAs with validated targets that are relevant to 
smooth muscle contractility and vascular development. 
The reader interested in miRNAs in endothelial cells 
and stem cells is referred to several excellent recent 
reviews of the subject and a recent review of miRNAs in 
pulmonary hypertension.[4-8] Our narrow approach to the 
topic in this review is justified by the compelling need to 
identify novel, druggable targets for modifying vascular 
remodeling. There is certainly continuing need to define 
sets of miRNAs that control both conserved (proliferation 
and cell survival) and unique (smooth muscle contractile 
protein expression) processes in all vascular cells and all 
cells in the lung. There is also an appealing opportunity to 
capitalize on current knowledge of miRNA-induced gene 
silencing in developing novel therapeutic approaches 
to pulmonary hypertension. To that end, we describe 
examples of RNAi-based therapy of animal models of 
cardiovascular and respiratory diseases. These studies 
provide an exciting proof of principle for RNAi therapy of 
lung diseases including pulmonary hypertension.

Smooth muscle cell phenotypes
Smooth muscle cells in vitro are highly plastic cells that are 
easily manipulated by altering culture conditions to favor 
a more contractile phenotype or a proliferative, secretory 
and migrating phenotype. Contractile characteristics are 
promoted by culturing at high density and in reduced 
serum concentrations in the presence of soluble factors 
including insulin, retinoic acid, and transforming growth 
factor beta 1 (TGF-β1). Some soluble factors are clearly 
derived from or promoted by endothelial cells, which, in 
coculture, promote differentiated, contractile pulmonary 
artery smooth muscle cells.[9] Contractile smooth muscle 
cells are defined as cells expressing smooth muscle-
restricted contractile and cytoskeletal proteins that 
contract in response to physiological agonists (e.g., 
norepinephrine, serotonin, histamine, enthothelin-1). 
There are several well-defined smooth muscle-restricted 

contractile proteins including myosin II heavy chain, α 
and γ smooth-muscle actins, h-caldesmon, h1-calponin, 
smooth muscle tropomyosins, SM22 (transgelin) and 
smoothelin.[10,11] The contractile proteins are typically 
downregulated by conditions promoting proliferation. 
In culture proliferation, cell migration and secretion of 
mediators of inflammation can be induced by serum-
containing medium with the trophic growth factors 
epidermal growth factor and fibroblast growth factor. 
The gene expression profile of proliferative and migratory 
vascular smooth muscle cells is not as well defined as the 
contractile phenotype. It is frequently used in the context of 
cultured cells that proliferate in serum-containing medium, 
express a chemotactic response to platelet derived growth 
factor (PDGF), and secrete a variety of proteins. Secreted 
proteins include type I collagen, cytokines, chemo kines 
and growth factors. Growth, migration and proliferation 
in vitro are thought to recapitulate organogenesis during 
fetal and neonatal development.

There are differing views of the two “phenotypes” of 
vascular smooth muscle. One view holds that switching 
from proliferating/migrating cells to contractile cells 
is a stable, mutually exclusive condition—a binary 
phenomenon.[11] An alternate view is that the phenotype 
of smooth muscle cells is graded with cells in a tissue 
having a mosaic pattern of contractile protein gene 
expression. [10,12,13] In either case, gene expression programs 
in smooth muscle appear to be highly adaptable depending 
on tissue type, culture conditions and disease processes.

Current progress in epigenetic mechanisms controlling 
gene expression strongly suggests part of the adaptability 
of vascular smooth muscle and other vascular wall cells 
is due to dynamic changes in gene expression. One topic 
of great interest is the influence miRNAs might have on 
networks of target genes that are important in disease 
progression. Defining the miRNAs and their targets in 
pulmonary vascular smooth muscle phenotype switching 
should add novel therapeutic targets for anti-remodeling 
drugs. Progress on this topic will have high impact 
on translational research aimed at developing novel 
treatments of pulmonary hypertension.

MiRNA biogenesis and miRNA-induced 
silencing
MiRNA biogenesis and the mechanisms of miRNA-induced 
gene silencing have been well described, and the basic steps 
appear to be highly conserved among various cell types. The 
current consensus on biogenesis is illustrated in Figure 1, 
and the interested reader is directed to recent reviews of the 
topic for more detailed description of the process.[14,15] Many 
miRNA genes are hosted within other genes distributed 
throughout mammalian genomes. They are often located in 
introns and sometimes in exons, and some are in intergenic 
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regions rather than within a host gene. Clusters of 
coexpressed, polycistronic primary transcripts are common 
and many miRNA genes have multiple copies in the human 
genome. Hypoxia-regulated miRNAs are a good example 
of coexpressed clusters of miRNAs relevant to pulmonary 
vascular diseases.[16] MiRNAs hosted by protein-coding 
genes are under control of Pol II promoters and familiar 
transcription factor families that control expression of 
mRNAs. However, some miRNA genes have independent 
promoters. A few miRNA genes are transcribed by Pol 
III, which transcribes tRNA, 5S rRNA and small nuclear 
RNA genes. Primary miRNA transcripts are capped and 
polyadenylated then cropped to a ~70 nucleotide precursor 
(Pre-miRNA) by the nuclear ribonuclease Drosha. After 
export from the nucleus a cytoplasmic RNase (Dicer) 
cleaves the loop structure of the pre-miRNA yielding a 
mature 21~24 nucleotide miRNA duplex (Fig. 1). These 
processing steps are necessary for proper smooth muscle 
development based on studies of smooth-muscle restricted 
knockout of Dicer in mice. Knocking out Dicer is known 
to inhibit blood vessel maturation and intestinal tract 
development.[17,18] MiRNA processing is also under control 
of functionally important extracellular signals in vascular 
smooth muscle. For example, TGF-β family proteins have 
profound effects on processing of miR-21 in human 
pulmonary artery cells in culture.[19]

Gene silencing mediated by the mature miRNAs then 
occurs by two somewhat different mechanisms that 

both require the mature miRNA to complex with 
several proteins including Argonaut family members 
Ago-1 and Ago-2. The mature dsRNA duplex loads 
into RNA-induced silencing complexes (RISCs) that 
mediate posttranscriptional silencing by reducing mRNA 
stability or by translational block depending on the 
degree of complementarity of the miRNA seed sequence 
(nucleotides 2-8) with the target sequence (Fig. 1). MiRNA 
tends to be cleaved by Ago-2 when complementarity is 
perfect, although this is not universally true. The transcript 
can then be further modified by uridinylation and 
decapping, and then completely degraded by exonuclease 
cleavage. When complementarity is imperfect a variety 
of miRNA/mRNA/RISC structures can form that block 
initiation, cause premature termination, and induce 
dissociation of ribosomes. MiRNA degradation then occurs 
following deadenylation, decapping and exonuclease 
action. Translation of sets of target proteins is thereby  
reduced.

For the purposes of this review we are interested 
in miRNA-mediated gene silencing, but the reader 
should be aware that instances of miRNA-mediated 
translation enhancement have also been reported. [20] The 
remainder of the review focuses on particular miRNAs 
that target genes important in vascular smooth muscle 
development, contraction and lifespan. The aim is to 
show how miRNA-induced silencing could alter smooth 
muscle progenitor differentiation, smooth muscle 
restricted contractile protein expression, smooth muscle 
proliferation, and proinflammatory mediator synthesis. 
Each of these processes participate in vessel wall 
remodeling that contributes to pathogenesis of pulmonary 
vascular diseases.

MiRNAs and vascular smooth muscle plasticity
The role of miRNA-mediated gene silencing in vascular 
smooth muscles was first described in 2007. The number 
of studies describing miRNAs expressed vascular tissues 
under a variety of conditions is growing exponentially. 
There are now reports of miRNAs necessary for normal 
vascular development as well as miRNAs that are 
altered in vascular diseases including vascular damage, 
atherosclerosis and pulmonary hypertension. These 
miRNAs are sorted into functional groups in Table 1 to 
illustrate the miRNAs known to contribute to smooth 
muscle cell fate.

The earliest reports linking miRNAs and vascular smooth 
muscle remodeling were studies of miRNAs upregulated 
during injury. Zhang and coworkers discovered miR-21 
levels increased following carotid artery injury.[21] They 
then went on to establish that miR-21 promotes vascular 
smooth muscle proliferation by silencing expression of 
phosphatase and tensin homolog (PTEN) and increasing 

Figure 1: MicroRNA biogenesis and RNA-induced gene silencing. 
Transcription of primary micro RNA (Pri-miRNA) from miRNA genes 
is followed by cleavage to precursor mRNA (Pre-miRNA) by the Drosha 
nuclear RNase III. The Pre-miRNA is then exported to the cytoplasm by 
exportin via nuclear pore. In the cytoplasm, Pre-miRNA is further processed 
by RNase activity of Dicer to the mature micro RNA duplex. The duplex loads 
onto Argonaut ribonucleases in the RISC complex and separates. One of the 
mature miRNA strands (red strand) mediates small interfering RNA silencing 
by degrading the target mRNA or interfering with translation. The outcome 
of RISC formation varies with the degree of complementarity of the seed 
sequence of miRNA and 3’ untranslated regions (UTR) of the target mRNA. 
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expression of B-cell leukemia/lymphoma 2 (Bcl2). 
Paradoxically, miR-21 was subsequently shown by 
Davis et al.[19] to promote contractile protein expression 
induced by TGF-β family proteins in cultured pulmonary 
artery vascular smooth muscle by silencing programmed 
cell death 4 (PDCD4). TGF-β family proteins enhanced 
processing of the miR-21 primary transcript to the 
mature miRNA, and increased miR-21 was found to 
enhance smooth-muscle restricted contractile protein  
expression.[19] These findings are important because they 
were the first example of growth-factor regulation of 
miRNA processing in smooth muscle, and they showed 
that one miRNA (miR-21) under different conditions 
promotes either contractile or proliferative phenotypes. 
It remains to be seen whether other miRNAs also exert 
dual effects on smooth muscle phenotype, but the early 
studies point to the complexity and potential duplicity of 
miRNA targets and physiological effects.

The initial studies of miR-21 in vascular remodeling 
were quickly followed by a series of landmark studies 
of the miR-143~145 cluster. Neointimal lesion 
formation is associated with downregulation of miR-
145 as well as downregulation of contractile protein 
expression and increased proliferation of neointimal 
cells.[22] Downregulation of miR-143~miR-145 and 
downregulation of contractile protein expression was then 
shown to be cause-and-effect in a series of loss of function 
studies by Cordes et al.[23] Studies in cultured vascular 
smooth muscle cells and knockout mice have defined a 
pathway for reciprocal control of Kruppel-like factor 4 
(KLF4) and myocardin expression by miR-145 as shown 
in Figure 2. Knockout mouse studies have corroborated 
the initial cell culture studies and have verified that the 
miR-143~145 cluster is a dominant regulator of smooth 
muscle differentiation. The miR143~145 cluster enhances 
contractile protein expression required for contractility 
and proper blood pressure regulation.[24-26] It also has 
a profound effect: to promote differentiation of stem 
cells to smooth muscle cells.[4] MiR-145 can directly 

silence expression of KLF4 and can indirectly upregulate 
myocardin expression (Fig. 2), which contributes to 
TGF-β1 enhancement of serum response factor (SRF)-
dependent contractile protein expression.[27] SRF regulates 
a loosely coordinated set of smooth muscle contractile, 
cytoskeletal and matrix protein genes with CArG boxes 
in the 5’ untranslated region.[24,28,29] 

In addition to regulating contractile protein expression, 
miR-143~145 also influences expression of proteins 
involved in matrix remodeling and cell migration. 
Downregulation of miR-143~145 upregulates formation 
of podosomes and upregulates expression of PDGF 
receptor, protein kinase C (PKC) epsilon and the actin 
bundling protein fascin.[30] Podosomes are discrete 
sites of matrix remodeling necessary for invasive 
migration of vascular smooth muscle cells during 
vascular wall remodeling. Whether podosome formation 
is necessary for development of arteriopathy in 
pulmonary vascular diseases is unknown, but seems 
plausible given the extensive structural remodeling that 

Table 1: MicroRNAs regulating smooth muscle cell fate
miRNA regulating SMC phenotype

Contractile proteins Synthetic functions Differentiation

miR-1[31] miR-24[36] miR-10a[58]

miR-25[32] miR-25[32] miR-143~145[4,7,59]

miR-133a[60] miR-26a[61] miR-155[62,63]

miR-143~145[23,26]

miRNA regulating SMC proliferation, migration and survival

Proliferation Apoptosis/Survival Migration/Cytoskeletal proteins

miR-1[64] miR-146a[33] miR-21[21] miR-143~145[24]

miR-21[21] miR-204[44]

miR-26a[65] miR-221[21,37]

Figure 2: MicroRNAs regulating smooth muscle restricted contractile protein 
expression. Multiple miRNAs modulate the key transcriptional co-regulators 
myocardin and KLF4, which are positive and negative regulators of SRF-
dependent smooth muscle gene expression. Current evidence shows miR-1, 
miR-25, miR-133a, miR-146a and miR-145 all modulate expression of either 
KLF4 or myocardin to influence contractile protein expression. The red lines 
indicate silencing of protein expression or inhibition of miRNA expression by 
pathway components. The green arrows indicate activation or upregulation 
of the pathway component.
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occurs in humans and in animal models of pulmonary  
hypertension.

In addition to the miR-143~145 cluster, other miRNAs can 
modulate smooth muscle gene expression by altering KLF4 
expression (Fig. 2). KLF4 is a direct target of miR-1 in stem 
cell differentiation,[31] miR-25 in airway smooth muscle,[32] 
and miR-146a in vascular smooth muscle.[33] Regulation 
of KLF4 by miR-146a involves a feedback loop in which 
miR-146a silences KLF4 which competes with KLF5 to 
reduce transcription of the miR-146a gene. Neointima 
formation is thereby enhanced by smooth muscle cell 
proliferation and migration due in part to increased KLF4 
expression. The proximal signals that activate the miR-
146a-KLF4/KLF5 pathway are not defined in vascular 
smooth muscle. However, in airway smooth muscle 
expression of primary-miR-146a expression is activated 
by nuclear factor kappa beta signaling and primary-miR-
146a processing is regulated by MEK-1/2 and JNK-1/2.
[34] Mature miR-146a is also induced by stretch in C2C12 
myoblast cells.[35] Defining the trigger and upstream 
transduction pathways in vascular smooth muscle 
might identify high-value targets for anti-remodeling  
therapy in PAH.

The peptide growth factors PDGF and TGF-β1 are known 
to regulate smooth muscle phenotype and to mediate 
vascular development and remodeling in PAH. PDGF-
BB promotes the proliferative/migratory/secretory 
phenotype in culture and is necessary for proper 
formation of new blood vessels during development. 
In contrast, TGF-β family proteins often enhance the 
contractile phenotype via Smad-dependent signaling. 
Although they can produce opposing effects on smooth 
muscle phenotype, both proteins signal changes in 
primary miRNA transcription and processing. Recent 
evidence points to signaling convergence of these 
factors that explain functional antagonism in smooth 
muscles. PDGF-BB induces expression of miR-24 which 
directly silences expression of Tribbles-like protein 
3 (Trb3) and indirectly decreases Smad1 levels.[36] 
Overexpression of miR-24 reduces Smad2 and Smad3 
expression and reduces TGF-β-mediated activation of 
Smad2. Therefore, miR-24 is a point of antagonistic 
signaling convergence for PDGF-BB and the TGF-β 
family members in vascular smooth muscle. This 
suggests that miR-24 might be an interesting target 
to alter vascular remodeling. However, the timing and 
effect of any intervention with a miR-24 antagonist is 
difficult to predict given the complex interplay between 
BMP and TGF-β family members during pathogenesis 
of pulmonary hypertension. Empirical tests in animal 
models of pulmonary hypertension at various stages of 
disease development are needed to establish an effective 
therapeutic strategy.

The PDGF signaling pathway in vascular smooth muscle 
also induces expression of miR-221 which might also 
contribute to neointimal proliferation.[37] MiR- 221 
is upregulated in a variety of cancers, and miR-221 
silences expression of p27Kip1 during skeletal muscle 
differentiation.[38] In cultured human pulmonary 
artery smooth muscle, silencing p27Kip1 by miR-221 
overexpression promotes proliferation.[37] In a separate 
study of rat aorta, smooth muscle miR-221 and miR-222 
expression was induced with PDGF, which also decreased 
p27Kip1 and p57Kip2 expression.[39] MiR-221 and miR-
222, like miR-21, are good examples of miRNAs that are 
conserved in many cells and have consistent effects on cell 
cycle control proteins in vascular smooth muscle cells. It 
will be important to determine whether modifying the 
highly conserved process of cell cycle transit with RNAi-
based therapy can be an effective anti-remodeling strategy. 
The timing of such treatments during development of 
pulmonary vascular remodeling will be important as was 
suggested above for modifying growth factor signaling 
with miR-24 antagonists.

MiRNAs and pulmonary hypertension
Studies of miRNAs in vascular remodeling during 
development of pulmonary hypertension must consider 
the multifocal, multicellular nature of the changes in 
vascular structures. Vascular lesions involving multiple 
cell types are observed in humans and in animal models 
of pulmonary arterial hypertension.[40] It seems likely that 
phenotype modulation of endothelial cells, smooth muscle 
cells, fibroblasts and both resident and immigrating 
progenitor cell types occurs.[41] Therefore understanding 
miRNA expression patterns in each cell type as a function 
of disease development and degree of severity is vital for 
designing novel therapeutic strategies.

To this point we have focused on miRNAs in vascular 
smooth muscle cells; but there is also a significant 
literature on miRNAs in endothelial cells and various types 
of pluripotent cells that is highly relevant. Comprehensive 
discussion of this issue is beyond the scope of this review, 
but some key observations are worth making. A number 
of miRNAs described in smooth muscle cells (e.g., miR-21 
and miR-221 in Figure 3) have conserved functions in 
differentiation, proliferation and survival of endothelial 
cells and other vascular mural cells.[6] The initial studies 
of miRNAs in the cardiovascular system cited above 
suggest some likely targets for RNAi-based antagonism 
of remodeling—e.g., miR-21, miR-145 and miR-221.[42] 
However, until recently it was not clear which miRNAs 
were altered during development of pulmonary arterial 
hypertension (PAH). MiRNAs that promote arterial 
muscularization, that increase cell survival or proliferation 
and promote endothelial to mesenchymal transitions are 
clearly of great interest. 
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In the earliest published study of miRNAs in pulmonary 
hypertension, Caruso et al.[43] surveyed miRNA expression 
in total lung extracts from two rat models (chronic 
hypoxia and monocrotaline model) of PAH. MiR-21 was 
downregulated in the monocrotaline model and in lung 
samples from humans with PAH. In the same study miR-
451 was upregulated in both models but no differences 
were detected in lung samples from control and PAH 
human subjects. This initial report showed that there 
are disease-related changes in miRNAs associated with 
development of PAH in both animals and humans. A 
subsequent study by Courboulin et al.[44] found miR-204 
was also downregulated in humans with PAH and in rat 
models of PAH. Delivery of a miR-204 mimic to rat lungs 
reduced the severity of the disease, providing an exciting 
proof of principle for rescuing vascular smooth muscle 
phenotype in vivo with RNAi-based therapy. Courboulin 
et al.[44] also showed downregulation of expression of miR-
204 in mononuclear cells from in blood of PAH patients. 
This raises the possibility that changes in miRNAs in 
plasma and leukocytes might be useful biomarkers of 
PAH pathogenesis.

In the animal models of PAH Courboulin et al.[44] identified 
potential targets for miR-204. They found Stat3 activation 
was increased upon attenuation of miR-204 expression 
and that miR-204 directly regulates SHP2 by targeting 
its 3’UTR. They developed the signaling model shown 
in Figure 3 where decreased miR-204 increases SHP2, 
which by activating Src increases Stat3 activation. Stat3 
is hypothesized to promote smooth muscle proliferation 
and pulmonary vessel wall thickening. This landmark 
study provides solid proof of principle that “rescue” of low 

miRNA expression can prevent progression of established 
PAH.[44] Rapid advances are being made in RNAi therapy 
of several vascular diseases in which target miRNAs have 
been identified, some target proteins and processes have 
been identified, and some demonstration of effective drug 
delivery has been presented.[45-47]

The study of miR-204 in PAH[44] is unique because roles for 
miR-204 in myogenesis and in other vascular diseases have 
not been described before. MiR-204 may have a particular 
set of functions in the pulmonary circulation that differ 
qualitatively or quantitatively from its function in other 
vascular beds. It seems reasonable to speculate that miR-
204 is one of several miRNAs that promote differentiation 
of vascular smooth muscle, and that downregulation 
of miR-204 might occur during pathogenic vascular 
remodeling in atherosclerosis and restenosis. However, 
there are no reports of a strong association or cause-
effect in these other vascular diseases. Nevertheless, 
targets of miR-204 have been validated in other cell 
types. Some of the target proteins have important roles 
in smooth muscle cell physiology and vascular diseases: 
TGF-β receptor 2,[48] epidermal growth factor (EGF) 
receptor signaling,[49] forkhead box C1 (FOXC1),[50] and 
runt-related transcription factor 2 (Runx2).[51] It is not 
clear whether these other targets of miR-204 are also 
contributing to arteriopathy in pulmonary hypertension, 
but these are target proteins worthy of further  
study. 

CONCLUSIONS AND FUTURE 
DIRECTIONS

MiRNA expression surveys have yielded several candidate 
molecules that could contribute to disease development 
involving remodeling of smooth muscles. The results 
of unbiased expression surveys and hypothesis-driven 
biochemical and functional validation studies have 
provided important insights into disease mechanisms 
and potential targets of new treatments of vascular 
remodeling (Table 1). Some conserved miRNAs have 
been described in vascular smooth muscle tissues and 
cells in culture that are known from the cancer literature. 
MiRNAs controlling cell proliferation and cell survival 
(miR-21, miR-221 and miR-222) are altered in a variety 
of diseases. Some miRNAs appear to serve important roles 
in smooth muscle differentiation unique to this cell type. 
Novel findings relevant to miRNAs in differentiation were 
led by investigations of vascular remodeling in disease 
models and in humans. The best example is the prominent 
role of the miR-143~145 cluster in regulating KLF4 and 
myocardin in smooth muscle differentiation. Further 
investigation is needed to define how miRNAs such as miR-
145 can control a set of highly smooth-muscle restricted 

Figure 3: Signal transduction pathways implicated in pathogenesis of 
vascular remodeling relevant to pulmonary hypertension. Panel A: miR-21 
may increase vascular smooth muscle cell number by targeting proteins that 
regulate cell proliferation (PTEN) and apoptosis (Bcl2). Changes in miR-21 
expression have been observed in lung tissues and in vascular smooth muscle 
in animal models of pulmonary hypertension. Panel B: miR221 promotes 
vascular smooth muscle cell proliferation by silencing the cell cycle inhibitor 
p27Kip1. Panel C: miR-204 downregulated in pulmonary hypertension in 
animals and in human leukocytes can indirectly promote cell proliferation. 
Derepression of SHP2 expression activates a Src/Stat3 cascade that promotes 
vascular smooth muscle proliferation.
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genes and yet in other settings act as tumor suppressors 
and regulators of pluripotency.

A number of important questions are raised by the 
recent surge in knowledge about miRNAs in vascular 
diseases. One issue is related to the general question of the 
significance of dynamic changes in epigenetic mechanisms 
of gene expression in pulmonary vascular diseases. Do 
pulmonary vascular smooth muscle cells respond to 
environmental inputs by altering epigenetic factors such 
as DNA methylation patterns in CpG regions of promoters? 
Are there diagnostic or prognostic modifications of 
histones that prime particular genes for expression 
that is subsequently modulated by the miR-143~145 
cluster? Will new assays of miRNA expression and miRNA 
processing during various stages of disease development 
illuminate some new biomarkers or new candidates for 
inhibiting pathological vascular remodeling? Can RNA 
mimics and antagonists be effective anti-remodeling 
drugs in vivo?

There are reasons for optimism that RNAi therapy 
might be a useful anti-remodeling approach. One of 
the earliest examples of RNAi “therapy” in animals was 
intranasal delivery of antisense oligonucleotides against 
a respiratory syncytial virus protein to the lungs of 
mice inhibited virus replication.[52,53] RNAi therapy can 
also be scaled up for use in primates. A locked nucleic 
acid modified miR-122 when administered IV to green 
monkeys inhibits cholesterol synthesis.[54] Recently RNAi 
therapies targeting smooth muscle remodeling have also 
been shown to effective in animal models. Pulmonary 
hypertension and asthma in animal models are both 
responsive to lung-restricted delivery of RNAi drugs 
that rescue (miR-204),[44] or antagonize (miR-145)[55] 
miRNAs altered by the disease. There is also hope that 
atherosclerotic plaque stability might be susceptible 
to manipulation via systemic delivery of RNAi-based 
drugs. [46,56,57] To address the question of effective RNAi-
based anti-remodeling therapy, novel RNAi-based drugs 
and novel delivery methods must be developed in animal 
models and then rapidly moved to first-in-human trials. 
It is now clear that chemically stabilized antisense 
ribonucleotides and modified miRNAs can be effective 
“therapy” in animal models of vascular and respiratory 
diseases. With ongoing development in RNAi drug design 
and delivery, these approaches should soon be applied  
to humans.
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