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Linking functional traits and demography to model
species-rich communities
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Daniel B. Stouffer 5 & Loïc Pellissier 1,2✉

It has long been anticipated that relating functional traits to species demography would be a

cornerstone for achieving large-scale predictability of ecological systems. If such a rela-

tionship existed, species demography could be modeled only by measuring functional traits,

transforming our ability to predict states and dynamics of species-rich communities with

process-based community models. Here, we introduce a new method that links empirical

functional traits with the demographic parameters of a process-based model by calibrating a

transfer function through inverse modeling. As a case study, we parameterize a modified

Lotka–Volterra model of a high-diversity mountain grassland with static plant community and

functional trait data only. The calibrated trait–demography relationships are amenable to

ecological interpretation, and lead to species abundances that fit well to the observed

community structure. We conclude that our new method offers a general solution to bridge

the divide between trait data and process-based models in species-rich ecosystems.
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Trait-based ecology has emerged in the last decades as an
important avenue for improving our understanding of
community assembly and dynamics1. Functional traits are

canonically defined as “measurable morphological, physiological
or phenological features of species that impact their fitness via
their effects on demographic features”2. The second part of the
definition implies that functional traits should be linked to spe-
cies’ demographic rates and by extension to species ecological
niches3,4. Yet, while the field has made major progress in col-
lecting, organizing, and analyzing functional trait data for a large
number of species from a variety of ecological communities5,
attempts to formally demonstrate broad and consistent links
between functional traits and species demographic rates across
ecosystems have been less successful6,7.

The absence of a predictive link from traits to demographic
rates not only challenges our ecological understanding, but also
poses important practical limitations to our ability to predict
community structure and dynamics with process-based com-
munity models. Here, by “community model”, we refer to any
process-based model that predicts community structure and/or
dynamics as a consequence of population-level processes such as
growth, resource acquisition, mortality, and species interactions8.
Model processes can be formulated across a range between
phenomenological to more mechanistic descriptions9, but are
generally specified by demographic rate parameters that vary
across species. By predicting features such as species abundance,
community structure, and dynamics over time, ecologists have
argued that community models avoid many limitations of cor-
relative models10–12, and would represent an important step
towards predictions of local biodiversity responses to environ-
mental changes13–15.

A major setback for the agenda of using process-based models
for community ecology is that even conceptually simple com-
munity models, such as Lotka–Volterra models, are challenging
to calibrate. This is because the number of demographic rate
parameters of such models increases rapidly with the number of
species13,16,17. Consequently, the use of process-based commu-
nity models has been limited to systems with low to moderate
complexity and diversity where a direct measurement of these
parameters requires less effort, such as annual plant
communities18,19 or laboratory communities20; and they have yet
to be transferred to natural, species-rich systems.

Here, we propose a new method for calibrating process-based
community models via functional traits. Functional traits are far
easier to measure across a large number of species than
are demographic rate parameters; therefore the ability to para-
meterize community models via functional trait data would
expand their utility considerably. We aim to establish a transfer
function that links empirically measured functional traits with the
parameters of community models that describe species demo-
graphy, hereafter called “demographic parameters”. The approach
assumes that the demographic parameters of the modeled
species can be predicted from their functional traits3.
However, while the idea that form determines function is widely
accepted, it would be challenging to predict the nature of this
relationship only from a priori assumptions. For example, com-
binations of functional traits rather than single traits may be
necessary to predict demographic parameters7,21. Instead, we use
one additional data type, empirical community abundance data,
to calibrate these trait–demography relationships through an
inverse modeling approach16,22. In the end, the number of
parameters in the transfer function scales only with the number
of functional traits and the complexity of the transfer function.
This is a critical advantage compared to a direct estimation of the
demographic parameters, which scales with the number of
species (Fig. 1).

The proposed method can support the calibration of any
process-based community model (e.g. competition models,
trophic models23,24) to empirical ecosystems as long as a rela-
tionship between traits and demographic parameters exists and
sufficient functional trait data and community data are available.
Here we illustrate the potential of our methodology by calibrating
a simple community model with data from 18 communities
distributed along a temperature gradient in the French Alps. The
communities are composed of 118 mountain grassland plant
species characterized by eight functional traits. More specifically,
we test the hypothesis that the plant community structure follows
the stress-dominance hypothesis: community composition is
determined by plant ability to tolerate abiotic stress at the
stressful end of the gradient (here at cold temperatures), and by
plant ability to withstand competition at the benign end of the
stress gradient (here at warm temperatures)25.

Fig. 1 Illustration the modeling procedure. From a data table (a) of three
empirical functional traits data (t1, t2, t3), we use a “transfer function” (b)
controlled by a set of transfer function parameters {φi,1, φi,2, ai, bi}.
Together they predict demographic parameter values across species (c).
The community model (d) is then run based on the demographic parameter
table. The likelihood of empirical community data given the parametrization
is estimated using an appropriate likelihood function (e). The latter depends
on the nature of the community model output and of the observed data
(e.g. species abundances, species presence/absence, community diversity
etc…). The likelihood value sets the next iteration of the distribution
sampler by adjusting the transfer function parameters (f).
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We formulate a community model derived from a
Lotka–Volterra competition model that mimics these processes
with four demographic parameters for each of the 118 species,
three of which could be estimated with static community data. To
do so, we use a transfer function to predict those 354 demo-
graphic parameters of the model from empirical functional traits
through generalized linear functions using a total of only eleven
parameters. Second, after the model calibration, we examine the
quality of predictions against a set of null models calibrated from
randomized trait data to demonstrate that empirical functional
trait data bring significant improvement to the calibration. Third,
we interprete the calibrated transfer function in the context of the
ecological theory regarding the link between species demographic
strategy and functional traits in mountain environments26,27.

Results
The community model. We formulated a simple community
model derived from a Lotka–Volterra competition model (Eq. 1)
that mimics the processes of the stress-gradient framework: plant
biomass growth is modeled as a function of temperature and
plant competition.

1
Bij

dBij

dt
¼ gi ´ θj � θmini

� �
� ciBij � li∑k Bkj ð1Þ

Bij represent the biomass of species i in the site j characterized
by temperature θj. The model includes the following ecological
processes:

Temperature-dependent growth: gi ´ ðθj � θminiÞ is the intrin-
sic relative biomass growth rate—incorporating reproduction,
mortality, and individual biomass growth—of a species i in a site
j. It is formulated as a positive linear function of the standardized
temperature θj of the site. It is controlled by the parameter θmini
that can be interpreted as the minimum temperature above which
species j can have a positive relative biomass growth rate; below
that threshold species j goes extinct. It is controlled by a slope
parameter gi that can be interpreted as the within-species
variability of the growth rate along the temperature gradient.

Sensitivity to surrounding biomass: the relative biomass growth
rate of a species i in a site j decreases linearly with the total plant
biomass of site j, ∑k Bkj, at a rate determined by demographic
parameter li. Compared to a classical Lotka–Volterra model, this
equation simplifies the formulation of biotic interactions by
assuming that a given species is equally sensitive to all other
competitors and only affected differently by its own biomass.

Intraspecific competition: the relative biomass growth rate of a
species i in a site j decreases linearly with the biomass of its
conspecifics at an additional rate determined by parameter ci.
This term is based on the theoretical expectation and the
empirical finding that intraspecific competition tends to be
superior to interspecific competition28. When further accounting
for a species’ general sensitivity to surrounding biomass, species
relative growth rate decreases linearly at an overall rate of ci+ li
with the biomass of its conspecifics.

Depending on the strength of trade-offs among demographic
parameters, the model can return different species abundance
patterns along a temperature gradient going from the dominance
of a single species along the gradient to strong species
turnover12,29. The model was implemented as an ordinary
differential equation system model (ODE).

Estimating demographic parameters with a transfer function.
The modeled processes are controlled by four unknown demo-
graphic parameters for each of the 118 species: minimum toler-
ated temperature, within-species variability of the growth rate
along the temperature gradient, sensitivity to surrounding

biomass, and intraspecific competition. In the absence of tem-
poral data about our studied plant communities, we assumed that
they were at equilibrium and could be modeled from the ODE
equilibrium. Because of this, within-species variability of the
growth rate along the temperature gradient could not be esti-
mated and was thus kept constant across species (see Methods
and Supplementary information 1.4). To estimate the remaining
354 demographic parameters, we used generalized linear func-
tions between each demographic parameters and three PCA trait
axes that summarized 67% of total trait variance. The eleven
parameters of those transfer functions were then calibrated with a
Markov-Chain Monte Carlo algorithm (see Methods for more
details).

Model validation. The calibrated model predicted the expected
pattern of species turnover along an environmental gradient
(Fig. 2a). Nagelkerke’s pseudo R2 value30 of the calibrated model
was 0.590 (median value across the posterior, 95%CI: [0.587,
0.592]) and the deviance information criterion31 (DIC) was
6476.4. In contrast, the pseudo R2 at the median of the posterior
of each of 200 null models with randomized traits was always less
than 0.179, and we found a mean difference in DIC of 1844 in
favor of the calibrated model (DIC of the null models was dis-
tributed within the 95%CI: [7719.4, 9205], against 6476.4 with
real functional trait data). For 15 out of 18 plots, the calibrated
model performed better than the null models (i.e. for those plots,
the pseudo R2 values was superior to 95% of the null pseudo R2,
Fig. 2b). In comparison, species distribution models and joint
species distribution models similarly capture the abundance of
well-sampled (aka dominant) species (see Supplementary infor-
mation 3) but differ in the modeling of species that were
undersampled along transects32. Owing to a much larger number
of parameters (between 354 and 1062 for the SDM and the jSDMs
vs. 11 for our approach), they also fit more closely the transect
data (Nagelkerke’s pseudo R2: [0.760, 0.961], DIC: [3182.82,
13269]) but have a similar performance to predict plant species
presence/absence (AUC: [0.68–0.79] against 0.68 for our
approach).

Trait–demography relationships. To study the output of the
calibrated community model, we assessed Pearson’s correlation
coefficients among the calibrated demographic parameters, the
correlation between demographic parameters and observed
functional traits across the posterior distribution. Then we tested
if the distribution of calibrated demographic parameters differs
among functional groups at the median of the posterior dis-
tribution. Functional groups were forbs (76 species), grasses
(26 species), legumes (11 species), and shrubs (5 species). We
related demographic parameters to the observed species func-
tional trait values rather than to the PCA trait axes used for the
calibration to facilitate the ecological interpretation of our results.
The posterior distribution of the transfer function parameters is
available in the Supplementary Information (Supplementary
Fig. 5).

The estimated demographic parameters showed ecologically
sensible trade-offs (Fig. 3b): the minimum tolerated temperature
(θmin) was strongly negatively correlated with the sensitivity to
surrounding biomass (l) (95%CI: −0.977 < r(θmin, l) < −0.959).
We predicted demographic strategies26,33 along an axis char-
acterized by “competitive” species with a weak tolerance to low-
temperature stress, but less sensitivity to competition on the one
end, and “stress-tolerant” species with the opposite demographic
strategy on the other end26,33.

Those two demographic parameters were correlated with
functional traits as predicted by ecological theory4,27,34. Plant
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species with a tall stature or with tender leaves were associated
with a high minimum tolerated temperature and lower sensitivity
to surrounding biomass26,35: minimum tolerated temperature
(θmin) and sensitivity to biomass (l) were strongly correlated
with vegetative height (across the posterior distribution, 95% CI,

0.861 < r(θmin) < 0.883, −0.843 < r(l) < −0.806, Fig. 3a), repro-
ductive height (95% CI, 0.774 < r(θmin) < 0.810; −0.832 < r(l) <
−0.792), and moderately correlated with specific leaf area (95% CI,
0.482 < r(θmin) < 0.519; −0.538 < r(l) < −0.488) and LDMC
(95% CI, −0.445 < r(θmin) < −0.399; 0.436 < r(l) < −0.494). To an

Fig. 2 Validation of the calibrated community model. a Modeled species relative abundances along the temperature gradient. The dominant species (able
to reach a relative abundance of 0.03 in at least one community) are colored according to their functional group (forb in blue, grass in red, legumes in
green and shrub in yellow), subdominant species are in gray. b Performance of the community model for each plot across the elevation gradient according
to Nagelkerke pseudo R2. Red diamonds indicate the pseudo R2 as predicted by the community model calibrated with the empirical functional traits. Blue
triangles indicate the 95% quantile of the distribution of pseudo R2 predicted by the null models. Negative values of the pseudo R2 indicate cases where the
likelihood of the model is lower than the likelihood of the hypothesis that all sampled species have equal relative abundance. For each model, pseudo R2

values were calculated at the median of the posterior.

Fig. 3 Calibrated trait–demography relationships. Calibrated correlation between demographic parameters and empirical functional traits (a) and among
demographic parameters (b). In each panel, numbers indicate the median of the Pearson’s correlation coefficients given by the posterior distribution. Circle
size is proportional to the absolute value of the correlation coefficients and its color indicates the value of the correlation coefficients (with red representing
a strongly negative correlation value, blue a strongly positive correlation and paler shades small correlations).
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extent, these calibrated relationships match the trait-environment
linkages suggested by a fourth corner analysis36 (see Supplemen-
tary information 3.2.2). This suggests that these two demographic
rates depend on functional traits that vary strongly along the
temperature gradient. Our model further estimated a lower
minimum tolerated temperature and higher sensitivity to biomass
for shrub species compared to other functional groups (Fig. 4,

θmin: Forbs, t= 2.518, p= 0.013; Grasses, t= 2.658, p= 0.009;
Legumes: t= 2.712, p= 0.008; l: Forbs, t=−3.204, p= 0.002;
Grasses, t=−3.279, p= 0.001; Legumes: t=−2.644, p= 0.009).
This suggests that shrubs (the latter category includes five alpine
low shrub species) were more resistant to low temperature but
had lower competitive ability than other species across the
temperature gradient.

The intraspecific competition parameters (c) were moderately
correlated with the minimum tolerated temperature parameters
(95%CI: −0.741 < r(θmin) < −0.593) and sensitivity to competi-
tion (95%CI: −0.400 < r(l) < −0.560). They were further
negatively correlated with vegetative height (95% CI, −0.787
< r(c) < −0.679, Fig. 3a) and reproductive height (95% CI,
−0.616 < r(c) < −0.481), showing that tall plant species were
associated with higher competitive ability than small species37. It
was further strongly correlated with leaf δ15N (95% CI, −0.801 <
r(c) < −0.761) and, to a lesser extent, leaf nitrogen content (95%
CI, −0.557 < r(c) < −0.463). Hence, species with a low leaf
nitrogen content as well as a low leaf δ15N ratio (that usually
characterizes mycorrhizal dicots38) were also associated with
higher intraspecific competition. The model parametrization
associated a higher intraspecific competition rate with forb
species compared to grass and legume species (Fig. 4, Grass: t =
−2.625, p = 0.001; Legumes: t = −3.101, p = 0.002, Shrub: t =
−0.554, p = 0.58). This association likely reflects the higher
competitive ability of grasses and legumes over the other
functional groups, which may explain their dominance in these
grassland communities.

Discussion
General approach. Combining functional trait data with static
community abundances, our approach allowed us to successfully
fit a process-based community model to a species-rich ecosystem.
Compared to other trait-based modeling methods39, our
approach is not tied to any particular framework of community
assembly. It rather establishes, based on empirical data, a plau-
sible link between measured functional traits and the unknown
demographic parameters of a community model. To do so, it
leverages a fundamental insight of trait-based ecology: species
functional attributes vary only across a limited number of
dimensions40, and these should be relatable to species demo-
graphy. When translating this insight into a transfer function
between empirical traits and the demographic parameters of
community models, the number of parameters to be calibrated is
much reduced, which makes it possible to fit the combined model
to static data despite the large number of species. An important

Fig. 4 Estimated demographic parameters across functional groups.
Minimum tolerated temperature (a), sensitivity to biomass rate (b) and
intraspecific competition rate (c) were estimated from the median of the
posterior distribution of the parameters. Functional groups were forbs
(76 species), grasses (26 species), legumes (11 species) and shrubs
(5 species). Boxplots indicate the median, first and third quartiles of each
distribution. Whiskers represent the minimum and maximum values that
remain inferior 1.5 times the interquartile range below or above the
distribution median. Anova tests indicate that all three demographic
parameters were significantly different among functional groups (θmin: F=
2.742, p= 0.047; l F= 3.719, p= 0.013; c F= 4.669, p= 0.004).
Uppercase letters above the boxplots symbolize the results of pairwise t-
tests on demographic parameters among functional groups. Distinct letters
characterize significantly different demographic parameter distributions
among functional groups (p value ≤ 0.05 after adjustment by Holm’s
correction). Note that min. tol. Temperature is relative to a mean annual
temperature standardized across the study sites and is therefore unit-less.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-22630-1 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:2724 | https://doi.org/10.1038/s41467-021-22630-1 | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


point is that our approach does not rely on a priori assumptions
about the demographic trade-offs and relevant trait–demography
relationships, they rather emerge from the inverse modeling
approach.

In our case study, we made the conjecture that species
demography follows the stress-dominance hypothesis, and we
quantified the support for this theory using the estimated
demographic trade-offs. These corresponded to (i) a
competition-stress tolerance trade-off that matched closely traits
associated with the fast-slow leaf-economics trade-off34 and (ii)
an axis of variation in intraspecific competition intensity that
matched traits related to plant size. These relationships relate to
existing knowledge about the global spectrum of plant trait
variation and its relationship to plants’ ecological niche and
demography3,4,41. While the functional trait–demography rela-
tionships calibrated by our approach are unsurprising, they are
ecologically sensible and allow us to validate the fit of the transfer
function a posteriori. They further suggest that, when moving
towards more complex demographic models, a lack of unanimous
knowledge about demography-trait relationships may not be an
insurmountable obstacle.

Developing more realistic community models. Beyond the
scope of our particular community model, this new method paves
the way to study more complex—and potentially better-
performing models—of community assembly and dynamics in
diverse ecosystems. We foresee no fundamental difficulties in
using transfer functions to calibrate a broader variety of ecological
processes. The only requirement to implement new processes is
that they should be formulated as a function of attributes linked
to species-specific (or individual-specific) functional traits. Some
processes, typically biotic interactions, are typically modeled as
attributes of two or more species19 and would need to be refor-
mulated. Several theoretical studies have shown a path forward,
for instance by expressing pairwise interaction coefficients from
Lotka–Volterra competition models as functions of species’ ability
to acquire resources42,43. Empirical studies have further suggested
how pairwise interactions among species can be modeled from
their functional traits6,44, which could inspire new theoretical
frameworks that consider other features of biotic interactions
such as niche partitioning among species23, facilitation45 or
trophic interactions24.

Towards dynamic community models. We assumed that the
observed plant communities were at equilibrium, a common
assumption in spatial community modeling46. Furthermore, we
chose a globally-stable community model (Supplementary infor-
mation 1.3), which assumes that, for a given set of demographic
parameters values and environmental conditions, a unique stable
community structure will emerge. These assumptions make the
analysis more practical, but they may not always hold
in nature12,46. In our case study, assuming community equili-
brium led us to fix one demographic rate across species (see
Methods), thus limiting our ability to fully model the interspecific
variability of species’ responses to temperature and biotic stress.
While this is arguably reasonable when modeling a relatively
small static dataset without temporal data, it would be less ade-
quate to model larger spatio-temporal datasets where it would be
more essential, and feasible, to distinguish and calibrate detailed
demographic processes.

Theoretical ecology has produced a vast corpus of models that
study communities in terms of spatio-temporal dynamics,
population structure, stability, and alternative stable states47,48,
with some approaches making explicit references to functional
trait theory49,50. With adequate community models, our transfer

function approach could be used to move away from the
equilibrium assumption, and to model spatial and temporal
variation of species-rich communities. Besides the important data
requirements, however, more complex models would create new
analytical challenges as simulation approaches (e.g. ODEs) might
not be appropriate to efficiently characterize community
dynamics and equilibrium states51. In this context of increasing
model and data complexity, assuming a priori that species
demographic parameters depend on a limited number of
functional traits will likely be a critical asset to study the model
behaviors and reduce the complexity of its calibration at
the onset.

Comparing alternative modeling frameworks. Our case study
uses environmental data, species abundances, and functional
traits to test the stress-dominance hypothesis. An interesting
question is how our framework compares with alternative,
existing methods. One such approach to analyze static commu-
nity data is (joint) species distribution models ((j)SDMs), which
directly fit a relationship between environmental predictors and
species occurrences or abundances10, without considering species
traits or underlying demographic processes. Alternatively, trait-
based community analyses, such as the fourth corner method36,
also relate environment variables to species traits on the basis of
species occurrence while other trait-based methods go a step
further and use trait–environment relationships to predict local
species abundances52,53.

(j)SDMs and the fourth corner method detected, to an extent,
the same patterns as the transfer function approach (see Results
and Supplementary information 3.2.1). A key difference, however,
is that they cannot infer dynamic community parameters, while
our method explicitly establishes a link between traits, demo-
graphy, and abundance. Furthermore, our approach is explicit
about the hypotheses underlying the modeled demographic
processes. We were directly able to evaluate whether community
assembly follows the stress-dominance hypothesis and quantify
the support from the data.

A possible drawback of a process-based approach is that it is
constrained by both the presumed functional form of the
mechanism, and the existence of a statistical link between the
processes and the available functional traits. We suspect that this
explains why, in our case study, (j)SDMs achieve a closer fit to the
data (Supplementary materials 3.2.1) than our approach: (j)SDMs
have a much larger number of parameters, and are thus far more
flexible, and they do not require a connection between
environmental preferences and the available functional traits.
We speculate, however, that our approach could be improved by
confronting multiple alternative transfer functions and commu-
nity models. In doing so, it opens new avenues to empirically test
and compare alternative process-based models with various
degrees of complexity as long as there is a link between the
studied demographic processes and the available functional traits.
As process-based models imply causal explanations for observed
patterns8,54, this can lead to a promising hypothesis-driven
confrontation of community models with different structures.

The key advantage of our approach is that it allows
parametrization of process-based models with functional trait
data and static community data, two data types that are more
easily accessible than labor-intensive demographic measurements.
We acknowledge that the proposed transfer function cannot
predict the full intricacies of species demographic responses55,
but we believe that it constitutes a reasonable approximation to
build dynamic models of species-rich ecosystems in which
ecologists are unlikely to ever obtain demographic measurements
for every individual species. If the link between demography and
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functional traits is reasonably strong, we can draw on all the
advantages of functional trait data: they are standardized,
reasonably easy to measure across species and environments,
and increasingly collected into large open databases5. With our
approach, the main challenge of developing process-based models
shifts from data gaps towards developing appropriate statistical
frameworks that transfer functional traits into model parameters.
We expect that our approach will promote the use of
parameterized process-based community models to explore
current theories of community assembly and ultimately better
predict the dynamic of biodiversity in a changing world.

Methods
Dataset
Study area. The study was conducted in the central French Alps (45.12°N, 6.40°E)
during the 2012 summer season. Nine sites, each containing two 100 m2 quadratic
plots, were studied along a continuous elevation gradient (1858–2724 m) on a
single south-east facing slope in a cow-grazed pasture. Mean annual air tempera-
ture varied between 0.8 °C and 3.8 °C and annual precipitations between 919 and
1186 mm56. Subalpine grasslands dominated the bottom of the gradient while
sparsely vegetated alpine meadows characterized higher elevations. The nine sites
were evenly distributed along the elevation gradient that represents the main local
abiotic gradient. Mean annual soil temperature was estimated in each site using soil
thermocaptors and varied between 4.55 °C and 8.26 °C. Temperature values were
then standardized.

Community data. In each square-shaped plot, 101 plant individuals were sampled
in July 2012 along two transects that followed its diagonals57. 118 species were
sampled at least once and on average, 28.0 species were sampled in each plot. The
118 species included 26 grass species (Poales), 11 legumes species (Fabaceae), five
shrubs species (Vaccinium, Daphne, and Salix sp.), and 76 forb species (remaining
species). This sampling scheme tended to favor the sampling of locally dominant
species over low-abundance species32. Botanical surveys were further done on the
same plots simultaneously to collect more exhaustive data on species occurrences.

Functional traits. For each sampled individual, we identified the species and
measured eight functional traits using standardized protocols58. (i) Reproductive
and (ii) vegetative height are associated with plant competitive ability37. (iii)
Specific leaf area (SLA) is usually correlated positively with plant growth rate and
negatively with leaf lifespan3. (iv) Leaf dry matter content (LDMC) is related to the
average density of leaf tissues and tends to scale negatively with SLA. (v) Leaf
nitrogen concentration (LNC) quantifies the allocation of available nitrogen to
photosynthetic enzymes in leaf chloroplasts59. (vi) Leaf carbon concentration
(LCC) represents investment in structural tissues60. (vii) Leaf carbon isotopic ratio
(δ13C) provides a time-integrated measure of stomatal conductance61. (viii) Leaf
nitrogen isotopic ratio (δ15N) reflects the isotope signature of nitrogen sources of
the plant and thus provides a measure of the plant’s nitrogen acquisition
strategy38. Details about the traits and the measurement protocol are available in
the Supplementary information.

Definition of the species pool’s functional trait space. Trait measurements were
averaged by species. All traits except δ13C and δ15N were log-transformed to better
approach a normal distribution. To optimize the number of parameters used in the
transfer function, we ran a Principal Component Analysis (R-package ade462) on
the species-trait matrix, retained and scaled the three first orthogonal empirical
functional trait axes (t1, t2, and t3) that collectively explain 67.0% trait variance.
The three trait PCA axes can be described as follows (Supplementary Table 1 and
Supplementary Figs. 1–2):

- t1: this axis represents 29.5 % of the total trait variance. It is negatively
correlated with vegetative height, reproductive height, SLA, leaf nitrogen content,
foliar δ15N and positively related to LDMC and foliar δ13C. The analysis of species
distribution along this axis indicated that species typical of subalpine grasslands
were associated with negative scores while species typical of alpine grasslands
(including all five shrub species) were associated with positive scores.

- t2: this axis represents 19.5% of the total variance. It is positively correlated
with SLA and negatively related to vegetative height, LDMC, leaf carbon content,
foliar δ15N, and foliar δ13C. The analysis of species distribution along this axis
indicated that positive scores were associated with forbs species.

- t3: this axis represents 17.9% of the total variance. It is positively related to
reproductive height and LDMC and negatively related to leaf nitrogen content and
foliar δ15N. The analysis of species distribution along this axis indicated that
legumes and shrub species were associated with negative scores while positive
scores were associated with grass species.

Transfer function. In principle, any mathematical relationship between traits and
demographic parameters could be specified as a transfer function. Given a matrix
of N empirical functional traits T = {ti,n}, where ti,n is the known value of

functional trait n of species i, and a matrix of unknown demographic parameters
D = {di,m}, where di,m is the value of demographic parameter m of species i, the
transfer function specifies the mathematical link between the two. In our case, we
used a linear function of the functional traits to specify θmin as it can take both
positive and negative values across species and a log-linear function for l and c,
which can take only positive values.

We used a hyperspherical parameterization of the regression coefficients of the
linear and log-linear functions63,64. This formulation defines the relationship
between demographic parameters and functional traits with two sets of parameters:
a first set that controlled the link between demographic parameters and functional
traits, and a second set that controlled the mean and standard deviation of
demographic parameters across species.

1—The regression coefficients of the linear expressions linking the species
demographic parameters values di,m to the functional trait values ti,n can be viewed
as coordinates lying on a unit hypersphere of dimension N. We express them using
the multidimensional extension of the transformation of Cartesian coordinates to
polar coordinates. In that scheme, the coefficients are defined by N-1 angle
parameters {φm,n}. This parameterization samples efficiently all possible
correlations between each demographic parameter and functional trait while
keeping constant the mean and standard deviation of the demographic parameters
(Supplementary information 1.4.4). For each demographic parameter m of species
i, we calculate the link scale Ei,m that depends on the trait matrix T containing N
traits through N-2 parameters {φm,n} that vary within the range [0, π] and one
parameter φi,N-1 that varies within the range [0, 2π].

Ei;m ¼ cos φm;1 ´ ti;1 þ � � � þ
Yn�1

k

sin φm;k ´ cos φm;n ´ ti;n þ � � � þ
YN�1

k¼1

sin φm;k ´ ti;N ð2Þ

In the situation, where all traits are orthogonal and follow a standard normal
distribution across species, the link scale Ei,m also follows a standard normal
distribution across species.

2—We proposed two functions to transform the above expression to an
appropriate distribution for the demographic parameter di,m across species.
However, any monotonically increasing transformation of Ei,m could be employed
depending on the data structure. Both expressions depend on additional
parameters am and bm that together control the mean and standard deviation of
di,m across species.

1) If di,m only takes positive values, we used a log-linear formulation (e.g., c and l):

di;m ¼ eam ´Ei;mþbm ; am ≥ 0 ð3Þ
2) If di,m can take both positive and negative values, we used a linear

formulation (e.g., θmin):

di;m ¼ am ´ Ei;m þ bm; am ≥ 0 ð4Þ
This hyperspherical parameterization is mathematically equivalent to a classical

linear combination, albeit less intuitive. Compared to the latter, it allowed us to set
regularizing priors65 on the mean and variance of the demographic parameters
(through parameters of am and bm). This ensured the convergence of the ODE
model (Supplementary Information 1.4.3) and controlled parameter trade-offs, but
also allowed us to maintain uninformative priors on the parameters {φm,n} and
avoid making prior assumptions on trait–demography relationships.

Bayesian Inference of the transfer function parameters
Likelihood function. For any given set of parameter values and for each plot
temperature θj, we initialized the ODE with random positive biomass for all spe-
cies. The ODE was run for a fixed amount of time steps sufficient to characterize
the equilibrium across the prior distribution of the parameters (see Supplementary
information 1.4.3). Because of the structure of the pairwise interaction matrix, the
ODE model was globally stable for any parameter values: a single simulation was
thus sufficient to characterize the equilibrium (see Supplementary information 1.3).
We then calculated the likelihood of obtaining the observed set of sampled plant
individuals in plot j given the equilibrium state of the ODE model. We assumed
that the likelihood follows a multinomial distribution where each species has a
probability to be sampled equal to its relative biomass in the community.

Priors. We set uninformative priors for all angle parameters {φm,n}. We further set
regurlarizing priors for all the parameters am and bm which together control the
mean and variance of demographic parameters (Supplementary Table 2). Because
we calibrated our model using static relative abundances data and we used a like-
lihood function that follows a multinomial distribution, the demographic parameter
gi and the parameter bc associated with the demographic parameter vector c, were
not identifiable (see Supplementary information 1.4). In consequence, they were
fixed (for all species i, gi = 10−3.43 and bc = 10-3.8, Eqs. 1 and 3). Those parameters
would have been identifiable if the dataset included absolute abundance data
(parameter bc) or temporal data (demographic parameter gi).

Posterior estimation. We used a Differential-Evolution Markov-Chain Monte Carlo
algorithm (DEzs MCMC, R-package BayesianTools66) to estimate the posterior
distribution of the transfer function parameters. We ran eight independent DEzs
MCMC chains in parallel for 50000 steps, the posterior was estimated on the last
15000 steps. Convergence of the posterior distribution was assessed with
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Gelman–Rubin diagnostics31 (multivariate psrf was equal to 1.01). Posterior dis-
tribution data of the transfer function parameters are available in the Source data.

Performance assessment. To evaluate whether the calibrated model performs
better than random, we compared its fit to the fits of 200 replicate null models for
which the trait data was randomized across species. To generate random functional
trait datasets, we shuffled the PCA trait axes values among species and then ran the
calibration procedure using these randomized trait data. One chain was run for
each randomized dataset. After the burn-in phase (35 000 steps), 95% of the chains
displayed a convergence criterion inferior to 1.48. The fits of the calibrated model
and of the null models were compared using two metrics: the Deviance information
criterion (DIC)31 and Nagelkerke’s pseudo R2 metric30 which lends itself well to
multinomial models and gives an indication of the variance they explain.
Nagelkerke’s pseudo R2 was calculated from the ratio of a model’s posterior like-
lihood and the likelihood of the hypothesis that all sampled species have equal
relative abundance in each plot, as well as the sampling effort. We also computed
this pseudo R2 metric at the median of the posterior for each plot individually to
access the power of the calibrated model relative to the null model along the
studied gradient. Finally, we tested the ability of the calibrated model to predict
plant presence/absence in the studied plots by characterizing their ROC curves and
AUC scores. To do so, we used the botanical surveys because they are more
accurate to infer plant presence/absence compared to transect data32.

Comparative analysis. To illustrate the usefulness of our approach, we compared
it to existing correlative approaches. First, we analyzed species abundances along
the mean annual temperature gradient using a species distribution model and a set
of joint species distribution models67,68. The performance of those models was also
assessed with the Deviance information criterion, Nagelkerke’s pseudo R2, ROC
curves, and AUC scores. Second, we analyzed the relationship between mean
annual temperature and plant functional traits using the fourth corner analysis36.
Detailed methods and results are available in the Supplementary information.

All analyses were carried out using the software R 3.5.3, R-packages ade4 1.7.16
and BayesianTools 0.1.7 using the resources of ETH Zürich and the University of
Wyoming Advanced Research Computing Center69.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data are archived in the code repository https://doi.org/10.5281/zenodo.4682287. Source
data are provided with this paper.

Code availability
The code necessary to reproduce the results of this article is archived in the repository
https://doi.org/10.5281/zenodo.4682287.
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