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Abstract

Background: Protein translation is a vital cellular process for any living organism. The availability of interaction
databases provides an opportunity for researchers to exploit the immense amount of data in silico such as studying
biological networks. There has been an extensive effort using computational methods in deciphering the
transcriptional regulatory networks. However, research on translation regulatory networks has caught little attention
in the bioinformatics and computational biology community.

Results: In this paper, we present an exploratory analysis of yeast protein translation regulatory networks using
hierarchical random graphs. We derive a protein translation regulatory network from a protein-protein interaction
dataset. Using a hierarchical random graph model, we show that the network exhibits well organized hierarchical
structure. In addition, we apply this technique to predict missing links in the network.

Conclusions: The hierarchical random graph mode can be a potentially useful technique for inferring hierarchical
structure from network data and predicting missing links in partly known networks. The results from the
reconstructed protein translation regulatory networks have potential implications for better understanding
mechanisms of translational control from a system’s perspective.

Background
The central dogma of molecular biology describes that
the genetic information is transferred from DNA to
mRNA through transcription and from mRNA to pro-
tein via translation. In every living organism, translation
is a vital cellular process in which the information
contained in the mRNA sequence is translated into the
corresponding protein by the complex translation
machinery.
There are three major steps in protein biosynthesis:

initiation, elongation, and termination. Initiation is a
series of biochemical reactions leading to the binding of
ribosome on the mRNA and the formation of the initia-
tion complex around the start codon. This process
involves various regulatory proteins (the so-called

initiation factors). Eukaryotic protein synthesis exploits
various mechanisms to initiate translation, including
cap-dependent initiation, re-initiation, and internal
initiation. For the majority of mRNAs in the cell, their
translation is via the cap-dependent pathway. Although
debatable, it is widely believed that some cellular
mRNAs contain internal ribosome entry sites (IRES)
and there exists a cap-independent, IRES mediated
translation [1]. During elongation, codon-specific tRNAs
are recruited by the ribosome to grow the polypeptide
chain one amino acid at a time while the ribosome
moves along the mRNA template (one codon at a time).
This process also involves various elongation factors and
proceeds in a cyclic manner. In termination, the termi-
nation codon is recognized by the ribosome. The newly
synthesized peptide chain and eventually the ribosomes
themselves are released [2].* Correspondence: thu@ischool.drexel.edu
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Recent years have witnessed the breakthrough in high-
throughput technologies that have been used in moni-
toring the various components of the transcription and
translation machineries. DNA microarrays enable the
estimation of the copy number for every mRNA species
within a single cell and the changes in gene expression
temporally or under different physiological conditions
[3]. Two-dimensional gel electrophoresis coupled with
tandem mass spectrometry makes it possible to measure
simultaneously specific protein levels for thousands of
proteins in the cell. These high-throughput technologies
and the success of several genome projects are rapidly
generating an enormous amount of data about genes
and proteins that govern such cellular processes as tran-
scription and translation. Analyzing these data is provid-
ing new insights into the regulatory mechanisms in
many cellular systems. One of the major goals in post-
genomic era is to elucidate in a holistic manner the
mechanisms by which sub-cellular processes at the
molecular level are manifest at the phenotypic level
under physiological and pathological conditions.
The complexity and the large sizes of the transcription

and translation machineries make computational
approaches attractive and necessary in facilitating our
understanding the design principles and functional
properties of these cellular systems. Transcriptional reg-
ulation, used by cells to control gene expression, has
been a focus in a variety of computational methods to
infer the structure of genetic regulatory networks or to
study their high level properties [4]. However, research
on translational regulatory networks has caught little
attention in the bioinformatics and computational biol-
ogy community, either being underestimated or
neglected. This contrast may partly due to two factors.
Firstly, transcriptional control, other than translational
control, has long been regarded by conventional wisdom
as the primary control point in gene expression. Sec-
ondly, the success of genome projects and the appli-
cation of high-throughput technologies provide
tremendous amount of data about transcriptional regu-
lation that are readily available for computational analy-
sis. On the contrary, data about translational control are
still probably too specialized so that they are consumed
primarily by biologists.
Proteins, rather than DNAs or mRNAs, are the execu-

tors of the genetic program. They provide the structural
framework of a cell and perform a variety of cellular
functions such as serving as enzymes, hormones, growth
factors, receptors, and signalling intermediates. Biologi-
cal and phenotypic complexity eventually derives from
changes in protein concentration and localization, post-
translational modifications, and protein-protein interac-
tions. Expression levels of a protein depend not only on
transcription rates but also on such control mechanisms

as nuclear export and mRNA localization, transcript sta-
bility, translational regulation, and protein degradation.
Results from biological research have demonstrated that
translational regulation is one of the major mechanisms
regulating gene expression in cell growth, apoptosis, and
tumorigenesis [5]. Therefore, study of protein translation
networks, especially from computational systems biology
approaches, may provide new insights into our under-
standing of this important cellular process.
Mehra and colleagues [6] develop a genome-wide

model for the translation machinery in E. coli that pro-
vides mapping between changes in mRNA levels and
changes in protein levels in response to environmental
or genetic perturbations. They also propose a mathema-
tical and computational framework [7] that can be
applied to the analysis of the sensitivity of a translation
network to perturbation in the rate constants and in the
mRNA levels in the system.
However, toward the goal of understanding how trans-

lation machinery functions from a system’s perspective
that may enable us to form new theories and make new
predictions, it is imperative that we have a better under-
standing of the structure and properties of protein
translation networks. In pursuing such a goal, we pre-
viously reported a global analysis of network analysis of
Protein Translation Regulatory Networks (PTRN) in
yeast [8]. In this paper, we extend our efforts to study
one important network feature: hierarchy.
Biological processes are hierarchically organized, evi-

dent from interactions between molecules within a cell
to relationships among members of an ecological sys-
tem, and hierarchical structure plays an important role
in the dynamics of these processes.
Active research has been done to assess whether a

network is actually organized in a hierarchical manner
and to identify the different levels in the hierarchy.
The majority of the work has been focusing on identi-
fying “global signatures” of a hierarchical network
architecture. For example, Ravasz and colleagues [9]
studied the hierarchical structure of metabolic net-
works and reported that the uncovered hierarchical
modularity closely overlaps with known metabolic
functions in E. coli.
Out of many methods proposed to investigate the

hierarchical organization in a network [10-14], an espe-
cially appealing one is the hierarchical random graph
model introduced by Clauset and colleagues [13,14].
In the following, we define a PTRN that contains pro-

teins involved in translational regulation and controls.
We then describe the hierarchical random graph model
and the adapted approach we use based on this model
to infer the hierarchical structure of the constructed
network and further to predict missing links within the
network.
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Methods
Datasets
The yeast protein-protein interactions data were down-
loaded from the General Repository for Interaction
Datasets (GRID) [15]. We select GRID because it con-
tains arguably the most comprehensive data. The GRID
database includes all published large-scale interaction
datasets as well as available curated interactions such as
those deposited in BIND [16] and MIPS [17]. The yeast
dataset we downloaded has 4,948 distinct proteins and
18,817 unique interactions. From this network, we
derive the protein translation networks which contain
proteins with MIPS functional categories related to pro-
tein translation as described next.

Construction of PTRN
We extract proteins that are involved in protein bio-
synthesis from MIPS functional category database as
shown in Table 1. The extracted proteins belong to the
following categories: 12.04 (translation), 12.04.01 (trans-
lation initiation), 12.04.02 (translation elongation),
12.04.03 (translation termination), and 12.07 (transla-
tional control). There are totally 133 unique proteins in
this dataset. We then build the network by using pro-
tein-protein interaction data, including interactions
among the selected proteins only and ignoring all
other interactions. With the exclusion of the isolated
proteins – those without any edges connecting to
them – and self-looping interactions, the resulted net-
work contains 108 vertices and 342 edges.
There are several reasons for such a construction.

First of all, our interest in this research has been focused
on protein translation regulatory networks. Secondly,
protein-protein interaction data are notorious noisy and
incomplete. The approach we take allows us not only to
study the hierarchy but also to predict missing links
even with the noise and incompleteness in the back-
ground. At current stage, it is also more feasible compu-
tationally with networks of smaller sizes. In addition, we
want to examine if hierarchical structure exists even in
such isolated subnetworks.

Hierarchical random graphs
Our approach is based on a hierarchical random graph
proposed by Clauset and colleagues [13,14], incorporat-
ing with work by Sales-Pardo and colleagues [12]. There
are two important assumptions in this approach. Firstly,
if a network has sub-networks with an equal probability
connecting them, then the network can be represented
by splitting off the sub-network off one at a time until
the last one. Secondly, there may be more than one
hierarchical random graph that best fits the observed
network data.
In hierarchical random graphs, the probabilities of

connecting any two vertices and sub-networks are inde-
pendent of the presence or absence of other connec-
tions. This is similar to the classical Erdos-Renyi
random graph. However, in the hierarchical random
graph, the probabilities are dependent on the topological
structure of the graph.
1) Graph notation
We intuitively model a protein translation network as an
undirected graph, where vertices represent proteins and
edges represent interactions between pairs of proteins.
An undirected graph, G = (V, E), is comprised of two

sets, vertices V and edges E. An edge e is defined as a
pair of vertices (i, j) denoting the direct connection
between i and j. The graphs we use in this paper are
undirected, unweighted, and simple – meaning no self-
loops or parallel edges.
2) Definition of a hierarchical random graph
Let n be the size of vertices set, n = |V|. Let D be the
dendrogram with n leaves representing vertices of G.
Let r be an internal node of D with a probability Pr

which denotes the probability that an edge exists
between two vertices sharing r as their lowest common
ancestor in D. A hierarchical random graph is thus
defined by (D, {Pr}).
3) Inferring the hierarchical structure
As stated earlier, one assumption is that the likelihood
of all hierarchical random graphs is a priori equal. By
Bayes’ theorem, the probability that a model (D, {Pr})
explains the observed data is proportional to the poster-
ior probability or likelihood L.
Let Er be the number of edges in G with r as their low-

est common ancestor, Lr and Rr be the numbers of leaves
in the left and right subtrees rooted at r in D. We have

L D p p pr r
E

r
L R E

r D

r r r r( ,{ }) ( )  


 1

For each internal node r in D, the probability { pr }

that maximizes L is
E

L R
r

r r
. Thus, the likelihood of D at

this maximum is

Table 1 MIPS functional categories related to protein
translation

Category Description # of Proteins

12.04 translation 88

12.04.01 translation initiation 40

12.04.02 translation elongation 21

12.04.03 translation termination 9

12.07 translational control 55

A protein may belong to more than one category. The number of proteins is
the number of entries stored in each category.
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Conveniently, instead of using the above equation
directly, we use its logarithm form:

log ( ) ( )L D L R h Pr r r

r D

 



4) Markov chain Monte Carlo method
Since it is an NP hard problem to maximize L(D, {Pr}),
the estimation is done by using a Markov chain Monte
Carlo method by sampling D with probability propor-
tional to their likelihood.

With networks of relative small sizes, the Markov
chain converges fairly quickly. Therefore, it is suitable
for our constructed PTRNs.

Results
Fitting the hierarchical random graph to data
We construct our protein translation network using
protein-protein interactions among extracted proteins
and then fit the hierarchical random graph model to the
constructed network. Fig. 1 shows an example of maxi-
mum likelihood dendrogram with logL = -539. The den-
drogram clearly divides the majority of proteins into
groups coherent to their MIPS function categories.

Figure 1 An example of maximum likelihood dendrogram with logL= -539 The leaves are labelled with protein names with corresponding
MIPS function categories in parentheses. The probabilities are shown as gray-scale values.
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Consensus dendrogram
Fig. 2 shows an example of a consensus dendrogram con-
structed from the sampled hierarchical random graphs.
A consensus dendrogram is a summary of a set of dendro-
grams that fit the observed data. We may expect it to cap-
ture the topological features consistent across the majority
of the dendrograms and can better characterize the struc-
ture of the network than any individual dendrogram.

Prediction of missing links
The most interesting and possibly the most useful appli-
cation of hierarchical random graphs is the prediction of
missing interactions in networks in which the available
information is incomplete as in the case of protein-pro-
tein interaction data, especially in our case of studying
protein translation regulatory networks. Table 2 is the
compiled result of top 15 possible missing links with the

Figure 2 The consensus dendrogram The leaves are labelled with protein names with corresponding MIPS function categories in parentheses.
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highest probabilities from 10 runs of the predicting
algorithms.
On top of the list is the interaction between SUP35

and PAT1. SUP35 is translation termination factor
eRF3, involved in the termination of protein translation.
PAT1 is topoisomerase II-associated deadenylation-
dependent mRNA-decapping factor. It is required for
faithful chromosome transmission, maintenance of
rDNA locus stability, and protection of mRNA 3'-UTRs
from trimming. There is no interaction between these
two proteins in our downloaded datasets. However, this
interaction has been reported rather recently [18].
An intriguing finding of the prediction results is that

a few proteins have multiple highly probable missing
links, such as GCD11, SUI3, SUI2, RLI1, IST1, and
HCR1. GCD11 is the gamma subunit of the translation
initiation factor eIF2, involving in the identification of
the start codon. Its interaction with HCR1 has been
reported recently [18]. RLI1 is an essential iron-sulfur
protein required for ribosome biogenesis and transla-
tion initiation. Its interaction with SUI3 is also
reported [18]. SUI3 is the beta subunit of the transla-
tion initiation factor eIF2, involved in the identification
of the start codon and possibly in mRNA binding as
well. HCR1 is a dual function protein involved in
translation initiation as a substoichiometric component
(eIF3j) of translation initiation factor 3 (eIF3) and is
required for processing of 20S pre-rRNA. The interac-
tion between SUI3 and HCR1 has also been reported
[18].

Discussion
In this paper, we present the exploratory analysis of a
protein translation regulatory network using hierarchical
random graphs.

We constructed a protein translation network by
extracting proteins categorized in MIPS function data-
base [17] and protein-protein interaction data curated
in BioGRID [16]. One important feature of such recon-
structed networks is its incompleteness. Our current
knowledge about the links may only be a fraction of all
interactions among these proteins that may exist in rea-
lity. It thus is an enormous challenge to study such par-
tial networks. As shown in Figure 1, by using the
hierarchical random graphs, the reconstructed dendro-
gram divided the majority of proteins into groups
corresponding to their MIPS function categories. Our
results clearly demonstrated 1) the existence of the hier-
archical structure in the constructed protein translation
network; and 2) the usefulness of the hierarchical ran-
dom graph model in exploring the network structure.
Our results also show the ability of predicting missing

links in networks by using the hierarchical random
graph. At least four of the top 15 predicted missing
links has been reported recently [18]. It is very beneficial
for experimental biologists to use such drastically nar-
rowed list to formulate and validate hypotheses. One of
our future work will be to collaborate with biologists to
validate the predicted missing links and eventually help
build up a much more complete translation regulatory
network.
A limitation of current approach using Markov chain

Monte Carlo is its high computational cost. Improving
the computation efficiency in the future will allow us to
apply this approach to larger networks.

Conclusions
In this paper, we apply a hierarchical random graph
model in analyzing yeast protein translation regulatory
networks. We reconstruct protein translation regulatory
networks from a protein-protein interaction dataset.
Using the hierarchical random graphs, we show that the
reconstructed network exhibits well organized hierarchi-
cal structure. Furthermore, we apply this technique to
predict missing links in the network. Therefore, the
hierarchical random graph mode can be a potentially
useful technique for inferring network hierarchical
structure and predicting missing links in partly known
networks. The results have potential implications for
better understanding mechanisms of translational con-
trol from a system’s perspective.
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Table 2 Prediction of missing links

Protein 1 Protein 2 Probability Reference

SUP35 PAT1 0.8895 [18]

RLI1 PRT1 0.7343

GCD11 IST1 0.7163

GCD11 SUI1 0.7161

GCD11 RLI1 0.7159

GCD11 HCR1 0.7157 [18]

SUI3 HCR1 0.6977

SUI3 TIF35 0.6976

SUI3 FUN12 0.6976

SUI3 RLI1 0.6976 [18]

SUI3 TIF34 0.6973

SUI2 FUN12 0.6683

SUI2 HCR1 0.6682 [18]

SUI2 IST1 0.6681

SUI2 SUI1 0.6681
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