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Background: Immunotherapy is a treatment that can significantly improve the prognosis
of patients with colon cancer, but the response to immunotherapy is different in patients
with colon cancer because of the heterogeneity of colon carcinoma and the complex
nature of the tumor microenvironment (TME). In the precision therapy mode, finding
predictive biomarkers that can accurately identify immunotherapy-sensitive types of colon
cancer is essential. Hypoxia plays an important role in tumor proliferation, apoptosis,
angiogenesis, invasion and metastasis, energy metabolism, and chemotherapy and
immunotherapy resistance. Thus, understanding the mechanism of hypoxia-related
genes (HRGs) in colon cancer progression and constructing hypoxia-related signatures
will help enrich our treatment strategies and improve patient prognosis.

Methods: We obtained the gene expression data and corresponding clinical information
of 1,025 colon carcinoma patients from The Cancer Genome Atlas (TCGA) and the Gene
Expression Omnibus (GEO) databases, respectively. We identified two distinct hypoxia
subtypes (subtype A and subtype B) according to unsupervised clustering analysis and
assessed the clinical parameters, prognosis, and TME cell-infiltrating characteristics of
patients in the two subtypes. We identified 1,132 differentially expressed genes (DEGs)
between the two hypoxia subtypes, and all patients were randomly divided into the training
group (n = 513) and testing groups (n = 512). Following univariate Cox regression with
DEGs, we construct the prognostic model (HRG-score) including six genes (S1PR3, ETV5,
CD36, FOXC1, CXCL10, and MMP12) through the LASSO–multivariate cox method in the
training group. We comprehensively evaluated the sensitivity and applicability of the HRG-
score model from the training group and the testing group, respectively. We explored the
correlation between HRG-score and clinical parameters, tumor microenvironment, cancer
stem cells (CSCs), and MMR status. In order to evaluate the value of the risk model in
clinical application, we further analyzed the sensitivity of chemotherapeutics and
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immunotherapy between the low-risk group and high-risk group and constructed a
nomogram for improving the clinical application of the HRG-score.

Result: Subtype A was significantly enriched in metabolism-related pathways, and
subtype B was significantly enriched in immune activation and several tumor-
associated pathways. The level of immune cell infiltration and immune checkpoint-
related genes, stromal score, estimate score, and immune dysfunction and exclusion
(TIDE) prediction score was significantly different in subtype A and subtype B. The level of
immune checkpoint-related genes and TIDE score was significantly lower in subtype A
than that in subtype B, indicating that subtype A might benefit from immune checkpoint
inhibitors. Finally, an HRG-score signature for predicting prognosis was constructed
through the training group, and the predictive capability was validated through the
testing group. The survival analysis and correlation analysis of clinical parameters
revealed that the prognosis of patients in the high-risk group was significantly worse
than that in the low-risk group. There were also significant differences in immune status,
mismatch repair status (MMR), and cancer stem cell index (CSC), between the two risk
groups. The correlation analysis of risk scores with IC50 and IPS showed that patients in the
low-risk group had a higher benefit from chemotherapy and immunotherapy than those in
the high-risk group, and the external validation IMvigor210 demonstrated that patients with
low risk were more sensitive to immunotherapy.

Conclusion: We identified two novel molecular subgroups based on HRGs and
constructed an HRG-score model consisting of six genes, which can help us to better
understand the mechanisms of hypoxia-related genes in the progression of colon cancer
and identify patients susceptible to chemotherapy or immunotherapy, so as to achieve
precision therapy for colon cancer.

Keywords: colon cancer, hypoxia-related genes, molecular subtype, tumor microenvironment, immunotherapy,
immune checkpoint blockade, HRG-score

INTRODUCTION

Colon cancer is the fifth most common malignancy, with more
than 1 million new cases every year (Sung et al., 2021). Metastasis
and recurrence have always been the main problems leading to
refractory colon cancer (Bekaii-Saab et al., 2019; Mayer et al.,
2015; Sartore-Bianchi et al., 2016), and about 30–50% of patients
with primary colon cancer will relapse and die from metastatic
cancer (Arnold et al., 2015; Siegel et al., 2021). Surgical treatment
is the main treatment for colon cancer, and the 5-year survival
rate is about 50% (Ferlay et al., 2010). The 5-year survival rate for
patients with distal metastasis is even worse at about 14%. With
the advances in treatments such as surgery, radiation therapy,
chemotherapy, and immunotherapy, the survival rate in colon
cancer patients has improved significantly (Jahanafrooz et al.,
2020). Up to now, the tumor stage has been the most important
factor in judging the severity of a patient’s disease, specifying
treatment strategy, and predicting the prognosis (Compton et al.,
2000).

Moreover, given the high heterogeneity in molecular genetics
and histopathology, the treatment strategies based on the tumor-
node-metastasis staging system may not be effective across all

individuals. With the advance in genomic technology, many
epigenetic changes have been identified as potential prognostic
biomarkers in colon cancer patients, such as aberrant DNA
methylation processes, noncoding RNA and microRNA
disorders, and histone modification changes (Kandimalla et al.,
2021; Vymetalkova et al., 2019). However, genetic changes still
play a key role in the progression of colon cancer. Therefore, the
construction of prognostic markers based on changes in genes is
vital to enable individualized treatment decisions, which may
then guide the choice of treatment strategy and the accurate
prediction of patient prognosis.

Tumor cells are metabolically active, so hypoxia often occurs
in the center. Hypoxia affects the tumor immune
microenvironment (TIME) directly and indirectly, with much
evidence favoring an immunosuppressive effect (Chouaib et al.,
2018; You et al., 2021). For tumor cells, hypoxia enhances
angiogenesis and remodeling by inducing hypoxia-inducible
factor (HIF) expression, which is a marker of tumor
proliferation, metastasis, and recurrence (King et al., 2021).
Potential mechanisms include altered gene expression,
oncogene activation, inactivation of anti-oncogenes, decreased
genome stability, and clonal selection (Emami Nejad et al., 2021).
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Under normal oxygen tension, the HIF protein is unstable and
easily degraded by proteasome (Semenza et al., 2010; Semenza
et al., 2021). In hypoxic cells, HIF proteins are not easily
degraded, thereby creating an immune-unfavorable
microenvironment by regulating the transcription of downstream
genes, ultimately leading to immune resistance (Chouaib et al., 2018;
Noman et al., 2019). Hypoxia can regulate the status of the tumor
immune microenvironment by promoting the recruitment of innate
immune cells and interfering with the differentiation and function of
adaptive immune cells (Palazon et al., 2014). For colon cancer,
hypoxia also promotes epithelial–mesenchymal transformation
(EMT) and ultimately leads to further migration and invasion of
tumor cells (Choietal et al., 2017).

In the study, we systematically evaluated the patterns of hypoxia-
related genes and tumor immune microenvironment characteristics
of COAD patients by clustering the expression of hypoxia genes. We
identified two subtypes with distinct clinical and immune
characteristics in COAD and constructed an HRG-score signature
based on the expression profile of HRGs.HRG-score serves as a
reliable predictor of overall survival, clinical characteristics, and
immune cell infiltration, which has the potential to be applied as
a valuable biomarker for COAD immunotherapy.

MATERIALS AND METHODS

Dataset Collection and Processing
The gene expression data (fragments per kilobase million, FPKM)
and the corresponding clinicopathological information of colon
carcinoma were downloaded from TCGA-COAD project
(https://portal.gdc.cancer.gov/) databases and the GSE39582
cohort (https://www.ncbi.nlm.nih.gov/geo/).

In order to obtain reliable results, samples with no information
on survival outcomes were excluded, and a total of 1,025 COAD
patients were eventually included in the follow-up analysis. Details of
these 1,025 COAD patients are presented in Supplementary Table
S1. Beforemerging the expressionmatrices of TCGA-COADproject
and GSE39582 cohort, the FPKM values of TCGA-COAD were
transformed into transcripts per kilobasemillion (TPM), which were
considered to be more comparable with the microarray data. In
addition, all raw data were normalized and standardized to eliminate
batch effects by using the R software package. Meanwhile, we
downloaded the IMvigor210 cohort from the website, which was
a cohort study for evaluating the clinical response of atezolizumab in
metastatic urothelial cancer (mUC) (Mariathasan et al., 2018). In the
IMvigor210 cohort, we excluded the patients with no clinical
response information and a total of 298 patients for subsequent
validation (Supplementary Table S2). In total, 200 hypoxia-related
genes (HRGs) were retrieved from the MSigDB database (http://
www.broad.mit.edu/gsea/msigdb/), and the full details of these genes
are shown in Supplementary Table S3.

Consensus Clustering Analysis Based on
Hypoxia-Related Genes
Unsupervised clustering analysis was employed to classify
patients into distinct molecular subtypes according to the

expression of 200 HRGs. In order to increase the intra-class
correlation and decrease the correlation, the consensus clustering
algorithm was performed and repeated 1,000 times to ensure the
stability of the clusters, which we plotted using the R package
“ConsensusClusterPlus.”

Relationship Between Molecular Subtypes
With the Clinical Parameters and Prognosis
of Colon Carcinoma
We compared the relationships between molecular subtypes,
clinical parameters, and prognosis to examine the clinical
value of the two subtypes identified by consensus clustering.
Furthermore, we also analyzed the expression of the HRGs
among the two subtypes. The clinical parameters included age,
sex, T stage, N stage, M stage, and TNM stage. Kaplan–Meier
curves were used to assess the differences in overall survival
among different molecular subtypes.

Molecular and Immune Features Between
Subtypes
GSVA enrichment analysis was employed to assess and compare
the difference in biological pathways between the distinct
molecular subtypes. and the hallmark gene set (c2.
cp.kegg.v7.2) was retrieved from the MSigDB database.
Meanwhile, we estimated the relative abundance of 23
immune cells in colon carcinoma using a single-sample gene
set enrichment analysis (ssGSEA) algorithm, which was
performed using the GSVA R package.

Considering the role of the tumor microenvironment (TME)
in tumor progression, we also evaluated the Stromal, Immune,
and ESTIMATE scores of each sample by the ESTIMATE
algorithm to determine the degree of immune cell infiltration
of each subtype. We not only estimated and compared the
expression level of six common immune checkpoint-related
genes, such as CD274 (PD-L1), PDCD1LG2 (PD-L2), PDCD1
(PD-1), CTLA4, LAG3, and TIGI, but also calculated the patient
TIDE score to evaluate the immunotherapy response.

Identification of Differentially Expressed
Genes
DEGs between the two hypoxia-related subtypes were identified
using the “limma” R package, and the significance criterion for
defining DEGs was |log fold change (FC)| > 0.585 and adjusted
p-value < 0.05. Furthermore, we performed Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis on DEGs to identify the related gene
functions and enriched pathways through the “clusterProfiler” R
package with a cut-off p value < 0.05 and an adjusted p value < 0.05.

Construction of the Prognostic
Hypoxia-Related Gene Score
First, univariate Cox regression analysis was performed on DEGs
to identify those linked to the prognostic value with a p-value <
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0.05. Second, a total of 1,025 patients were randomly categorized
into the training group (n = 513) and testing group (n = 512) at a
ratio of 1:1; then, the patients in the training group were used to
construct the hypoxia-related prognostic HRG-score, and the
testing group was used for validation. Finally, based on hypoxia-
related prognostic DEGs, The LASSO–Cox regression analysis
was then utilized to develop the prognostic HRG-score in the
training group, which was performed using the “glmnet” R
packet. The HRG-score formula is as follows: HRG-score = Σ
(Expi * Coefi), where Coefi and Expi denote the risk coefficient
and expression of each gene, respectively. Based on the HRG-
score formula, each patient can get a specific risk score. A total of
513 patients in the training group were assigned, based on a
median value, to the high-risk group (n = 256) and low-risk group
(n = 257). Similarly, a total of 512 patients in the testing group
were assigned to HRG-score-related subgroups based on the
formula constructed by the training group. The receiver
operating characteristic (ROC) curve, which is used to judge
the accuracy of the prognostic risk model, was generated by the
“timeROC” R package, and principal component analysis (PCA)
was performed using the “ggplot2” R package.

RNAseq data (level3) and the corresponding clinical
information for 450 colon cancer tumors were obtained from
The Cancer Genome Atlas (TCGA) dataset (https://portal.gdc.
com). First univariate and multivariate cox regression analyses
and forest plots were used to display each variable (p-value, HR,
and 95% CI) via the “forest plot” package. Based on the results of
multivariate Cox proportional risk analysis, column line plots
were created using the “rms” package to predict the total
recurrence rate in 1, 2, and 3 years. The line graphs provide
graphical results for these factors, allowing the prognostic risk of
individual patients to be calculated by the points associated with
each risk factor.

Correlation Analysis of the HPR-Score With
Clinical Parameters
A Chi-square test was applied to explore the correlation between
the HRG-score and the clinical parameters (age, gender, T stage,
N stage, M stage, and TNM stage). To assess whether the HRG-
score is an independent prognostic factor associated with
prognosis, we performed univariate analysis and multivariate
analysis on the training group and testing group. Kaplan-
Meier analysis was used to compare survival outcomes of
patients between high- and low-risk and assessed the
correlation between the survival outcome and HRG-score. We
further analyzed the relationship between HRG-score and
molecular subtypes through a boxplot.

Evaluation of Immune Status and Mismatch
Repair Status Between the High- and
Low-Risk Groups
The CIBERSORT algorithm was used to calculate the relative
abundance of 22 infiltrating immune cells per sample in the low-
and high-risk groups (Supplementary Table S11). We explored
the correlation between the 22 infiltrating immune cell fractions

and the 7 genes in the PRG scores. In addition, we compared the
expression levels of immune checkpoints between the low- and
high-scoring groups and analyzed the relationship between the
HRG score and the cancer stem cell (CSC) index.

Sensitivity Analysis of Chemotherapy and
Immunotherapy
In a project to evaluate the difference in the treatment effect of
five chemotherapeutic agents in patients in the high-risk and low-
risk groups, the semi-inhibitory concentration (IC50) values of
chemotherapeutic agents were analyzed by the R package
“pRRophetic.” We acquired the IPS of colon cancer patients in
TCGA-COAD project from TCIA database and compared the
IPS of the distinct risk group to evaluate the response to immune
checkpoint-blocking therapy. We further explored the
relationship between immunotherapy sensitivity and HRG-
score by the IMvigo210 cohort.

Statistical Analysis
All statistical analyses were performed using R software (v4.0.2).
p-values <0.05 were considered statistically significant if not
explicitly stated.

RESULT

Identification of Hypoxia Gene-Related
Subtypes in Colon Carcinoma
A total of 1,025 patient samples with complete survival information
from TCGA-COAD project and GEO-GES39582 were included in
our study. To further investigate the expression characteristics of
HRGs in colon carcinoma, we used a consensus clustering
algorithm to cluster the patients based on the expression of the
200 HRGs. Our result found that when K = 2, the intra-group
correlations were the highest, and the inter-group correlations were
the lowest, indicating sorting the entire patients into two subtypes
may be the most optimal selection (Figure 1A). PCA analysis
revealed the significant differences between the two subtypes
(Figure 1B), suggesting there existed significant heterogeneity in
the expression of hypoxia genes in patients with colon carcinoma.
The Kaplan–Meier curves showed an obvious difference in the
prognosis between the two hypoxia subtypes, and the prognosis in
patients with subtype A was significantly better than that in
patients with subtype B (log-rank test, p = 0.011; Figure 1C).
Furthermore, we compared the correlations of the two subtypes
with clinical parameters and the expression of hypoxia genes. As
the heatmap showed (Figure 1D), there were no significant
differences in clinical parameters between the two subtypes;
however, compared with subtype A, most of the hypoxia-related
genes were highly expressed in subtype B.

Function Enrichment of the Molecular
Subtypes
GSVA enrichment analysis showed that metabolism-related and
DNA synthesis-related pathways including butanoate
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metabolism, propanoate metabolism, pyruvate metabolism, fatty
acid metabolism, nonhomologous end joining, base excision
repair, DNA replication-related pathway were upregulated in
subtype A, while T- and B-cell receptor signaling pathway,
natural killer cell-mediated cytotoxicity, antigen processing
and presentation, checkpoint signaling pathway, and NOD-
like, RIG-I-like, and Toll-like receptor signaling pathways were
upregulated in subtype B(Figure 2A, Supplementary Table S4).

Characteristics of the Tumor
Microenvironment in Distinct Subtypes
The tumor microenvironment (TME) has been proved to play an
important role in tumor progression and immune response. We
evaluated the 23 immune cells’ infiltration levels of each patient

by applying the ssGSEA (Supplementary Table S5) and found
significant differences in the infiltration of most immune cells
between the two subtypes (Figure 2B). The infiltrate levels of 20
immune cell types, including activated B cells, activated CD4+

T cells, activated CD8+ T cells, natural killer T cells, and
regulatory T cells, were significantly higher in the subtype B
than those in the subtype A. The ESTIMATE algorithm was used
to evaluate the TME score (stromal score, immune score, and
ESTIMATE score) of each patient through the “ESTIMATE” R
package (Supplementary Table S6), and we found that the
stromal score, immune score, and ESTIMATE score were
significantly higher in subtype B than subtype A (Figure 2C).
Recently, the immune checkpoint blockade has achieved
promising results in the immunotherapy of tumors. Therefore,
we subsequently analyzed the expression levels of several

FIGURE 1 | HRG subtypes and clinical parameters and biological characteristics of two distinct subtypes of samples divided by consistent clustering. (A)
Consensus matrix heatmap defining two subtypes (k = 2) and their correlation area. (B) PCA showing a remarkable difference in transcriptomes between the distinct
HRG-subtypes, and each dot represents a single sample. (C) KM survival curve analysis showed that the overall survival time of the distinct HRG-subtypes was different
(log-rank tests, p < 0.001). (D) Differences in clinical parameters and HRG expression levels between the two distinct HRG-subtypes.
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important immune checkpoint-related genes, such as CD274
(PD-L1), PDCD1LG2, PDCD1, CTLA4, LAG3, and TIGIT
(Figures 2D–I). We found that the expression levels of six
immune checkpoint-related genes in subtype B were higher
than those in subtype A, indicating that patients in subtype B
were more likely to form an immunosuppressive
microenvironment and escape from immune surveillance.

Construction and Validation of the
Prognostic Hypoxia Related Gene-Score
We identified 1,132 DEGs between the two HRG-related
subtypes, of which 139 genes were upregulated in subtype A
and 993 genes were upregulated in subtype B (Figure 3A,
Supplementary Table S7). Then, we conducted GO and
KEGG enrichment analysis on the 1,132 DEGs to explore the
potential function and pathway through the “clusterProfiler” R
package. In the GO analysis, the top 5 most significantly enriched
terms were collagen-containing extracellular matrix, extracellular
matrix organization, extracellular structure organization, positive
regulation of cell adhesion, and negative regulation of immune
system process (Figure 3B, Supplementary Table S8).In the
KEGG analysis, the top 5 most significantly enriched terms
were PI3K-Akt signaling pathway, cytokine–cytokine receptor
interaction, cell adhesion molecules, phagosome, and focal

adhesion (Figure 3C, Supplementary Table S9). Univariate
Cox regression analysis was employed on the 1,132 DEGs and
437 genes associated with the prognostic value with a p-value
<0.05 and were identified as candidate genes for subsequent
analysis (Supplementary Table S10). Then, all patients were
classified into training group (n = 513) and testing group (n =
512) at a ratio of 1:1 randomly, the training group for developing
the prognostic signature and the testing group for validation.
LASSO regression analysis on the 437 candidate genes was
performed to exclude overlapping genes and reduce the fitting
effect of the signature (Figures 3D,E). Finally, six genes were
included to construct the risk model after multivariate Cox
proportional risk regression analysis, four of which were
associated with high risk and two with low risk (Figure 3F).
According to the results of the multivariate Cox proportional risk
regression analysis, the HRG-score was constructed as follows:
Risk score = (0.2665 * expression of S1PR3) + (0.2478* expression
of ETV5) + (0.2115* expression of CD36) + (0.2808* expression
of FOXC1) + (−0.1735* expression of CXCL10) + (−0.0976*
expression of MMP12). According to the median risk score,
patients in the training group were classified into high-risk
group (n = 256) and low-risk group (n = 257) (Figure 3G).
When compared to the low-risk group, we found that more
patients died and a shorter survival time in the high-risk group
(Figure 3H). The expression levels of six genes involved in the

FIGURE 2 | Correlations of tumor immune cell microenvironments and two HRG-subtypes. (A) GSVA of biological pathways between two distinct subtypes, in
which red and blue represent activated pathways and blue represents inhibited pathways, respectively. (B) Relative abundance of 23 infiltrating immune cell types in the
two HRG-subtypes. (C)Correlations between the two CRC subtypes and TME score. (D–I) Expression levels of PD-L1, PD-L2, PDCD1, LAG3, TIGIT, and CTLA4 in two
distinct HRG-subtypes. (*p < 0.05; **p < 0.01; ***p < 0.001).
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construction of our HRG-score signature are shown in Figure 3I.
Kaplan–Meier survival analysis revealed that there existed a
significant difference in survival time between the low- and
high-risk group, and the patients in the low-risk group had a
longer survival time (p < 0.001) (Figure 3J). The principal
component analysis (PCA) showed that patients with different
risks were well separated into two clusters (Figure 3K). The AUC
values for the 1-, 3-, and 5-year survival were 0.726, 0.722, and
0.715, respectively (Figure 3L).

Validation of the Hypoxia Related
Gene-Score Signature
In order to verify the practicality and credibility of the model, we
performed the same analysis for internal validation using a testing
group (n = 512). Based on the median risk score in the training
group, all patients in the testing group were classified into the
low-risk group (n = 244) and high-risk group (n = 268)
(Figure 4A). Compared to the low-risk group, the proportion
of patient deaths tended to be high in the high-risk group
(Figure 4B). Heatmap was also plotted to analyze the
expression of the six genes involved in the HRG-score
signature between the high- and low-risk groups (Figure 4C).

Kaplan–Meier analysis showed that the survival probability of the
high-risk group was significantly lower than that of the low-risk
group (p < 0.04) (Figure 4D). The principal component analysis
(PCA) showed that the patients with different risk scores can be
stratified into two clusters distinctly (Figure 4E). The AUC values
for the 1, 3, and 5 years of ROC were 0.748, 0.727, and 0.726
respectively, indicating our model’s good predictive efficacy
(Figure 4F). Nomograms of S1PR3, ETV5, CD36, FOXC1,
CXCL10, and MMP12 expression and independent clinical
risk factors (age and pathological stage) were constructed
(Supplementary Figure S4). A higher total number of points
in the nomogram represents a worse prognosis. In addition, the
C-index value was 0.779 (p < 0.001). The deviation-corrected line
in the calibration plot was close to the ideal curve (i.e., 45° line),
indicating good agreement between the predicted and observed
results.

Correlation Analysis of Hypoxia Related
Gene-Score and Clinical Parameters
We plotted a heatmap of clinical parameters for the patients in
the training group and found statistically significant differences in
T, N, M, and TNM stages between high- and low-risk groups

FIGURE 3 | Construction of the HRG-score in the training set based on the differentially expressed genes of two distinct HRG-subtypes. (A) Volcano plot of
differentially expressed genes between the two distinct HRG-subtype. Gray dots represent not significant genes, green dots represent upregulated genes in HRG-
subtype A, and red dots represent upregulated genes in HRG-subtype B (B–C)GO and KEGG enrichment analyses of DEGs among two distinct HRG-subtypes. (D–E)
LASSO regression analysis and partial likelihood deviance on the prognostic genes. (F) Forest plot of multivariate cox regression analysis for prognostic genes.
(G–H)Ranked dot and scatter plots showing the HRG-score distribution and patient survival status. (I)Heatmap of the expression of six genes involved in the HRG-score
in low- and high-risk groups. (J) Survival analysis of the patients in low- and high-risk groups. (K) PCA based on the prognostic signature. (L) ROC curves to predict the
sensitivity and specificity of 1-, 3-, and 5-year survival according to the HRG-score.
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(Figure 5A). We further analyzed the relationship between the T
stage, N stage, M stage, and TNM stage and risk score separately.
As shown in Figure 5B, we found significant differences in risk
scores for T, N, M, and TNM stages, and patients’ clinical stage
deteriorated as risk scores increased, suggesting that high-risk
scores predicted poor outcomes for patients. In addition, we also
analyzed the correlation between the risk score of the testing
group and the clinical parameters (Supplementary Figure S1A)
and obtained the same result that the risk score can be used to
evaluate the prognosis of patients (Supplementary Figure
S1B–E). Univariate and multivariate Cox regression analyses
were employed to assess whether HRG-score could be used as
an independent prognostic factor. The univariate Cox regression
analysis indicated that the HRG-score was an independent factor
predicting poor survival in the training group (HR = 1.701, 95%
CI: 1.485–1.948) (Figure 5C). After adjusting for other
confounding factors, the multivariate analysis yielded similar
results that the HRG-score can be a prognostic factor for
patients in the training group (HR = 1.419, 95% CI:
1,226–1.641) (Figure 5D). Univariate and multivariate Cox
regression analyses were also employed in the testing group,
and we also got the same result (HR = 1.505, 95% CI: 1.344–1.686
and HR = 1.297, 95% CI: 1.147–1.467, Supplementary Figure
S2A,B).

Evaluation of Tumor Microenvironment and
Checkpoints Between the High- and
Low-Risk Groups
CIBERSORT algorithm was performed to assess the association
between the HRG-score and the abundance of immune cells. The

scatter diagrams showed that the HRG-score was positively
correlated with macrophage M2, neutrophils, and macrophages
M0 and negatively correlated with macrophages M1, plasma cells,
T cell CD4 memory activated, T-cell follicular helper, and T cell
CD8 (Figure 6A). We observed that the stromal score and
ESTIMATE score were significantly higher in the low-risk
group than the high-risk group (Figure 6B). Figure 6C shows
that 22 immune checkpoints were differentially expressed in the
two groups, and the expression of most immune checkpoint-
related genes was higher in the low-risk group than that in the
high-risk group. We also assessed the correlation between the six
genes of the HRG-score signature and the abundance of immune
cells. We observed that most immune cells were significantly
correlated with the six genes (Figure 6D).

Correlation Analysis of PRG-Score With the
MMR Status and CSC Index
Inactivating mutations in mismatch repair genes such as MLH1,
MSH2, MSH6, and PMS2 can cause mismatch repair (MMR)
dysfunction and then lead to microsatellite high instability (MSI-
H). Patients with high microsatellite instability (MSI-H) are more
sensitive to immunotherapy and can benefit from
immunotherapy drugs. Correlation analyses revealed that a
high HRG-score was significantly correlated with proficient
mismatch repair status (pMMR), while a low HRG-score was
associated with deficient mismatch repair (dMMR) status
(Figure 7A), suggesting that patients with low-risk scores
benefit from immunotherapy better than those with high-risk
scores. Stem cells (CSCs) are a small subset of undifferentiated
cells in tumor tissues, which have strong self-renewal potential

FIGURE 4 | Validation of the HRG-score signature in the testing set. (A,B) Ranked dot plot indicates the PRG-score distribution, and the scatter plot presents the
patients’ survival status. (C)Heatmap of the expression of six genes involved in the HRG-score in low- and high-risk groups. (D) KM analysis of the OS between the low-
and high-risk groups. (E) PCA demonstrated that the patients in the different risk groups were distributed in two directions. (F) ROC curves to predict the sensitivity and
specificity of 1-, 3-, and 5-year survival according to the PRG-score.
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and tumorigenic potential, and can form tumors in a low number
in vivo. The correlation analysis between the PRG-score and CSC
index showed that PRG-score was negatively correlated with the
CSC index (R = −0.31, p < 0.001), indicating that tumor cells with
lower HRG-score had a lower degree of cell differentiation and
distinct stem cell properties (Figure 7B).

Analysis of the Sensitivity of
Chemotherapeutics and Immunotherapy
Based on Hypoxia Related Gene-Score
We next selected four chemotherapy drugs currently used for the
treatment of colon carcinoma to assess the sensitivity of patients in
the low- and high-risk groups to these drugs. As shown in Figure 7C,
we found that the patients in the low-risk group showed more
sensitivity to chemotherapy drugs indicating that the low-risk
group may benefit more from chemotherapy drugs. Meanwhile,
the applicability of different HRG-score samples to combined
therapy of anit-CTLA4 and anti-PD1 was compared by IPS. The
analysis showed a significant difference (p = 0.00023 < 0.05) that the
IPS of the low-risk group treated with the combination of anti-
CTLA4 and anti-PD1 was relatively higher than that of the high-risk

group, indicating that the patients with low HRG-score had a better
therapeutic effect on Immunotherapy (Figure 7D). To further
evaluate the robustness of our HRG-score signature, we calculated
the risk score of patients in the IMvigor210 cohort based on the
formula of HRG-score and analyzed the correlation of risk score with
the effect of immunotherapy. As shown in Figure 7E, there existed
significant differences in risk scores between the complete remission/
partial remission (CR/PR) group and stable disease/progressive
disease (SD/PD) group, and the risk score of patients in the CR/
PR group was significantly lower than that of patients in the SD/PD
group (p = 0.0031 < 0.05). To further improve the clinical application
of our model, we constructed a nomogram containing HRG-score
and clinical parameters to predict overall survival at 1, 3, and 5 years
(Supplementary Figure S3A), and the calibration plots suggested
that the nomogram had a good performance in predicting the
survival of colon cancer patients (Supplementary Figure S3B).

DISCUSSION

CRC is an extremely common malignant tumor. In recent years,
there is a tendency to develop to the right half of the colon, which

FIGURE 5 | Correlation and independent prognosis analysis of HRG-score and clinical parameters in the training set. (A,B) Univariate and multivariate analyses of
the prognostic value of the HRG-score. (C) Relationships between clinical parameters and the low- and high-risk groups. (D) Clinical application value of HRG-score in
predicting T stage, N stage, M stage, and TNM stage, respectively (*p < 0.05; **p < 0.01; ***p < 0.001).
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is closely related to heredity, living habits, and colorectal
adenoma (Zhang et al., 2020). According to the latest data, the
global incidence rate of CRC is the second only to breast cancer
and lung cancer, and the mortality rate is the second only to lung
cancer. At present, the main treatment of CRC is surgical
treatment, supplemented by neoadjuvant radiotherapy and
chemotherapy, postoperative radiotherapy and chemotherapy,
and immunotherapy. The main prognostic key issues affecting
CRC are currently the need for timely surgical intervention and
effective radiotherapy treatment. Unfortunately, more than 50%
of CRC patients experience tumor recurrence, metastasis,
invasion, and resistance to chemotherapy drugs at the time of
diagnosis or during their follow-up treatment (Song et al., 2021),
thus losing the standard of care of surgical treatment with
radiotherapy and subsequently having a poor prognosis as well
as poor quality of survival. Chemotherapy is a relative option for
patients with CRC who cannot tolerate surgical intervention;
however, there are still no specific chemotherapeutic agents for
CRC. A growing body of evidence suggests that multiple genes
and cellular pathways are involved in the development of CRC.
To date, the lack of knowledge about the exact molecular
mechanisms underlying CRC progression has limited the
ability to treat advanced diseases. Therefore, it is necessary to
identify the key genes and pathways of CRC in order to

understand its molecular mechanism, explore potential
biomarkers, and develop more effective diagnostic and
therapeutic strategies.

Hypoxia-inducible factor (HIF) played an important role in
cancer biology, including angiogenesis, cell survival, glucose
metabolism, and invasion (Zhang et al., 2021). HIF can
facilitate metabolic metastasis and enhance the non-
mitochondrial mechanism of ATP production, thus providing
energy for tumor cells (Gatenby et al., 2004). In addition, HIF
stabilization can lead to inhibition of apoptotic pathways through
silencing of mitochondrial activity. Hypoxia can mitigate the
infiltration rate of immune cells and their function in the TME
(You et al., 2021). Glycolysis can lead to acid TME with a pH as
low as 5.8 to 6.5, and the acidic environments can inhibit immune
cell differentiation and function. With the advance of high-
throughput sequencing, identification of molecular
characterization gradually becomes a significant method for
biomedical research, which can be used for identifying
biomarkers for prognosis predicting, recurrence monitoring,
and clinical risk stratification (Wang et al., 2009; Xiao et al., 2018).

The growth and progression of malignant tumors are
associated with immunosuppression, and tumor cells evade
immune surveillance through different mechanisms, including
the activation of immune checkpoints pathways that suppress

FIGURE 6 | Evaluation of the TME and checkpoints between the two risk groups. (A) Correlations between HRG-score and immune cell types. (B) Correlations
between HRG-score and TME score. (C) Expression of immune checkpoint-related genes in the low- and high-risk groups. (D) Correlations between the relative
abundance of immune cells and six genes involved in the HRG-score. (*p < 0.05; **p < 0.01; ***p < 0.001)
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anti-tumor immune responses. The successful development of
immune checkpoint genes (ICGs) was a milestone event in tumor
immunotherapy and was named one of the top 10 scientific
discoveries by Nature in 2013 (Wolchok et al., 2014). ICGs inhibit
and kill tumor cells by enhancing the body’s anti-tumor immune
function and have shown significant clinical efficacy in the
treatment of a variety of malignancies, becoming an important
tool in tumor therapeutics (Wang et al., 2018). Based on the
expression of 120 hypoxia-related genes, 1,025 colon cancer
samples from TCGA-COAD project and GEO-GSE39582 were

separated into two heterogeneous subtypes, with significant
differences in OS between the two subtypes. Hypoxia is an
important factor in the poor prognosis of tumor by regulating
cancer hallmark, thus creating physical barriers conducive to
tumor survival (Abou Khouzam et al., 2022). We found most
hypoxia-related genes are highly expressed in subtype B, and the
patients in subtype B had a worse survival outcome than those in
subtype A. We then compared the several expression levels of six
known immune checkpoint genes (PD-L1, PD-L2, PD-1, LAG3,
TIGIT, IDO1, and CTLA-4)between the two subtypes, and the

FIGURE 7 |Comprehensive analysis of the HRG-score in COAD. (A)Relationships between the HRG-score andMMR status. (B) Relationships between the HRG-
score and CSC index. (C) Relationships between HRG-score and sensitivity of five chemotherapeutics. (D) Prediction of the response of different risk samples to the
combination of anti-CTLA4 and anti-PD1 based on IPS. (E) Boxplot for assessing HRG-score in predicting anti-PD-L1 response through the IMvigor210 cohort.
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expression level of the six genes was significantly higher in
subtypes B than subtype A. The previous studies reported that
the high expression level of immune checkpoint genes was more
likely to form an immunosuppressive microenvironment and
promote tumor immune escape (Dunn et al., 2022); meanwhile,
the upregulation of immune checkpoint genes (ICGs) was
positively correlated with high immune cell infiltration (Hu
et al., 2021). The TME score and immune cell infiltration have
been reported to be tightly associated with the immunotherapy of
cancers and the prognosis (Luo et al., 2020). Thus, we also
analyzed the relationship between subtype and immune cell
infiltration. Compared with subtype A, the expression level of
most immune cells including activated B cells, activated
CD4+T cells and activated CD+8 T cells was significantly
higher in subtype B. In addition, we also observed that the
stromal score and ESTIMATE score were higher in B than A.
These results suggest that patients in subtype A may benefit from
immune checkpoint inhibitor therapies. TIDE comparison
between the two groups showed that patients with subtype B
were more likely to form immune escape than patients with
subtype A, which further confirmed our previous results.

Our findings suggest that hypoxic genes differ in the course of
changes in the colon. Therefore, we constructed a robust and
effective prognostic HRG-score and validated its predictive
ability. We explored the expression level of six genes of our
HRG-score and found a significant difference between the risk
groups. There were significant differences in clinical parameters,
prognosis, TME, ICGs, MMR status, CSC index, and drug
sensitivity between low- and high-risk HRG-score patients. It
will help to better understand the molecular mechanism of
colorectal cancer and provide new ideas for targeted therapy
(Bai et al., 2020; Huo et al., 2021; Yan et al., 2021).

Immunotherapy is a promisingmethod in cancer treatment and
has achieved remarkable efficacy in the treatment of colorectal
cancer (Ganesh et al., 2019). Due to the high heterogeneity of
molecular genetics and histopathology of colon cancer,
immunotherapy still has limitations and obstacles (Makaremi
et al., 2021). TME plays a crucial role in the tumorigenesis and
progression of COAD, and the immunosuppressive function is one
of the causes of poor response to treatment. Immune cells of TME
are involved in tumor suppression and progression. Immune-
infiltrating cells in TME are mainly composed of dendritic cells,
macrophages, NK cells, T cells, and B cells (Koi et al., 2017).
Surveillance and elimination of abnormal antigens is an essential
feature of the normal function of the immune system.
Macrophages and NK cells play a crucial role in stimulating the
adaptive immune system that targets tumor cells (Markman et al.,
2015), and a higher level of NK cells and CD8+ T-cell infiltration
often predicts a better prognosis (Sconocchia et al., 2014). In our
study, we discovered that the relative abundance of B cells,
CD8+T cells, NK cells, and macrophages cells was significantly
higher in the low-risk group.

In summary, this study conducted a comprehensive
bioinformatic analysis of two new molecular subgroups of
hypoxic genes and colorectal cancer patients and constructed
an HRG-score model consisting of six genes. However, due to the
limitations of bioinformatics analysis, further clinical sample
testing and cellular and animal experiments are needed to
explore the function of hypoxia genes in colorectal cancer and
the related molecular mechanisms in depth.
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