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Amyloid fibrils prepared using an 
acetylated and methyl amidated 
peptide model of the α-Synuclein 
NAC 71–82 amino acid stretch 
contain an additional cross-β 
structure also found in prion 
proteins
Thomas Näsström1*, Per Ola Andersson2,3, Christian Lejon2 & Björn C. G. Karlsson   4*

The 71–82 fragment of the non-amyloid-β component (NAC) region of the Parkinson’s disease (PD) 
and dementia with Lewy bodies (DLB) related protein α-Synuclein, has been reported to be important 
during protein misfolding. Although reports have demonstrated the importance of this fragment for 
the aggregation properties of the full-length protein, its exact role in pre-fibrillar oligomerisation, 
fibrillar growth and morphology has not yet been fully elucidated. Here, we provide evidence that 
fibrils prepared from an acetylated and methyl amidated peptide of the NAC 71–82 amino acid stretch 
of α-Synuclein are amyloid and contain, in addition to the cross-β structure detected in the full-length 
protein fibrils, a cross-β structure previously observed in prion proteins. These results shed light on the 
aggregation propensity of the NAC 71–82 amino acid stretch of the full-length protein but also the roles 
of the N- and C-terminal domains of α-Synuclein in balancing this aggregation propensity. The results 
also suggest that early aggregated forms of the capped NAC 71–82 peptide generated structures were 
stabilised by an anti-parallel and twisted β-sheet motif. Due to its expected toxicity, this β-sheet motif 
may be a promising molecular target for the development of therapeutic strategies for PD and DLB.

Neurodegenerative disorders such as Parkinson’s disease (PD) and dementia with Lewy bodies (DLB) are becom-
ing more common probably as life expectancies are increasing. These disorders are associated with neuropatho-
logical hallmarks such as loss of neurons in certain parts of the brain accompanied by intracellular deposition of 
Lewy bodies and Lewy neurites in surviving neurons. The major constituent of Lewy bodies is the misfolded and 
fibrillated α-Synuclein protein1, which has an important part in the pathogenesis of PD and DLB. However, in 
vitro and in vivo results suggest that intermediate pre-fibrillar soluble forms, such as oligomers and protofibrils of 
α-Synuclein, possess more cell degenerating properties than insoluble Lewy body inclusions2–6. The exact physio-
logical role of α-Synuclein is not well understood, although reports suggest that it is involved in neurotransmitter 
regulation7,8. The α-Synuclein protein consists of 140 amino acids, is generally natively unfolded, and has lipid 
binding properties due to four amphipathic and conserved 11-repeats (KTKEGV) of the net positively charged 
N-terminal region ( 1–60 aa). Although it is defined as an intrinsically disordered protein, previous structural 
investigations revealed that α-Synuclein folds into a helical structure, thereby following an apolipoprotein-type 
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A2 helix mechanism, when bound to SDS micelles9 and phospholipid vesicles10. The binding of misfolded states 
of α-Synuclein to lipid membranes is believed to be crucial for the development of PD and DLB. The exact bind-
ing mechanism is not fully understood, although a recent study suggested that oligomers can create membrane 
pores11 or stabilise pre-existing membrane defects12.

The C-terminal (96–140 aa) region of α-Synuclein is rich in acidic residues, which confer a net negative charge 
and a random coil structure. The central region, also known as the non-amyloid-β component (NAC, 61–95 aa), 
contains hydrophobic residues that are crucial for protein aggregation13,14. Rodriguez et al.15 recently reported 
the structural characterisation of generated fibrils prepared from model peptides representing the amino acid 
stretches 68–78 aa and 69–77 aa. These amino acid stretches belong to the central core of α-Synuclein (NACore, 
68–78 aa or the SubNACore, 69–77 aa), and are important for the formation of highly ordered β-sheet-rich struc-
tures that are cytotoxic. Detailed investigations revealed that the NACore was more prone to aggregation than 
the SubNACore, indicating the importance of the amino acid sequence for driving α-Synuclein fibril formation.

A 12 aa stretch of the NAC region residing between 71–82 aa (VTGVTAVAQKTV) is key for the aggre-
gation propensity of the whole NAC fragment. Deletion of this amino acid stretch in the homologous protein 
β-synuclein leads to an abrogation in the ability to aggregate16. A synthetic peptide based on the NAC 71–82 
fragment binds to anionic lipid bilayers17 and to neutrally charged lipid vesicles18. These combined results high-
light the significance of studying the aggregation propensity of the NAC 71–82 fragment and the role of this 
region on the interaction of α-Synuclein with macromolecular targets under normal physiological or pathological 
conditions.

Previous studies on the aggregation propensity of the NAC 71–82 fragment of α-Synuclein used a model pep-
tide. However, these studies used synthetic peptide preparations with charged N- and C- termini (non-capped) 
due to the high hydrophobicity of the NAC 71–82 amino acid stretch, thereby mimicking the result from prote-
olysis of the full-length protein.

Incubation of non-capped NAC 71–82 peptide solutions have resulted in premature amorphous fibrillar 
aggregates if the solution was incubated for less than six weeks19. It is reasonable to assume that introduction of 
N- and C-terminal charges can generate a peptide that is not a good model for the same amino acid stretch when 
incorporated into the native full-length protein.

Although the effects of N- and C-termini capping on the aggregation propensity of the NAC 71–82 frag-
ment have not yet been fully elucidated, biophysical and biochemical studies using N- and C- termini capped 
peptide fragments of the larger Islet Amyloid Polypeptide (IAPP) suggested that neutralisation of charged ter-
mini increased aggregation propensity and changed fibril morphology20. Therefore, it was deemed important to 
determine the aggregation propensity and fibril morphology of the NAC 71–82 fragment of α-Synuclein using 
a capped model peptide representing this amino acid stretch of the full-length protein. The significance of the 
structures derived from such studies may identify biological motifs of pathological NAC 71–82 fragment aggre-
gates that could be isolated and used for drug development.

In this study, we use data obtained from a series of spectroscopic [attenuated total reflectance Fourier trans-
form infrared (ATR FT-IR) spectroscopy, photon cross correlation spectroscopy (PCCS), and time correlated 
single photon counting (TCSPC) spectroscopy] and microscopic [transmission electron microscopy (TEM) and 
Congo red staining] analyses to determine that the capped NAC 71–82 peptide fragment of α-Synuclein readily 
forms amyloid fibrils that contain an additional cross-β structure previously identified in prion proteins. By con-
trast, the non-capped NAC 71–82 fragment forms premature amorphous fibrillar structures, in agreement with 
previous reports. Cluster analysis of the population of structures obtained from molecular dynamics (MD) simu-
lations of the early pre-fibrillar stage of both model peptides, revealed the presence of oligomeric structures con-
taining an antiparallel twisted β-sheet motif in the capped NAC 71–82 peptide fragment. These combined results 
shed light on the true aggregation propensity of the NAC 71–82 amino acid stretch of the full-length α-Synuclein 
protein, and demonstrate the potential use of the capped NAC 71–82 peptide as a target for the development of 
therapeutic strategies for PD and DLB.

Methods
Chemicals.  Recombinant wild-type α-Synuclein (lyophilised powder in final buffer concentration of 20 mM 
Tris-HCl pH 7.4 and 0.10 M NaCl) was obtained from rPeptide (>95% purity (SDS PAGE and MS), Watkinsville, 
GA, USA). The capped NAC 71–82 aa α-Synuclein peptide fragment (VTGVTAVAQKTV) (acetylated 
N-terminus and methylated amidated C-terminus) was purchased as a lyophilised trifluoroacetate (TFA) salt 
from Caslo ApS (96.3% purity (HPLC and MS), Kongens Lyngby, Denmark). The non-capped NAC 71–82 aa var-
iant was purchased as a lyophilised TFA salt from GenScript (95% purity (HPLC and MS), Piscataway Township, 
NJ, USA). All peptide and protein samples were purchased as pre-weighed powders in Eppendorf tubes (1.0 mg 
α-Synuclein and 4.0 mg peptides).

The colloidal silica (LUDOX®) particles (34 weight-% suspension in deionised water), Thioflavin-T (ThT) 
(≥65% dye content), the Congo red staining kit (HT-60), and xylene (histological grade) were purchased from 
Sigma-Aldrich (St. Louis, MO, USA). Vectashield mounting medium was from Vector Laboratories (Burlingame, 
CA, USA). Ethanol (99.5%) was obtained from Solveco, Rosersberg, Sweden. Millipore (Millipore, Bedford, MA, 
USA) water was used for all experiments.

Instruments.  Fluorescence steady-state emission spectra were recorded on a SPEX FluoroMax-2 fluorimeter 
(HORIBA Jobin Yvon, Edison, NJ, USA). Fluorescence decay times were obtained through the time correlated 
single photon counting (TCSPC) technique using a time-resolved spectrometer equipped with a data station 
hub, TBX-04 photon detection module, NanoLED (453 nm, 1.0 MHz repetition rate), and a 5000 M fluorescence 
monochromator (all from IBH Ltd., Glasgow, Scotland). Electron micrographs were acquired with a Talos L120 
transmission electron microscope (TEM, Thermo Fisher Scientific, Waltham, MA, USA) equipped with a Ceta 
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CMOS 4 K × 4 K pixel camera. Images were captured using a Nikon Eclipse E400 (Nikon, Minato, Japan) micro-
scope equipped with a first-order red compensation filter for plane polarised light. Peptide fibril particle size 
distributions in liquid suspensions were determined by photon cross correlation spectroscopy (PCCS) using a 
NanoPhox instrument (Sympatec GmbH, Germany). Platinum attenuated total reflectance Fourier transform 
infrared (ATR FT-IR) spectroscopic measurements were performed on a Vertex 70 instrument equipped with a 
liquid nitrogen-cooled MCT detector (Bruker, Billerica, MA, USA).

Fibril preparation.  Fibrils were prepared in vitro as follows. Buffer solution (20 mM Tris-HCl pH 7.3 and 
0.15 M NaCl) was added to the pre-weighed lyophilised samples of the non-capped NAC 71–82 peptide and the 
native α-Synuclein protein. The capped NAC 71–82 peptide had poor solubility in isotonic solvents (determined 
by the supplier solubility tests and reflecting the peptide hydrophobicity), so Millipore water was added to the 
sample. The final concentration of all samples was 2 mg · mL−1 to give an equimolar concentration of availa-
ble amino acids for aggregation (140 μM α-Synuclein and a 12-fold higher peptide concentration to reflect the 
12-fold higher number of amino acids in the α-Synuclein protein). Subsequently, all samples were treated identi-
cally using repeated steps of vortexing and ultrasound sonication. The dissolved peptide preparations were incu-
bated on a shaker (600 rpm) at 37 °C for 72 h. After 72 h, fibril samples were stored at −20 °C until further analysis.

ATR FT-IR spectroscopy.  Initially, 5 μL of each fibril suspension was applied and left to dry at ambient 
temperature on the ATR diamond surface. A spectral series was recorded between 4000–600 cm−1 with an optical 
resolution of 4 cm−1 until the water peak was at a minimum. For each fibril type, the secondary structure compo-
nents of the Amide I band (1700–1600 cm−1) were inspected, and the number of peaks was determined by obtain-
ing the second derivative of each spectra. To characterise initial solid states for peptide and protein preparations 
before fibrillisation, spectra of the Amide I band were recorded using lyophilised undissolved powder.

Molecular dynamics (MD) simulations.  Single extended structures of the capped NAC 71–82 and the 
non-capped NAC 71–82 peptides were built using XLEaP, a module of AmberTools15 (v.15, USCF, San Francisco, 
CA)21. Then, 10 copies of each peptide were randomly mixed using PACKMOL22 and random seed numbers 
with 10 000 water molecules and 10 neutralizing chloride ions in cubic boxes with 84-Å sides. For molecular 
systems including the non-capped NAC 71–82 peptide, additional sodium and chloride ions were included for a 
final physiological salt concentration of ~0.15 M. To improve statistics for each type of peptide–solvent system, 
a total of 10 boxes were built and analysed for each system (20 systems in total). Information on the number and 
type of peptide, number of water molecules and ions included in each box, and the initial and final size of each 
system (after running MD simulations) is given in supplementary Table S1. The peptide–solvent systems built 
with PACKMOL22 (see previous section) were loaded into the XLEaP module of AmberTools15 (v.15, USCF, San 
Francisco, CA) together with the Amber14SB force field23. The TIP3P-model was used for water, and the Joung 
and Cheatham24 parameters were used for sodium and chloride ions.

All systems were initially energy-minimised, to remove high-energy vdW contacts (5000 steps of steepest 
descent and 5000 steps of conjugate gradient). In a second step, each system was equilibrated using MD simu-
lation to reach conditions of NVT (constant number of particles, volume, and temperature) increasing the tem-
perature from 0 to 310.15 K for 100 ps. After the target temperature was reached, an additional 500 ps of MD 
simulation at constant NPT conditions (constant number of particles, pressure, and temperature) was conducted 
using a target isotropic pressure of 1 bar. During both MD simulation steps, the peptide fragments were restrained 
with a force constant of 10.0 kcal · mol−1 · Å−2. Finally, the peptide fragments restraint was released and 1 μs of MD 
simulation data was collected for each peptide system at NPT conditions (1 bar and 310.15 K) saving data every 
10 ps. A total of 10 μs of trajectory data on the folding and aggregation dynamics for each peptide were collected 
and analysed. All MD simulations were performed using AMBER14 (v.14, UCSF, San Francisco, CA)21. A 0.002 ps 
time-step was used in all simulations, and the SHAKE algorithm25 was used to constrain all bonds to hydrogen. 
A 10-Å cutoff was used for non-bonded interactions, and periodic boundary conditions were employed in all 
directions. Long-range electrostatic interactions were handled using the Particle Mesh Ewald (PME)26,27 summa-
tion method, and long-range vdW interactions were treated using a continuum model correction to energy and 
pressure. Temperature was held constant using the Langevin thermostat with a collision frequency set at 1.0 ps−1. 
Pressure was held constant using the Berendsen barostat and a 2-ps pressure-time relaxation constant.

Analysis of MD simulation data.  Final trajectories were analysed using the CPPTRAJ module imple-
mented in AmberTools15. Radial distribution functions (RDFs) were calculated to quantify water accumulation 
around the peptide bond of the non-capped and capped peptides. To evaluate the effects of charged termini on 
water solvation, RDFs were calculated for the NAC 73–80 region of both peptides. The RDF is defined as the ratio 
between the observed number density of a specified solvent atom at a known distance for a specified solute atom 
and the average bulk atom number density of the specified solvent atom. RDFs representing the water oxygen 
atom distribution around the backbone carbonyl oxygen and the backbone amide nitrogen atoms were calcu-
lated. The average number of water molecules around the selected peptide backbone functionalities was obtained 
by integrating the first solvation shell (using a 5.5-Å cutoff) with respect to the resultant RDFs (Supplementary 
Figs S1–S4 present typical RDFs for the water solvation of the non-capped and capped NAC 71–82 peptides and 
Figs S5–S8 present computed atomic number densities).

To quantify the secondary structure propensity of each non-capped and capped NAC 71–82 peptide fragment, 
secondary structure assignments were computed using the dictionary of secondary structure of proteins (DSSP) 
algorithm28 implemented in AmberTools15. The total occupancy of each type of secondary structure element 
populated during the total MD simulation time was presented as the mean ± standard error of the mean from ten 
separate MD simulations of 1 μs each (Supplementary Figs S9 and S10).
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Cluster analysis was performed on 100 000 structures obtained from each independent MD simulation using 
the density-based clustering algorithm, DBScan29. Root mean square distance (RMSD) of the peptide backbone 
Cα atoms was used as the distance metric (distance cutoff (epsilon) set to 2.5 Å) and the lowest number of cluster 
members was set to 30. Top-ranked, highly populated structures derived from DBScan clustering, were visualised 
in VMD (v.1.9.1, University of Illinois at Urbana-Champaign, USA)30 (Supplementary Figs S11 and S12). The 
secondary structure elements revealed in these geometries were computed using the STRIDE algorithm31.

ThT-fibril binding.  The interaction of ThT and the prepared fibrils was analysed by steady-state time-based 
fluorescence emission spectroscopy. ThT binding to fibrils was monitored by measuring the ThT fluorescence 
emission over time (λexc = 450 nm and λem = 485 nm). Measurements were initiated by equilibrating a fibril solu-
tion for 3 min and then adding ThT. The final concentrations of fibril and ThT in each sample were 1.8 mg · mL−1 
and 10 μM, respectively. ThT fluorescence life time in the presence of fibrils was resolved using TCSPC. ThT 
fluorescence decay was measured at λem = 485 nm, which was set by a single grating monochromator with a spec-
tral bandwidth of 16 mm. The excitation source was a NanoLED (IBH) producing 453-nm excitation pulses at a 
1.0 MHz repetition rate. During each measurement, the photon-counting rate was always lower than 2% of the 
excitation source repetition rate to avoid photon pile-up effects. Before every sample measurement, the instru-
ment response function was measured using a LUDOX® solution (excitation and emission wavelength both set to 
453 nm). Fluorescence decays were collected over 4096 channels (each channel calibrated to 13.4 ps · channel−1), 
and fluorescence lifetimes were resolved using either a single or a double exponential decay fit model in Analysis 
Software (v.6.1.51, IBH, Glasgow, Scotland). Generally, curve-fits were accepted when χ2 < 1.2. All measurements 
were performed at ambient temperature under rigorous and continuous stirring, and samples were analysed in 
quartz Suprasil® cuvettes (3.0-mL and 1-cm path length, Hellma GmbH Müllheim, Germany).

PCCS.  Fibril particle size was determined using PCCS (NanoPhox, Sympatec, GmbH, Germany). Particle size 
distribution was measured utilising the time auto-correlation functions representing the scattered light generated 
from analysed particles and assuming Brownian motion. All fibril samples (typically 0.5 mg · mL−1) were initially 
equilibrated at 25 °C in plastic 50-μL UVettes (Eppendorf, Hamburg, Germany), before measurements. To ensure 
a stable signal (auto correlation), 1-min measurements were sufficient. During each measurement, the refractive 
index was set to 1.5 with no imaginary part32,33. Freshly dissolved control peptide solutions (i.e., not incubated) 
did not scatter sufficient light for NanoPhox detection, which was evidence of the lack of particles in those sam-
ples. Correlation lengths were evaluated with the auto non-negative least squares (NNLS) with or without a filter 
to achieve acceptable correlation functions.

TEM.  Samples (3.5 µL protein/peptide dispersion) were drop-coated onto pre-cleaned [glow-discharged with 
PELCO easiGlow (Ted Pella, Redding, CA, USA)] formvar and carbon-coated copper grids, and subsequently 
negatively stained with 1.5% uranyl acetate.

Congo red staining and microscopy.  Aggregated preparations of the α-Synuclein protein and capped 
NAC 71–82 and non-capped NAC 71–82 peptide fragments where stained for amyloids using a Congo red kit 
according to the manufacturer’s protocol with slight modifications (described below). Stained samples were 
then examined under brightfield and plane polarised light. Briefly, 2, 10, and 50 μL of 2 mg · mL−1 aggregated 
α-Synuclein protein, capped NAC 71–82 peptide and non-capped NAC 71–82 peptide was added to the cen-
tre of microscope slides (Knittel Glass, Braunschweig, Germany) and left to dry at room temperature. In par-
allel, fresh preparations of alkaline alcoholic (80% v/v) NaCl-saturated solution and Congo red (0.2 weight%) 
NaCl-saturated solution were prepared and filtered through a 0.2-μm syringe filter. Next, microscope slides were 
quickly immersed in the 80% (v/v) alcohol NaCl-saturated solution, immediately transferred to alkaline Congo 
red solution, and then incubated for 20 min at room temperature. The slides were rinsed three times in 99.5% 
ethanol followed by final immersion in xylene. Vectashield mounting medium was then added to protect the 
samples before adding cover slips. The slides were examined using a Nikon Eclipse E400 microscope equipped 
with a first-order red compensation filter for plane polarised light. Images were photographed using a brightfield 
microscope, and the measured plane polarised light was processed using Nikon NIS Elements software (v.4.13 
Nikon, Minato, Japan). Brightfield images were photographed using 20× magnification, 0.25 s exposure time, and 
3.40× gain. Polarised images were photographed using 3.40× magnification and 1.5 s exposure time. The colour 
contrast was set to high and the auto-white option was used. All images were processed with Gimp (v. 2.10.8, 
www.gimp.org) software. The background of brightfield microscopic images was initially set to white, and the 
background of the acquired apple-green polarised images was set to black using the levels tool.

Results and Discussion
Thioflavin-T (ThT)-binding34 or ThS-binding, positive Congo red staining with apple-green birefringence, FT-IR 
detection of β-sheet structure, and TEM analysis of fibrillar morphology are commonly used to detect amyloid 
structure in aggregation-prone proteins and their ability to form aggregates35. Previous studies on amyloidogenic 
properties of peptides such as amyloid-β (Aβ)36 and IAPP20, model peptide fragments of full-length proteins such 
as Apolipoprotein A-IV (ApoA-IV)37, and deletion strains of full-length proteins38,39 have investigated the effects 
of charge balance, the role of specific amino acid sequences and the introduction of mutations on aggregation 
propensity. Madine and co-workers19 studied the importance of peptide charge balance on aggregation kinetics 
by evaluating the effects of pH on aggregation propensity and amyloid structure using the non-capped NAC 
71–82 fragment of α-Synuclein. The results showed that the peptide aggregated into β-sheet-rich amyloids at pH 
7 and pH 10. At pH 4, the peptide remained as an unfolded structure. In these studies, the authors based their 
amyloid characterisation on TEM analysis and circular dichroism (CD)-spectroscopy, and the peptide was incu-
bated for 6 weeks. To further characterise the importance of charge balance on fibril formation, we investigated 
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the aggregation propensity of the NAC 71–82 peptide after capping its termini, which was believed to have an 
effect on final fibril morphology. We present data on the aggregation behaviour of α-Synuclein and models of the 
NAC 71–82 amino acid stretch of the full-length protein. The peptide concentrations (mg · mL−1) were selected 
to represent the same number of amino acids in the full-length protein. In addition, our approach was used to 
model the aggregation propensity of the NAC 71–82 amino acid stretch of α-Synuclein upon molecular crowding 
conditions.

The solid states of α-Synuclein protein and non-capped and capped NAC 71–82 peptides were analysed with 
ATR FT-IR spectroscopy to ensure sample purity and absence of fibrils. An ATR FT-IR solid-state spectrum 
of α-Synuclein revealed a broad featureless Amide I vibrational band with a maximum at 1641 cm−1 (Fig. 1). 
This band was associated with random coil (frequency limits 1644.5–1637 cm−1)40, and was previously reported 
for monomeric α-Synuclein in solution41. The Amide I bands obtained for the non-capped and capped NAC 
71–82 peptides demonstrated similar curve profiles and were richer in structure than the band observed in the 
α-Synuclein spectrum. The observed peaks represented folded structures similar to those reported for synthetic 
peptides such as polyalanine42. The similar solid-state curve profiles for the peptides suggested comparable initial 
states. The major bands for the non-capped and capped NAC 71–82 peptides were observed at 1622 cm−1 and 
1628 cm−1, respectively. These positions were previously associated with β-sheet structures (1613–1637 cm−1). 
The observed difference in the vibrational maxima (6 cm−1) of the non-capped and capped NAC 71–82 peptides 
was believed to originate in terminal charge difference between the peptides (and possibly peptide orientation), 
which leads to stronger electrostatic interactions in the non-capped NAC 71–82 peptide in the solid state. The 
synthetic peptides were prepared as TFA salts, and the main contributing Amide I band from TFA is centred at 
1670–1680 cm−1. A comparison between the ATR FT-IR spectra of the peptides revealed no evident TFA peak; 
thus, the amount of TFA present is assumed to be comparable in the peptide samples and thus not interfere in the 
spectral analysis.

Fibrils were generated by incubating samples (2.0 mg · mL−1) for 72 h at 37 °C. Visual inspection of incubated 
samples revealed precipitates for all preparations. The non-capped NAC 71–82 precipitates were more light scat-
tering and less transparent than the capped NAC 71–82 peptide and α-Synuclein precipitates. As a control, fibril-
lisation of the non-capped peptide in pure aqueous solution did not produce visual precipitates. This behaviour 
can be explained by the absence of counter ions capable of minimising repulsion between the terminal charges of 
interacting peptides, thus reflecting a micellar-like aggregation process. This important role of electrolytes in the 
extent of fibrillisation is in agreement with the results of Dong et al.41, who reported faster α-Synuclein fibrillisa-
tion kinetics with elevated salt (NaCl) concentrations. These insights suggest different aggregation pathways for 
the capped and the non-capped NAC 71–82 peptide fragments.

ATR FT-IR spectra of the Amide I band of α-Synuclein and the capped and non-capped NAC 71–82 peptides 
after fibrillisation for 72 h (solid lines with open circles) revealed evident shifts in the secondary structure pop-
ulation from random coil to β-sheet structure (1629 cm−1) (Fig. 2). The final position of this vibrational band 
(1628 cm−1) corresponds to a distinct β-sheet structure observed in previous α-Synuclein in vitro fibrillisation 
studies43. A change in the position of the vibrational band corresponding to β-sheet structure also was observed 
for the studied peptides. Peptide fibrillisation increased the intensity of the same β-sheet vibrational band that was 
observed in the ATR FT-IR spectra for the solid-state peptides (Fig. 1). In some cases, the ATR FT-IR spectrum of 
a solid-state peptide can differ from that in solution; however, this work focused on end-point fibrillar structure 
and did not investigate solvent-dependent conformational changes. The second derivative of the Amide I band 
was computed to deconvolute overlapping vibrational bands and obtain data on the secondary structure of each 
fibrillar system (Fig. 2). The second-derivative spectra revealed the presence of a similar β-sheet band in all sam-
ples (centred at 1627–1629 cm−1).

A low-frequency (LF) vibrational band at 1613 cm−1 was detected for the capped NAC 71–82 peptide fibrils. 
This LF band was observed in the FT-IR spectra of other amyloidogenic peptides, and is believed to originate 
from highly ordered β-sheet structures44. The LF band was centred at 1615 cm−1 and 1616 cm−1 for fibrils of the 
diabetes type II hIAPP polypeptide45 and the lens-associated γD-crystallin protein46, respectively. Interestingly, 

Figure 1.  ATR FT-IR solid-state spectra. Shown spectra represent lyophilised α-Synuclein (bold line), non-
capped (dashed line) and capped (dotted line) NAC 71–82 peptides in the solid state.
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the major β-sheet band for of the prion protein (PrP) was observed at 1626–1628 cm−1, whereas the LF band was 
centred at 1613 cm−1 47. Subsequent X-ray crystallography studies indicated that these two bands (designated as 
CB-1 and CB-2) could be correlated to different cross-β structures44. The LF band was attributed to CB-2 and was 
believed to be a cross-β structure with a different β-strand distance and compactness than that observed for CB-1.

Although studies using solid-state NMR (PDB: 2N0A)48 and cryo-electron microscopy (PDB: 6A6B)49 reported 
a parallel orientation of β-strands in end-point amyloid structures, vibrational bands in ATR FT-IR spectra asso-
ciated with anti-parallel β-sheets in fibrillar samples have been suggested to indicate the presence of pre-fibrillar 
species. Celej et al.50 showed that pre-fibrillar oligomeric species of α-Synuclein were in an anti-parallel β-sheet 
orientation. These oligomers were believed to be cytotoxic based on the assembly of anti-parallel β-sheets into 
β-barrel-like structures that can potentially disrupt membranes50. The second-derivative Amide I band spectra 
clearly displayed a vibrational band centred at 1690 cm−1 (frequency limits 1685–1705 cm−1). This band is typ-
ically reported for anti-parallel β-sheet structure51, suggesting the presence of pre-fibrillar oligomeric species 
in this sample. Traces of this band also were observed for α-Synuclein fibrils. Sarroukh et al.52 estimated the 
percentage of anti-parallel and parallel organisation of β-strands by developing the β-sheet index, which they 
defined as the ratio of the intensities of the Amide I vibrational bands observed at 1695 cm−1 and 1630 cm−1. 
We estimated the β-indices (I1695/I1630) for α-Synuclein and the capped NAC 71–82 peptide (I1690/I1627–1629) using 
the spectra shown in Fig. 3, and the results were in agreement with previous reports on α-Synuclein fibrils pro-
duced after 72 h50. The final β-index value revealed the dominance of parallel β-sheet orientation over anti-parallel 
β-sheet orientation in this fibrillar system. The corresponding β-index for the capped NAC 71–82 peptide was 
higher for the initial solid state than for the fibrillar end-point, as expected, which reflected an anti-parallel to 
parallel β-sheet transformation. The capped NAC 71–82 peptide displayed more complete fibrillisation than the 
α-Synuclein protein, with fewer numbers of pre-fibrillar oligomeric species in anti-parallel β-sheet orientation. 
Since the non-capped NAC 71–82 peptide system did not exhibit a vibrational absorption peak at 1690 cm−1, a 
β-index was not calculated for this system.

A series of MD simulations was performed to obtain information about the molecular mechanisms involved 
in the initial phase of oligomerisation for the capped and non-capped NAC 71–82 peptides. These insights could 
potentially explain the structural differences in peptide fibrils observed during ATR FT-IR spectroscopy, such 
as the predominance of an anti-parallel pre-fibrillar oligomeric population of the capped NAC 71–82 peptide. 
After collecting a total of 20 μs of MD simulation data for both non-capped and capped NAC 71–82 peptides, 
initial calculations of the water solvation degree over time was performed to characterise the oligomerisation 
process. Our hypothesis was that formation of an aggregated hydrophobic core is driven by a desolvation mecha-
nism (hydrophobic effect), which potentially could influence the final architecture of the pre-fibrillar oligomeric 
β-sheet structure. The discrepancy of water desolvation during oligomerisation of the capped and the non-capped 
NAC 71–82 peptides may affect their pre-fibrillar aggregate compactness differently, and thus could affect final 
fibril morphology.

Calculation of the average number of water molecules around each peptide backbone over time revealed that a 
water desolvation process was operating for both non-capped and capped NAC 71–82 peptides, which is a signa-
ture for oligomerisation (Fig. 4, and Supplementary Figs S5–S8 for single trajectory profiles). Closer inspection of 
the oligomerisation profiles suggested that the terminal charges of the non-capped NAC 71–82 peptide attracted 
more water than the peptide with acetylated and methyl amidated termini, which was determined after calculat-
ing RDFs for water accumulation around the backbone of the whole peptide (Fig.4A1,B1) and the NAC 73–80 
region of both peptides (Fig. 4A2,B2). Secondary structure was analysed using the DSSP algorithm to evaluate 
the extent of β-sheet formation in the peptides during oligomerisation. Calculations of the average fraction of sec-
ondary structure elements populated revealed similar β-sheet, helical, and turn contents in the peptides (Fig. 5). 
Different peptide charge models can lead to differences in the modes by which they interact in monomeric form 

Figure 2.  Spectral characterisation of ATR FT-IR data of α-Synuclein and peptides in the fibrillar state. 
Lower panels show recorded Amide I band spectra of the fibrillar structures (solid lines with open circles) 
of α-Synuclein protein, non-capped NAC 71–82 peptide, and capped NAC 71–82 peptide. Top panels show 
processed second-derivative spectra with highlighted wavenumbers representing calculated minima.
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with macromolecular targets. Capping of the NAC 71–82 peptide may lead to more stable α-helical conformation 
than that of its charged counterpart. However, this topic was beyond the scope of this work.

The non-capped NAC 71–82 peptide had higher fraction of bend structure due to the presence of terminal 
charges. It is reasonable to assume that this results from water accumulation around these terminal groups, which 
restricts the conformational freedom of these peptide fragments.

The structures populated during MD simulations were clustered using the DBScan algorithm to obtain quan-
titative information on oligomer stability and qualitative information on β-sheet architecture. Detailed analyses 
revealed a more stable fraction of oligomers (time in cluster with respect to the total simulation time) for the 
capped NAC 71–82 peptide than for oligomers of the non-capped NAC variant. The average fraction of stable 
oligomeric clusters for the capped and non-capped NAC 71–82 peptides was 60.0 ± 1.7% and 43.9 ± 2.5%, respec-
tively (Supplementary Tables S2 and S3). The cluster representatives (the top three most-populated clusters for 
each peptide are presented in Supplementary Figs S11 and S12) revealed a twisted anti-parallel β-sheet motif in 
oligomeric clusters of the capped NAC 71–82 peptide, which was not detected in the non-capped NAC 71–82 
peptide (Fig. 6). The twisted anti-parallel β-sheet motif is a common feature of β-hairpin structures that serve as 
fibrillar precursors in Alzheimer’s disease53 and type II diabetes54. The β-hairpin motif was previously reported to 
involve the 38–53 aa region and formed transiently during folding of full-length α-Synuclein55. A series of engi-
neered proteins called β-wrapins was reported to bind to the 37–54 aa region of α-Synuclein, thereby reducing 
the fibrillisation rate of this protein56. Although these results suggest that the β-hairpin motif is important for 

Figure 3.  ATR FT-IR spectral comparison between the α-Synuclein protein and peptides in the solid and 
fibrillar states. Spectral data show the α-Synuclein protein (solid line) and the non-capped NAC 71–82 peptide 
(dashed line), and capped NAC 71–82 (dotted line) peptide in the solid state and after fibrillisation for 72 h 
(solid lines with open circles).
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the aggregation propensity of full-length protein, the role of the NAC 71–82 region in β-hairpin formation and 
interaction with macromolecular targets remains to be fully characterised.

Our MD and ATR FT-IR studies indicate that the average β-sheet structures populated revealed the 
co-existence of anti-parallel and parallel orientations of β-strands. However, results from MD simulations 
demonstrated a higher stability of anti-parallel β-sheets and more compact oligomeric structures in the capped 
NAC 71–82 peptide than in the non-capped NAC 71–82 peptide. The results suggest that the twisted anti-parallel 
β-sheet motif observed in the MD simulations could be associated with the pre-mature structure formed after a 
72-h incubation, which was confirmed by an ATR FT-IR vibrational band at 1690 cm−1.

To validate the β-sheet content, a ThT fluorescence binding assay was conducted after adding the dye to fibril-
lar samples that had been incubated for 72 h. The ThT steady-state fluorescence emission over time demonstrated 

Figure 4.  Estimation of the degree of water solvation calculated from MD-based peptide aggregation 
simulations. Calculated values (integration of the calculated RDFs) represent the average number of water 
molecules (NWater) within a 5.5-Å radius over 100-ns fragments of the total 1-μs simulation time of backbone 
carbonyl oxygen (BackboneO-WaterO, top) (A) or a backbone amide nitrogen (BackboneN-WaterO, bottom) (B) 
of the non-capped NAC 71–82 peptide + 0.15 M NaCl (filled circles) or the capped NAC 71–82 peptide (open 
circles). Values represent the mean ± standard error of the mean from 10 separate MD simulations of 1 μs each.

Figure 5.  DSSP secondary structure analysis from MD trajectory data. Numbers describe the extent of 
secondary structure elements [parallel- and anti-parallel β-sheets, 310-, α-, and π-helices, hydrogen-bonded 
turns, bends, and no secondary structure (coil)] that were populated during MD simulations of 10 copies of the 
non-capped NAC 71–82 peptide (in explicit water and 0.15 M NaCl) (A) and the capped NAC 71–82 peptide (in 
explicit water) (B). The total occupancy of each type of secondary structure element is presented as a fraction of 
the total MD simulation time, and values are presented as mean ± standard error of the mean from 10 separate 
MD simulations of 1 μs each (Supplementary Figs S9 and S10).
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that the fluorescence increased for α-Synuclein and capped NAC 71–82 fibrils, whereas the non-capped NAC 
71–82 aggregated peptide was not observed to bind ThT (Fig. 7). ThT fluorescence increased approximately 
10-fold more for α-Synuclein than for the capped NAC 71–82 fibrillar peptide, which may be due to the larger 
ThT binding capacity of these protein aggregates. Time correlated single photon counting (TCSPC) analyses of 
the α-Synuclein and capped NAC 71–82 aggregates provided additional details about the nature and extent of 
ThT binding to these fibrils (Table 1 and Supplementary Figs S13–S15). Two decay components were observed 
after incubation ThT with capped NAC 71–82 fibrils: the first component (A1) may be associated with an unbound 
state of ThT with a fluorescence lifetime of T1 ≈ 0.2 ns, whereas the second component (A2), suggested that 18% of 
the collected photons displayed a similar ThT fluorescence lifetime as that of the single lifetime observed for ThT 
incubated with α-Synuclein fibrils (T1 ≈ 1.9 ns).

The 1.9 ns lifetime for ThT bound to α-Synuclein fibrils was in agreement with a previous report of Sulatskaya 
and co-workers57. Only a single ThT lifetime of T1 < 0.1 ns (shorter than the detector resolution) was detected for 
ThT incubated with non-capped NAC 71–82 fibrils (Supplementary Fig. S14, which was expected based on the 
absence of ThT fluorescence at the emission wavelength.

Figure 6.  Selected top oligomeric cluster representatives of the capped NAC 71–82 peptide. The structures 
demonstrate evident anti-parallel twisted β-sheet motifs. Percentages written below each oligomeric peptide 
structure describe the time in cluster with respect to the total simulation time (#1, #2, and #10).

Figure 7.  Time-based steady-state fluorescence analysis of ThT-fibril binding. Data of fluorescence emission 
over time of ThT after incubation with full-length α-Synuclein (black solid line), capped NAC 71–82 peptide 
(dotted line), and non-capped NAC 71–82 peptide (dashed line) aggregates.
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To estimate the strength of ThT binding to capped NAC 71–82 fibrils, we performed a TCSPC assay where 
different concentrations of ThT (0–50 μM) were incubated with a constant concentration of fibril (0.1 mg · 
mL−1). The corresponding analysis of the fraction of bound ThT as a function of free unbound ThT concentra-
tion (T1 ≈ 0.2 ns) resulted in a saturation binding isotherm with the apparent dissociation constant KD of 5 ± 3 
μM (Supplementary Figs S17, S18, and Table S4). The control experiment varied the ThT concentration in the 
presence of a constant concentration of non-capped NAC 71–82 fibrils; the results did not identify the presence 
of a bound state of ThT, and did not demonstrate a concentration-dependent binding (Supplementary Fig. S16). 
Increasing the concentration of the non-capped NAC 71–82 fibrils from 0.1 to 0.2 mg · mL−1 increased the light 
scattering from aggregates (probably contributing to a higher amplitude of the T1 fluorescence life time).

The ThT-capped fibril binding affinity we observed was comparable with that reported by Ye et al.58 who 
performed a ThT fluorescence assay and reported a single class of ThT binding sites on α-Synuclein, with 
KD = 0.588 ± 0.002 μM. A recent study suggested that there was an additional ThT binding site on α-Synuclein. 
Sulatskaya et al.57 performed equilibrium dialysis and reported a high-affinity binding mode with KD in the 
micromolar range (the association binding constant KA = 106 M−1) and a weaker binding mode with KD = 100 
μM (the association binding constant KA of 104 M−1). Under the conditions employed in this work, the ThT bind-
ing affinity for the capped NAC 71–82 fibrils was similar to the average of the two modes (low- and high-affinity 
binding) of bound ThT to the full-length α-Synuclein protein. Based upon these observations, it can be concluded 
that the capped NAC 71–82 peptide fibrils bind ThT with a similar binding mode as that of α-Synuclein fibrils 
(high-affinity binding). This highlights the significance of the NAC 71–82 amino acid stretch on α-Synuclein 
fibrillisation and the use of a capped peptide model to capture the core β-sheet architecture of α-Synuclein fibrils.

The final characterisation of end-point fibril morphology was performed using TEM. Non-capped NAC 71–82 
fibrils displayed clumped fibrils with elongated tangles, in agreement with those obtained for α-Synuclein fibrils 
in this and previous work by Ariesandi et al.59 (Fig. 8). By contrast, capped NAC 71–82 fibrils did not display 
tangles but were rich in aggregated aligned fibrils in bundles (Fig. 8).

The unique fibril morphology observed for capped NAC 71–82 peptide may result from the additional cross-β 
structure that was identified by ATR FT-IR spectroscopy. Although the morphology of fibrils produced by the 
capped NAC 71–82 peptide is profoundly different from that of α-Synuclein fibrils, the data obtained from 
TEM analysis suggest the importance of the C-terminus, which was reported to govern the aggregation behav-
iour of the α-Synuclein protein. Rekas et al.60 demonstrated the chaperone activity of 96–140 aa region in the 
C-terminus, and suggested that the NAC 61–95 region contains a chaperone-binding site. Fibrils obtained from 

Fibril

Lifetimes/ns Amplitudes/%

χ2T1 T2 A1 A2

Capped NAC 71–82 0.203 ± 0.002 2.020 ± 0.002 82 18 1.17

α-Synuclein 1.915 ± 0.002 100 1.12

Non-capped NAC 71–82 ≤0.100 100 19.6

Table 1.  TCSPC data obtained from ThT-fibril binding experiments.

Figure 8.  Transmission emission microscopy (TEM) analysis of fibrillar structure. Images of fibrillar structures 
of capped NAC 71–82 peptide (A), non-capped NAC 71–82 peptide (B), and α-Synuclein (C) after negative 
staining with 1.5% uranyl acetate. Scale bars represent 500 nm for upper panels and 100 nm for lower panels.
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the non-capped NAC 71–82 peptide are morphologically more similar to α-Synuclein fibrils, probably due to 
the inclusion of charged termini, thereby modelling the charge balance of N-terminal (1–60 aa) and C-terminal 
(96–140 aa) domains of the full-length protein, which have net positive and negative charges, respectively.

Light scattering experiments revealed morphological differences between the non-capped and capped NAC 
71–82 fibrils. The average fibril particle sizes were 3.3 μm and 4.6 μm for the capped and non-capped NAC 71–82 
fibrils, respectively (Supplementary Fig. S19). The capped fibril particles had a narrower particle size distribution, 
thus reflecting a more homogenous particle size distribution. This observation demonstrated the differences in 
morphology of fibrils produced from the capped and non-capped NAC 71–82 peptide models. The larger fibril 
particles obtained for the non-capped NAC 71–82 peptide were consistent with the MD simulations conducted 
in this work that suggested increased water solvation around charged termini. Here, data derived from MD sim-
ulations representing the early stage of oligomerisation for both peptides provided valuable details about final 
fibril morphologies.

Congo red staining of fibrils was conducted to validate the presence of cross-β structure which has been 
proposed previously61,62. Brightfield microscopy revealed Congo red-positive staining for all samples (Fig. 9). 
The non-capped NAC 71–82 fibrils displayed less evident Congo red-positive staining than the capped NAC 
71–82 peptide fibrils. To confirm true amyloid-like properties, samples were examined under polarised light 
to detect apple-green birefringence. The capped NAC 71–82 fibrils fulfilled all criteria and exhibited amyloid 
structure based on the results of Congo red staining35,63. By contrast, the α-Synuclein fibrils did not exhibit 
apple-green birefringence. To the best of our knowledge, no studies have reported that in vitro-generated or brain 
tissue-deposited α-Synuclein fibrils exhibit both positive Congo red staining and apple-green birefringence. We 
suggest that capped NAC 71–82 fibrils display apple-green birefringence due to the presence of an additional 
cross-β structure in these fibrils, which is not present in α-Synuclein fibrils. It should however be mentioned that 
the thickness of a stained sample may affect the detection of apple-green birefringence and lead to false positives 
or false negatives64. Cheng et al.65 used a Fmoc-VLK(Boc) tri-peptide to prepare fibrils that exhibited apple-green 
birefringence. The authors argued that this was due to a tightly packed cross-β structure, which supports our 
hypothesis. The observed differences in the Congo red staining and apple-green birefringence of capped and 
non-capped NAC 71–82 fibrils suggests a profound structural difference between these fibrils, and stresses the 
importance of using a capped NAC 71–82 peptide to model amyloid-forming propensity of the NAC core of 
full-length α-Synuclein. As a negative control for nonspecific binding of the Congo red dye, staining of Bovine 
Serum Albumin yielded a negative result (Supplementary Fig. S20).

Conclusion
We investigated the NAC 71–82 amino acid stretch as the amyloid nucleus of α-Synuclein. ATR FT-IR analysis 
indicated the presence of a vibrational frequency band centred at 1619 cm−1 together with a lower frequency 
Amide I band at 1613 cm−1 for the capped NAC 71–82 fibrils, with the latter indicating a highly ordered cross-β 
structures that reflected the type of non-branched aggregated aligned fibrils in bundles that were observed in 
TEM analysis. Fibrils produced from the capped NAC 71–82 peptide showed greater binding of Thioflavin-T 
(ThT) than non-capped NAC 71–82 peptide, and fulfilled both Congo red-positive and apple-green birefringence 
amyloid detection criteria. Fluorescence lifetime analysis revealed a lifetime decay for ThT bound to capped NAC 
71–82 fibrils of ~2.0 ns, in agreement with that observed for ThT-α-Synuclein fibril binding, thereby suggesting 
similar β-sheet binding of ThT for the two fibrillar samples. All-atom MD simulations representing early stages of 
peptide oligomerisation revealed water desolvation for both non-capped and capped NAC 71–82 peptides during 
the aggregation process. Although both peptides formed oligomers, the capped NAC 71–82 peptide formed more 
stable oligomers than the non-capped peptide. The increased fraction of the bend secondary structure element 

Figure 9.  Brightfield and polarised microscopy images after Congo red staining of fibrils. Upper panels show 
staining of capped NAC 71–82 fibrils (A), non-capped NAC 71–82 fibrils (B), and α-Synuclein fibrils (C). 
Lower panels show apple-green birefringence in the corresponding samples. All images were captured at 20× 
magnification with a first-order red compensation filter for plane polarised light. Images were processed using 
Gimp 2.10 as described in the Methods section.
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in non-capped NAC 71–82 peptide oligomers explained the absence of ThT binding with this peptide. Extraction 
of cluster representatives of NAC 71–82 oligomers revealed the presence of a stable, anti-parallel, twisted β-sheet 
motif in these structures. This feature may be the basis for the additional cross-β structure observed in capped 
NAC 71–82 fibrils, although further studies are needed. Finally, TEM analysis revealed a higher aggregation pro-
pensity to form aggregated aligned fibrils in bundles for the capped NAC 71–82 fibrils than the non-capped NAC 
71–82- and α-Synuclein fibrils, which displayed clumped fibrils with elongated tangles. Particle size determina-
tion revealed that the capped NAC 71–82 peptide displayed smaller fibrils and a more homogenous population of 
particle sizes than the non-capped NAC 71–82 peptide.

These results are summarised in Table 2. They indicate that the amyloid cross-β structure for capped NAC 
71–82 fibrils may constitute a central compact core of α-Synuclein aggregates. Fibrillisation of the capped NAC 
71–82 peptide resulted in an additional cross-β structure that was previously reported in prion proteins. Our 
combined results shed light on the aggregation propensity of the NAC 71–82 amino acid stretch of α-Synuclein 
and the roles of the N- and C-terminal domains in regulating the rate of amyloid formation and final fibril mor-
phology. Finally, we demonstrated that early aggregated forms of the capped NAC 71–82 peptide model yield 
structures that include anti-parallel and twisted β-sheet motifs. Due to the expected toxicity of these early aggre-
gated forms, this β-sheet motif could be a promising molecular target for developing therapeutic strategies for 
PD and DLB.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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